
On the practically interesting instances of MAXCUT

Yonatan Bilu ∗ Amit Daniely † Nati Linial ‡ Michael Saks §

April 3, 2012

Abstract

The complexity of a computational problem is traditionally quantified based on the hardness
of its worst case. This approach has many advantages and has led to a deep and beautiful theory.
However, from the practical perspective, this leaves much to be desired. In application areas,
practically interesting instances very often occupy just a tiny part of an algorithm’s space of
instances, and the vast majority of instances are simply irrelevant. Addressing these issues is a
major challenge for theoretical computer science which may make theory more relevant to the
practice of computer science.

Following [BL], we apply this perspective to MAXCUT, viewed as a clustering problem.
Using a variety of techniques, we investigate practically interesting instances of this problem.
Specifically, we show how to solve in polynomial time distinguished, metric, expanding and dense
instances of MAXCUT under mild stability assumptions. In particular, (1 + ε)-stability (which
is optimal) suffices for metric and dense MAXCUT. We also show how to solve in polynomial
time Ω(

√
n)-stable instances of MAXCUT, substantially improving the best previously known

result.

∗Parasight inc, Agudat sport hapoel 1, Jerusalem, Israel. yonatan@gmail.com
†Department of Mathematics, Hebrew University, Jerusalem 91904, Israel. Supported in part by a binational

Israel-USA grant 2008368. amit.daniely@math.huji.ac.il
‡School of Computer Science and Engineering, Hebrew University, Jerusalem 91904, Israel. Supported in part by

a binational Israel-USA grant 2008368. nati@cs.huji.ac.il
§Department of Mathematics, Rutgers University, Piscataway, NJ 08854. Supported in part by NSF under grant

CCF-0832787 and by a binational Israel-USA grant 2008368. saks@math.rutgers.edu.

1 Introduction

The primary criterion used in computational complexity to evaluate algorithms is worst case behav-
ior, so that a problem is infeasible if no efficient algorithm can solve all its instances. In practice,
this approach is often overly pessimistic, and a more realistic (but fuzzy) criterion would be to say
that a problem is feasible if there is an efficient algorithm that correctly solves all of its practi-
cally interesting instances. The difference can be very substantial, since for many computational
problems, the vast majority of instances are completely irrelevant for practical purposes.

An important case in point is clustering, where one seeks a meaningful partition of a given set
of data. Almost every formal manifestation of the clustering problem is NP -Hard, yet, a clustering
instance is of practical interest only if the data can indeed be partitioned in a meaningful way.
Random instances are not likely to have a meaningful partition, so data sets with a meaningful
partition are very special. Thus, even if no efficient algorithm can find the optimal partition for
every data set, this does not imply that clustering is hard in practice. As Tali Tishby put it in
conversation many years ago, many practitioners hold the opinion that ”clustering is either easy or
pointless”. That is, for a data sets that admit a meaningful partition of the data, finding it is not
hard.

Can this intuition be put on a solid theoretical foundation? Bilu and Linial [BL] proposed a
framework for studying this issue. Generally speaking, their approach pertains to optimization
problems with a continuous input space and discrete solution space. They proposed two criteria
for an optimal solution to be evidently optimal. A solution is stable if it remains optimal under
moderate perturbations of the input. A solution is distinguished if a transition to another solution
reduces the value of the objective function in proportion to the distance between the two solutions.
Concretely, they considered the case where the input is a weighted graph and the candidate solutions
are cuts (or more generally, partitions). Here, a cut is γ-stable (for γ ≥ 1) if it remains optimal
even if each input weight wij is perturbed to a value between wij and γwij . A cut is α-distinguished
(for α ≥ 0) if moving to any other cut reduces the objective function by at least α times the sum
of (weighted) degrees of the vertices that switched side.

Following Bilu and Linial [BL], we apply these notions to the study of the (weighted) MAXCUT
problem. We also investigate the more restricted problem of Metric-MAXCUT1 which arises often
in the field of machine learning. Our main results are:

Theorem 1.1 1. For every ε > 0 there is a polynomial time algorithm that correctly solves all
(1 + ε)-locally stable instances of Metric-MAXCUT.

2. For every ε > 0 and C > 1 there is a polynomial time algorithm that correctly solves all
(1 + ε)-locally stable and C-dense instances of MAXCUT.

The condition of C-density rules out overly-weighted edges. The notion of γ-local stability is
a substantial weakening of γ-stability. It is defined similarly, but we only require resilience to
perturbations that modify edges which are all incident with the same vertex.

Theorem 1.2 There is a polynomial time algorithm that solves all instances of MAXCUT that are

1. α-distinguished and γ-locally stable with γ > 2
1−
√

1−α2
, or

2. γ-locally stable with γ > 2
1−
√

1−h2 .

1That is, MAXCUT, restricted to instances where the weight function is a metric.

1

Here h is the Cheeger constant of the maximal cut.

This substantially improves a result from [BL] that works only for regular graphs and requires that

γ > 5+
√

1−α2

1−
√

1−α2
or γ > 5+

√
1−h2

1−
√

1−h2 . It is also shown in [BL] that n-stable instances are feasible. Here we

derive the same conclusion under the weaker (but still impractical) assumption of Ω(
√
n)-stability.

Theorem 1.3 There is a polynomial time algorithm that finds the optimal solution for every
Ω(
√
n)-stable instance of MAXCUT.

Some notation and terminology

Here the input to the MAXCUT problem is the complete graph on n vertices G = (V,E) along with
a symmetric function with zero diagonal w : V × V → R+. Expressions such as ”w is bipartite”
refer to the graph which is the support of w, which is always assumed to be connected. Our purpose
is to find a cut (S, S̄), S ⊆ V for which

∑
a∈S, b∈S̄ w(a, b) is maximized.

Fix a cut (S, S̄). We use the self-explanatory terms “the vertices x, y are on the same side” or
“separated” by this cut. We call the edge xy a cut edge or a non-cut edge when x, y are separated
resp. on the same side of the cut. For A,B ⊂ V , we denote E(A,B) = {ab|a ∈ A, b ∈ B} and
w(A,B) :=

∑
uv∈E(A,B)w(u, v). Also τw(A) = τ(A) = w(A, Ā) and µ(A) = µw(A) = w(A, V).

Let A ⊆ V . We denote by ξ(A), the weight of the cut edges emanating from S, i.e., ξ(A) =∑
vu∈E(A,Ā)∩E(S,S̄)w(u, v) and by ι(A) = τ(A)− ξ(A) the weight of the non-cut edges. We slightly

abuse notation for singletons A = {v} and pairs A = {u, v} and write τ(v) or ι(e) etc., where
e = uv. The minimal, maximal and average degree of w are denoted by δ(w) = minv∈V µ(v),

δ̄(w) = maxv∈V µ(v) and δ(w) =
∑
v∈V µ(v)

n respectively. (The potentially confused reader may find
the following Greek-mathematical dictionary useful: τ stands for “total”, ξ for “external” and ι for
“internal”).

1.1 Stable instances

Definition 1.4 Let w : V × V → [0,∞) be an instance of MAXCUT and let γ ≥ 1. An instance
w′ : V × V → [0,∞) is a γ-perturbation of w if

∀u, v ∈ V, w(u, v) ≤ w′(u, v) ≤ γ · w(u, v)

An instance w is said to be γ-stable if there is a cut which forms a maximal cut for every γ-
perturbation w′ of w.

Definition 1.5 Let γ ≥ 1. An instance w : V × V → [0,∞) for MAXCUT is γ-locally stable if
there is a maximal cut (S, S̄) for which it is impossible to obtain a larger cut by switching the side
of some vertex x and multiplying the edges in E(x, V \ {x}) by numbers between 1 and γ.

The definitions of stability and local stability capture the intuition of an “evidently optimal” so-
lution. The following more concrete equivalent definitions are usually more convenient to use.

Observation 1 [BL] Let w : V × V → R be an instance of MAXCUT and let γ ≥ 1.

• The instance w is γ-stable iff there is a maximal cut for which ξ(A) ≥ γ · ι(A) for every
A ⊂ V .

2

• The instance w is γ-locally stable iff there is a maximal cut for which ξ(x) ≥ γ · ι(x) for every
x ∈ V .

We say that a (not necessarily maximal) cut (S, S̄) is γ-stable (resp. γ-locally stable) if the first
(resp. second) condition in Observation 1 holds.

As Observation 1 shows, every instance is 1-stable, and being γ-stable for some γ > 1 is
equivalent to having a unique maximal cut2. Finally, an instance is bipartite iff it is γ-stable for
every γ ≥ 1. Thus, γ-stability is seen to be a relaxation of being bipartite.

Stability and local stability are quite different. As mentioned, for γ > 1 every instance has at
most one γ-stable cut. On the other hand, there can be numerous γ-locally stable cuts: Consider
the instance where w = 1 on the edges of a perfect matching and ε > 0 elsewhere. As ε → 0, the
local stability tends to ∞. Yet, this instance is not γ-stable for any γ > 1. It is easy to check
that this instance has exponentially many γ-locally stable maximal cuts. From the computational
perspective the two properties are very different as well. Thus MAXCUT remains NP -hard even
under arbitrarily high local stability (see [BL]), whereas we show here how to efficiently solve
Ω(
√
n)-stable instances. Also, it is easy to decide whether a given cut is γ-locally stable, but we do

not know how to decide whether a given cut is γ-stable and we suspect that this problem is hard.
In Section 4, following a simplified version of the algorithm in [BL] for Ω(n)-stable instances, we

present a deterministic algorithm that solves every Ω(
√
n)-stable instance, proving Theorem 1.3.

1.2 Distinguished and Expanding instances

Let w : V × V → R+ be an instance of MAXCUT whose (unique) maximal cut is (S, S̄). We note
that if all vertices of A ⊂ V switch side, then the weight of the cut decreases by ξ(A)− ι(A). Thus,
we define

Definition 1.6 An instance w of MAXCUT is α-distinguished for α ≥ 0 if for every ∅ 6= A ⊂ V ,
ξ(A)− ι(A) ≥ α ·min{µ(A), µ(Ā)}.

Note that every instance is 0-distinguished and being α-distinguished with α > 0 is equivalent
to having a unique maximal cut. It is not hard to see that 1+α

1−α -local stability is equivalent to α-local
distinction, namely ξ(x)− ι(x) ≥ α · µ(x) for every x ∈ V .

Distinction vs Stability. Let (S, S̄) be a maximal cut of w : V ×V → [0,∞). On the one hand,
every α-distinguished instance is 1+α

1−α -stable, because ξ(A)− ι(A) ≥ αµ(A) ≥ α(ξ(A) + ι(A)). On
the other hand, highly stable instances need not be distinguished as the following bipartite example
with V = {a1, . . . , an}∪̇{b1, . . . , bn} shows. Here w(ai, bj) is 1 when i = j and ε � 1 otherwise.
Clearly w is ∞-stable. Yet, switching the sides of all the vertices in {a1, . . . , an

2
} ∪ {b1, . . . , bn

2
}

decreases the weight of the cut only slightly. Such examples motivate the stronger notion of
distinction. Although the cut ({a1, . . . , an}, {b1, . . . , bn}) is infinitely stable, its optimality does
not seem completely evident.

Distinction and Expansion. Call w : V × V → R+ β-expanding if β ≤ h(w) where

h(w) = min∅6=A⊂V
τ(A)

min{µ(A),µ(Ā)} is w’s Cheeger constant. An α-distinguished instance is α-

expanding, though highly expanding instances can even have multiple maximal cuts. However,
an instance that is both γ-stable and β-expanding is easily seen to be (β · γ−1

γ+1)-distinguished. As
this discussion implies, distinction is a conjunction of stability and expansion.

In section 3 we prove Theorem 1.2, using a spectral result from [BL]. In the appendix we
re-derive this result and point out its close relation to the Geomans-Williamson algorithm [GW]
and other spectral techniques.

2To see that, note that if (S, S̄) is a γ-stable cut and (T, T̄) is another cut then w(T, T̄) = w(S, S̄)− ξ((T ∩ S) ∪
(T̄ ∩ S̄)) + ι((T ∩ S) ∪ (T̄ ∩ S̄)) ≤ w(S, S̄)− γ−1

γ+1
τ((T ∩ S) ∪ (T̄ ∩ S̄)) < w(S, S̄).

3

1.3 Metric and Dense instances

In Section 2 we study metric instances. This is done through a reduction from metric to dense
instances, so we consider such instances as well (Section 2.1).

We call w : V ×V → R C-dense for C ≥ 1 if ∀x, y ∈ V, w(x, y) ≤ C · τ(x)
n . As shown in [AKK],

for C > 1 fixed, C-dense MAXCUT is NP -Hard, but it has a PTAS. As we show, this PTAS can
be adapted to correctly solve all instances of MAXCUT that are (1 + ε)-locally stable and C-dense
for every ε > 0, C > 1. The algorithm samples O(log n) vertices and tests each of their bipartitions
as a seed to a cut. As we show, w.h.p., one of the resulting cuts is the maximal cut, proving the
second part of Theorem 1.1.

In Section 2.2 we deal with Metric-MAXCUT. As shown in [VK] (with credit to L. Trevisan)
Metric-MAXCUT is NP -Hard. That paper also gives a reduction from metric to (4 + o(1))-dense
instances of MAXCUT, thus yielding a PTAS for Metric-MAXCUT. We show that a slight variation
of this reduction preserves local stability3, and therefore yields an efficient algorithms for (1 + ε)-
locally stable instances of Metric-MAXCUT, proving Theorem 1.1 in full.

This algorithm for metric instances is far from being a practically applicable clustering method.
Even though it is polynomial-time, the actual run times are prohibitively high. We view this more
as an invitation to seek practical algorithms for γ-stable instances of metric MAXCUT for some
reasonable values of γ. Specifically we provide such an algorithm for (3 + ε)-locally stable metric
instances.

1.4 Relation with other work

Smoothed analysis is the best known example of a method for analyzing instances of computational
problems based on their practical significance. As this method shows [ST], a certain variant of the
simplex algorithm solves in polynomial time almost every input. Even closer to our theme are
several recent papers on clustering. In [ABS] polynomial time algorithms are given for 3-stable
instances of k-means, k-medians and other “center based” clustering problems. The constant 3 was
improved in [BL2] to (1 +

√
2) for k-median. The papers [DLS, AB, BBV] consider data sets that

admit a good clustering and show how to cluster them efficiently.
Also related to our work are the planted partition model [B] and semirandom model [FK] for

MAXCUT. In these models instances are generated by splitting the vertices at random V = S∪̇S̄.
Edges in S× S̄ (resp. S×S ∪ S̄× S̄) are picked with probability p, resp. q < p. In the semirandom
model we also allow an adversary to add edges to S × S̄ and drop edges from S × S ∪ S̄ × S̄. As
shown in [B, FK], a.a.s., (S, S̄) is the maximal cut and it can be efficiently found using certain
algorithms. It not hard to see that for fixed p and q, this is a consequence of Theorem 1.1. The
planted partition model is a random model that usually generates instances with a good partition,
and those can be efficiently found. The semirandom model goes further by allowing an adversary
to modify the input in a way that improves the optimal partition. Here we take an additional step
forward, since we solve efficiently every instance with a good partition.

3A word of caution: Our definition of stability and local stability for Metric-MAXCUT is more restrictive than
one might think. We require the perturbed instance to satisfy the stability condition whether or not it is metric.

4

2 Algorithms for locally stable dense and metric instances

2.1 Dense instances

Theorem 2.1 For every C ≥ 1 and ε > 0 there is a randomized polynomial time algorithm that
correctly solves all (1 + ε)-locally stable, C-dense instances of MAXCUT.

The analysis of the algorithm is based on the following lemma.

Lemma 2.2 Suppose that w : V × V → [0,∞) is a C-dense instance and let (S, S̄) be a γ-locally
stable cut. Let X1, . . . , Xm be i.i.d. r.v. that are uniformly distributed on V . For x ∈ V , let Ax be
the event that S+ > S−, where S± =

∑
w(x,Xi) over all i s.t. x and Xi are separated resp. on the

same side. Then

Pr (∪xAx) ≤ |V | · exp

(
−1

2

(
1

C
· γ − 1

γ + 1

)2

·m

)
Proof The lemma follows from Hoeffding’s bound. For every x ∈ V , S+ − S− is a sum of m i.i.d.

r.v.’s of expectation ξ(x)−ι(x)
|V | ≥ γ−1

γ+1
τ(x)
|V | . These r.v.’s are bounded in absolute value, by C · τ(x)

|V | .

2

Proof (Of Theorem 2.1) Let D = 2
(
C · 2+ε

ε

)2
. Let m = D · ln(2|V |). Take an i.i.d. sample of m

uniformly chosen points X1, . . . , Xm ∈ V . By the above lemma, with probability ≥ 0.5, there is a
partition {X1, . . . , Xm} = L

∐
R such that the cut defined by S = {x ∈ V : w(x,R) > w(x, L)} is

the optimal cut. Since the number of such partitions is (2 · |V |)ln(2)D, there are only polynomially
many partitions to consider, yielding an efficient randomized algorithm for the problem.

2

Corollary 2.3 For every C ≥ 1 and ε > 0, a C-dense instance of MAXCUT has only poly(|V |)-
many (1 + ε)-locally stable cuts.

Proof Consider the random cut (S, S̄), sampled as in the proof of Theorem 2.1, where the partition
{X1, . . . , Xm} = L

∐
R is chosen uniformly at random. The proof Theorem 2.1 shows that for every

(1+ ε)-locally stable cut (T, T̄), the probability that (S, S̄) = (T, T̄) is ≥ 0.5 · (2 · |X|)−D ln(2). Thus,
there are at most 2 · (2 · |X|)D ln(2) such cuts.

2

2.2 Metric instances

Given an instance w : V × V → [0,∞) of MAXCUT, we split its vertices as follows. Pick a set Ṽ
and a surjective map π : Ṽ → V . A MAXCUT instance w̃ on Ṽ is defined as follows:

w̃(x̃, ỹ) =
w(x, y)

|π−1(x)| · |π−1(y)|

where π(x̃) = x, π(ỹ) = y. It is not hard to prove that

Proposition 2.4 Consider the following map from cuts of w to cuts of w̃ defined by

(S, S̄) 7→ (π−1(S), π−1(S̄))

Then

5

1. This map preserves weights, stability and local stability of cuts.

2. Restricted to the locally stable cuts (i.e., γ-locally stable cuts with γ > 1), this is a bijection
onto the locally stable cuts of w̃.

3. It maps maximal cuts to maximal cuts.

As the following proposition shows, the above construction is a reduction from metric to (4+o(1))-
dense instances.

Proposition 2.5 Let w : V × V → [0,∞) be an instance of Metric-MAXCUT with w(V, V) =
2 · |V |2. Consider the map π :

∐
x∈V [bτw(x)c] → V . The instance w̃ obtained by π is (4 + o(1))-

dense.

Proof Let x̃, ỹ ∈ Ṽ such that π(x̃) = x, π(ỹ) = y. It is easy to see that (see [VK]) 2 · |V | · τw(x) ≥
w(V, V), bτw(x)c ≥

(
1− 1

|V |

)
τw(x), τw̃(x̃) = τw(x)

bτw(x)c ≥ 1 and w(x, y) ≤ 1
|V |(τw(x) + τw(y)). Thus,

we have

w̃(x̃, ỹ) =
w(x, y)

bτw(x)c · bτw(y)c

≤ 1

(1− 1/|V |)2 ·
w(x, y)

τw(x) · τw(y)

≤ 1

(1− 1/|V |)2 ·
1
|V | [τw(x) + τw(y)]

τw(x) · τw(y)

=
1

(1− 1/|V |)2 ·
(

1

|V |τw(x)
+

1

|V |τw(y)

)
≤ 1

(1− 1/|V |)2 ·
4

w(V, V)

≤ 1

(1− 1/|V |)2 ·
4

|Ṽ |

= (4 + o(1))
τw̃(x̃)

|Ṽ |

2

Corollary 2.6 Let ε > 0.

1. There is a randomized polynomial time algorithm for (1+ε)-locally stable instances of Metric-
MAXCUT.

2. The number of (1 + ε)-locally stable cuts in a metric instance is polynomial in |V |.

2.2.1 A faster algorithm for (3 + ε)-stable metric instances

Proposition 2.7 Let (L,R) be a γ-locally stable cut of an instance, w, of Metric-MAXCUT. Then,

for every x ∈ L, z ∈ R, w(x, z) ≥
(
γ2−1
γ

)
· w(x,R)
γ·|R|+|L| .

6

Proof Using γ-local stability and the triangle inequality we obtain

1

γ
w(x,R) ≥ w(x, L) =

∑
y∈L

w(x, y)

≥
∑
y∈L

(w(z, y)− w(x, z))

= w(z, L)− |L|w(x, z)

≥ γw(z,R)− |L|w(x, z)

= γ
∑
y∈R

w(z, y)− |L|w(x, z)

≥ γ
∑
y∈R

(w(y, x)− w(z, x))− |L|w(x, z)

= γw(x,R)− γ|R|w(x, z)− |L|w(x, z)

2

Theorem 2.8 Let (X,w) be an instance of Metric-MAXCUT and let (L,R) be a γ = (3+ε)-locally
stable cut with ε > 0. Then either L or R is a (metric) ball.

Proof W.l.o.g., |L| ≥ n
2 . We find some x ∈ L such that ∀z ∈ R, w(z, x) > diam(L), thus

proving our claim. Select some x, y ∈ L with w(x, y) = diam(L). For every z ∈ L, we write
w(x, y) ≤ w(x, z) +w(y, z). Summing over every z ∈ L, this yields |L| ·w(x, y) ≤ w(x, L) +w(y, L).

W.l.o.g., assume that w(x, L) ≥ |L|2 · w(x, y). By local stability,

w(x, y) ≤ 2

|L|
w(x, L) ≤ 2 · w(x,R)

γ · |L|
(1)

By proposition 2.7, every z ∈ R satisfies w(x, z) ≥
(
γ2−1
γ

)
· w(x,R)
γ·|R|+|L| . Combined with equation (1),

and the assumptions that γ > 3 and |L| ≥ |R|, we obtain that w(x, z) > w(x, y) as claimed.

2

By Theorem 2.8, the maximal cut of (3 + ε)-locally stable instances of Metric-MAXCUT can be
found by simply considering all O(n2) balls.

Note 2.9 Theorem 2.8 is tight in the following sense. We show an example of (3−ε)-stable metric
instance (not just locally-stable), where neither side of its maximal cut is a ball, nor can it even be
expressed as the union of few balls.

Here is the example: It is a metric space (X,w) = (L
∐
R,w) where L = {l1, . . . , l2n}, R =

{r1, . . . , r2n}. Generally speaking, the distance between two points which are both in L or in R is
1. The distance between a point in L and a point in R is 3, the following are exceptions to the
general rule: ∀1 ≤ i ≤ n, w(l2i−1, l2i) = w(r2i−1, r2i) = 2 and ∀1 ≤ i ≤ 2n, w(li, ri) = 2 It is not
hard to see that w is a (3− o(1))-stable metric instance and each side of its maximal cut cannot be
decomposed into fewer than 2n balls.

7

3 Distinguished and Expanding Instances

Let w : V × V → [0,∞) be an instance of MAXCUT with a maximal cut (S, S̄). We identify w
with an n×n matrix W , where Wij = w(i, j). Define wcut : V ×V → R by wcut(u, v) = w(u, v) for
uv ∈ E(S, S̄) and wcut(u, v) = 0 otherwise. Similarly, denote wuncut = w−wcut. Denote by Wcut and
Wuncut the matrices corresponding to wcut and wuncut respectively. Finally, let Dcut, Duncut, D and
D′ be the diagonal matrices defined by Dcut

ii =
∑

jW
cut
ij , Duncut

ii =
∑

jW
uncut
ij , D = Dcut +Duncut

and D′ = Dcut −Duncut.

Lemma 3.1 If w is γ-locally stable where γ > 2

1−
√

1−(h(wcut))
2
, then W + D′ is a PSD matrix of

rank n− 1.

As shown in [BL] there is an efficient algorithm that correctly solves all instances that satisfy
the conclusion of the Lemma (As pointed out in the Appendix, the GW-algorithm solves all such
instances). This proves the second part of Theorem 1.2.

Proof First, we note that it is enough to prove that D−
1
2 (W +D′)D−

1
2 is a PSD matrix of rank

n − 1. Let f : V → R be the vector defined by fi =
√
Dii for i ∈ S and fi = −

√
Dii for i ∈ S̄.

Since fTD−
1
2 (W + D′)D−

1
2 f = 0, it is enough to show that vTD−

1
2 (W + D′)D−

1
2 v > 0 for every

unit vector v that is orthogonal to f . Note that

D−
1
2 (W +D′)D−

1
2 = D−

1
2 (Dcut +W cut −Duncut +W uncut)D−

1
2 (2)

The matrix D−
1
2 (W cut +Dcut)D−

1
2 is positive semi-definite and f is in its kernel (to see that, note

that for u ∈ Rn, uT (W cut +Dcut)u =
∑

ijW
cut
ij (ui + uj)

2). Therefore we have

vTD−
1
2 (W cut +Dcut)D−

1
2 v ≥ λ2 (3)

where 0 = λ1 ≤ λ2 ≤ . . . ≤ λn are the eigenvalues of D−
1
2 (W cut +Dcut)D−

1
2 . Moreover, W uncut +

Duncut � 0 ⇒ 2Duncut � Duncut −W uncut, where A � B means that the matrix A − B is PSD.
Thus, we have,

vTD−
1
2 (Duncut −W uncut)D−

1
2 v ≤ 2 · vTD−

1
2DuncutD−

1
2 v ≤ 2 ·max

i

Duncut
ii

Dii
≤ 2

γ + 1
(4)

Combining equations (2), (3) and (4), it is enough to show that λ2 >
2

γ+1 . However, since wcut is

bipartite, the matrices D−
1
2 (Dcut+W cut)D−

1
2 and D−

1
2 (Dcut−W cut)D−

1
2 have the same spectrum4.

Also, D−
1
2 (Dcut−W cut)D−

1
2 and D−1(Dcut−W cut) have the same spectrum5 so it suffices to show

that µ2 >
2

γ+1 , where µ2 is the second smallest eigenvalue of D−1(Dcut −W cut). By the known
relation between expansion and the second eigenvalue of the Laplacian (e.g., Theorem 2.2 in [FN]),

it follows that µ2 ≥ mini
Dcutii
Dii
· (1−

√
1− h(wcut)2) ≥ γ

γ+1(1−
√

1− h(wcut)2)

2

Finally, to prove the first part of Theorem 1.2, it is enough to show that if w is α-distinguished
then h(wcut) ≥ α. Indeed, for ∅ 6= A ⊂ V we have

τwcut(A) = ξw(A) ≥ ξw(A)− ιw(A) ≥ α ·min{µw(A), µw(Ā)} ≥ α ·min{µwcut(A), µwcut(Ā)}
4To see that, let P : Rn → Rn be the operator that multiply by −1 the coordinates corresponding to one side of

the cut and fixes the other. The operator P commute with diagonal matrices and satisfies WP = −PW . Thus, v

be an eigenvector of D−
1
2 (Dcut +W cut)D−

1
2 with an eigenvalue λ iff Pv an eigenvector of D−

1
2 (Dcut +W cut)D−

1
2

with an eigenvalue λ.
5Since v is an eigenvector of D−

1
2 (Dcut−W cut)D−

1
2 with eigenvalue λ iff D−

1
2 v is an eigenvector of D−1(Dcut−

W cut) with eigenvalue λ.

8

4 Algorithms for stable instances

We begin with a useful observation.

Observation 2 Let w be a γ-stable instance of MAXCUT, and let w′ be obtained from w by
merging two vertices6 on the same side of w’s maximal cut. Then w′ is γ-stable and its maximal
cut is induced from w’s maximal cut.

By the above observation, we conclude that in order to design an efficient algorithm for γ-stable
instances, it is enough to show in every γ-stable instance, we can efficiently find a pair of vertices
that are on the same side of the cut. Once two such vertices are found, we merge them and proceed
recursively. This applies as well when γ is not a constant, but a non-decreasing function of n.

As an easy warm-up, we show how this observation yields a simple efficient algorithm that solves
every 2n-stable instance w : V × V → R of MAXCUT. This is a simplification of an algorithm
from [BL]. By observation 2, it suffices to find two vertices which are on the same side of the
maximal cut. Pick an arbitrary vertex v ∈ V . If vu is the heaviest edge incident with v, then
clearly w(v, u) ≥ 1

n−1τ(v). On the other hand, by observation 1, ι(v) ≤ 1
2n+1τ(v), so w(v, u) > ι(v)

and we conclude that vu is a cut edge. Now, let e be the heaviest edge incident with {u, v}, say
e = vz. Again, w(v, z) ≥ 1

2(n−2)τ({u, v}) and by observation 1, ι({v, u}) ≤ 1
2n+1τ({v, u}), implying

that w(v, z) > ι({v, u}). Consequently vz is a cut edge. But since vz and vu are cut edges, the
vertices z and u are on the same side of the cut.

4.1 A deterministic algorithm for O(
√
n)-stable instances

Following observation 2, the algorithm we present will find two vertices which are on the same side
of the cut. Let w : V × V → R be a γ-stable instance of MAXCUT with γ >

√
8n+ 4 + 1 and let

(S, S̄) be a maximal cut. We first deal with very heavy edges. Define

T 1 := {vu : w(v, u) >
1

γ + 1
µ(v)}

By observation 1, all edges in T 1 are cut edges. Thus if there are two incident edges uv, vz ∈ T 1,
then u and z are on the same side of the cut and we are done. It remains to consider the case
where T 1 is a matching. Define

T 2 = {uv /∈ T 1 : w(u, v) >
1

γ + 1
τ({u, z}) for some uz ∈ T 1}

Again, by observation 1, all edges in T 2 are cut edges. If T 2 is nonempty, say uv ∈ T 2, then there
exists some uz ∈ T 1 with w(u, v) > 1

γ+1τ({u, z}), which implies that v and z are on the same side

of the cut. We proceed to consider the case where T 2 is empty.
For every u, v ∈ V define

w̃(u, v) =

{
0 vu ∈ T 1

w(u, v) o/w
, ŵ(v) =

{
τ({u, v}) vu ∈ T 1 for some u ∈ V
τ(v) o/w

Note that ŵ(v) is well defined, since T 1 is a matching by assumption. Since T 2 = ∅ and T 1

is a matching, we have, for every u ∈ V , w̃(v, u) ≤ 1
γ+1 ŵ(v) and, again by observation 1, ι(v) ≤

6Let w : V ×V → R be an instance and let v, u ∈ V . The instance w′ : V ′×V ′ → R obtained upon merging v, u is
defined as follows. V ′ = V \{u, v}∪{v′} and w′(x, y) = w(x, y) for x, y ∈ V \{v, u}, also, w′(v′, x) = w(v, x)+w(u, x).

9

1
γ+1 ŵ(v). Next, we observe as well that separated vertices cannot have too many common neighbors.

For u, v ∈ V we define n(u, v) :=
∑

z∈V w̃(v, z)w̃(z, u). If v and u are separated, say v ∈ S, u ∈ S̄,
then

n(u, v) =
∑
z∈S̄

w̃(v, z)w̃(z, u) +
∑
z∈S

w̃(v, z)w̃(z, u)

≤ 1

γ + 1
ŵ(v) · ι(u) +

1

γ + 1
ŵ(u) · ι(v)

≤ 2

(γ + 1)2
ŵ(u) · ŵ(v)

Thus, it suffices to find two vertices v, u with n(u, v) > 2
(γ+1)2

ŵ(u) · ŵ(v), and place them on the

same side of the cut. Indeed, if no such pair exists we have

1

4

∑
v∈V

ŵ2(v) ≤
∑
v∈V

τ2
w̃(v)

=
∑

u,v,z∈V
w̃(u, z)w̃(z, v)

=
∑

u,v∈V, u 6=v
n(u, v) +

∑
u,z∈V

w̃2(u, z)

≤ 2

(γ + 1)2

∑
u,v∈V, u 6=v

ŵ(u)ŵ(v) +
∑
u∈V

1

γ + 1
ŵ(u)

∑
z∈V

w̃(u, z)

≤ 2

(γ + 1)2
(
∑
u∈V

ŵ(u))2 +
1

γ + 1

∑
u∈V

ŵ(u)τw̃(u)

≤ 2n

(γ + 1)2

∑
u∈V

ŵ2(u) +
1

γ + 1

∑
u∈V

ŵ2(u)

And it follows that γ ≤
√

8n+ 4 + 1. A contradiction.

5 Conclusion and open problems

Our results together with work from [AB, ABS, BL, DLS, BL2] show that in many cases practically
interesting instances of hard problems are computationally feasible. Still much remains to be
done toward a new paradigm of analyzing the complexity of computational problems of practical
significance. Even if we restrict our attention to MAXCUT, many problems remain open. Here are
some of the more significant challenges:

• Following [BL], we recall the (admittedly bold) conjecture that there is a constant γ∗ > 1,
s.t. γ∗-stable instances can be solved in polynomial time.

• It is interesting seek the best possible dependency of γ on α in Theorem 1.2. We are quite
certain that further improvements are possible.

• With reference to Corollary 2.6, can you find a practically efficient algorithm for, say, 2-locally
stable metric instances?

10

References

[AB] M. Ackerman and S. Ben David. Which data sets are clusterable? a theoretical study of
clusterability. NIPS (2009).

[AKK] S. Arora, D. Karger, and M. Karpinski Approximation schemes for dense instances of
NP-hard problems. STOC (1995), pages 284-294.

[ABS] P. Awasthi, A. Blum, and O. Sheffet. Center-based clustering under perturbation stabil-
ity. Information Processing Letters, volume 112, pages 49-54, 2011.

[BBV] M.F. Balcan, A. Blum, and S. Vempala. A discriminative framework for clustering via
similarity functions. STOC (2008), pages 671-680.

[BL2] M. F. Balcan and Y. Liang. Clustering under Perturbation Resilience. To appear (see
http://arxiv.org/pdf/1112.0826v3.pdf), 2012.

[BL] Y. Bilu and N. Linial Are Stable instances Easy? Innovations in Computer Science
(Beijing, China, 2010), pages 332-341.

[B] R. Boppana. Eigenvalues and graph bisection: An average case analysis. FOCS (1987),
pages 280-285.

[DP] C. Delorme and S. Poljak. Laplacian eigenvalues and the maximum cut problem. Math.
Programming, 62(3, Ser. A):557-574, 1993.

[DLS] A. Daniely, N. Linial, and M. Saks. Clustering is difficult only when it does not matter.
To appear (see http://www.cs.huji.ac.il/~nati/PAPERS/cluster_ez.pdf), 2012.

[FK] U. Feige and J. Kilian. Heuristics for semirandom graph problems. J. Comput. System
Sci., 63(4):639- 671, 2001. Special issue on FOCS (1998).

[FN] S. Friedland and R. Nabban. On Cheeger-type inequalities for weighted graphs. Journal
of Graph Theory, Volume 41, Issue 1, pages 1-17, 2002.

[GW] M. X. Geomans and D. P. Williamson. Improved Approximation Algorithms for Maxi-
mum Cut and Satisfiability Problems Using Semidefinite Programming. Journal of the
ACM, Volume 42, pages 1115-1145, 1995.

[M] F. McSherry. Spectral partitioning of random graphs. FOCS(2001), pages 529-537.

[ST] D. Spielman and S. H. Teng. Smoothed analysis of algorithms: why the simplex algorithm
usually takes polynomial time. STOC (2001), pages 296-305.

[VK] W. Fernandez de la Vega and Claire Kenyon. A Randomized Approximation Scheme for
Metric MAX-CUT. FOCS (1998), pages 468-471.

A The Spectral approach and the GW algorithm

Convex programming relaxations play a key role in the study of hard computational problem. They
mostly play a prominent role in the search for approximate solutions. The Goemans-Williamson
(GW) approximate solution for MAXCUT is a prime example of this approach. Can such algorithms

11

http://arxiv.org/pdf/1112.0826v3.pdf
http://www.cs.huji.ac.il/~nati/PAPERS/cluster_ez.pdf

provide as well exact solutions for practically interesting instances? Many papers (e.g. [B, DP, GW,
M]) study the relationships between the maximal cut and spectrum of matrices associated with the
instance. Such ideas have led to various heuristics and approximation algorithms for MAXCUT.
In section A we ask under which conditions those methods solve MAXCUT exactly. As shown is
Section 3, distinguished instances satisfy such conditions.

We need some terminology. We identify an instance w of MAXCUT with an n× n matrix W ,
where Wij = w(i, j). A vector v ∈ Rn is called a generalized least eigenvector (GLEV) of W if there
is a diagonal matrix D such that v it is an eigenvector of W +D, corresponding to (W +D)’s least
eigenvalue, λ. By letting ∆ := D − λI we see that v is a GLEV iff v is in the kernel of W + ∆ for
∆ diagonal with W + D � 0. (As usual A � 0 means that A is positive semi-definite). A vector
v ∈ Rn induces the cut (S, S̄) where S = {i : vi > 0}. An algorithm for MAXCUT is called spectral
if it always returns a cut that is induced by a GLEV.

Many popular approximation algorithms and heuristics for MAXCUT are spectral. They usually
work by returning the cut induced by w’s lowest eigenvector (LEV) or by LEV’s of related matrices.
As we note below, the GW-algorithm is also spectral. Here is the underlying logic of this approach.
The characteristic vector of the cut (S, S̄) is defined as δS = χS − χS̄ where χA : V → {0, 1} is
the indicator function of A. If D is a diagonal matrix, then δTS (W +D)δS = 2w(V) +

∑n
i=1(Dii −

Wii)− 4w(S, S̄). Thus, the MAXCUT problem can be formulated as follows

minimize vT (W +D)v

subject to v ∈ {1,−1}n
(5)

A natural relaxations to this problem is.

minimize vT (W +D)v

subject to ||v|| = 1
(6)

where || · || denotes the Euclidean norm. Now the set of solutions v of (6) coincides with the set of
least eigenvectors of W +D. In view of (5), it is natural to consider the cut induced by such v.

The GW-Algorithm

There is another relaxation to (5), that seems unrelated to (6). It was suggested by [GW] and will
play a major role in the sequel. In problem (5) we seek n vectors v1, . . . , vn in the 0 dimensional
sphere S0 = {−1, 1} to minimize

∑
i,jWi,j〈vi, vj〉. Interesting relaxations are obtained by replacing

S0 with Sm for some m. As observed by [GW] for m = n− 1, the relaxation

minimize
∑
i,j

Wi,j〈vi, vj〉

subject to vi ∈ Sn−1

(7)

is feasible. In the ideal case, the solution v1, . . . , vn of (7) is contained in a copy of S0, embedded in
Sn−1. which makes it a solution for (5) (in its new formulation). Thus, in the ideal case, separated
vectors correspond to two antipodal points, and all vertices that are on the same side of the cut
get mapped to the same point. Even if this ideal picture does not hold, one may expect that the
angle between separated vertices be large. Therefore, to extract a cut from v1, . . . , vn we need a
method that tends to (combinatorially) separate vertices whose images on the sphere are far apart.
In [GW] this is done by returning the cut induced by the vector u ∈ Rn defined by ui = 〈v, vi〉
where v ∈ Sn−1 is sampled uniformly. This yields the approximation ratio 0.879.

12

To solve (7) the GW algorithm finds first a solution P to the problem

minimize P ◦W
subject to P � 0

Pii = 1, ∀i ∈ [n]

(8)

Where P ◦W :=
∑

1≤i,j≤n Pij ·Wij . Since P � 0 it is possible to find next vectors v1, . . . , vn such
that Pij = 〈vi, vj〉. The dual to (8) is (see [GW])

maximize
n∑
i=1

Dii

subject to W −D � 0.

D is diagonal

(9)

As observed in [GW], by SDP duality the optima of (8) and (9) coincide. Denote by P(W)
and D(W) the set of optimal solutions to (8) and (9) respectively. Denote also P = {P ∈Mn(R) :
P � 0 and ∀i, Pii = 1}, D = {D ∈Mn(R) : D is diagonal}. We say that W is GW-bipolar if there
exists a solution to (9) that also solves the binary problem (6) (i.e., it is contained in a copy of S0

embedded in Sn−1). Equivalently, W is GW-bipolar if P(W) contains a matrix of the form v · vT
for some v ∈ {−1, 1}n. Finally, we shall say that W is strongly GW-bipolar if every solution to (7)
is also a solution of (6). Our interest in strongly GW-bipolar instances is clear. The maximal cut
of such an instance can be immediately read of the output of the GW-algorithm.

An overview. We start by asking which instances of MAXCUT can be solved exactly by a
spectral algorithm. As we show, the maximal cut is induced by a ±1 GLEV iff the instance is
GW-bipolar. More generally, an instance can be correctly solved by some spectral algorithm iff it
is has a certain perturbation that is GW-bipolar. This provides additional motivation to the study
of GW-bipolar instances.

We give a primal-dual characterizing of the set of solutions to the GW-relaxation. Specifically,
we show that the dual GW problem (9) always has a unique solution D and the solutions of the
primal problem are P(W) = {P ∈ P : P · (W −D) = 0}. This allows us to conclude that the GW-
algorithm is a spectral algorithm according to our definition. We also show that GW-bipolarity is
equivalent to a condition from [BL], under which MAXCUT can be solved exactly in polynomial
time.

A.1 Cuts induced by GLEV’s

Let w : V × V → R+ be an instance with an associated matrix W . We seek conditions under
which a given cut S is induced by GLEV. Let v ∈ RV be a vector that induces the cut S. As noted
before, v is a GLEV if and only if v is in the kernel of W +D for some diagonal matrix D for which
W +D � 0. Thus, v is a GLEV of W if and only if the optimum of the following SDP is 0.

minimize
P

vT (W +D)v

subject to W +D � 0

D is diagonal

(10)

The dual program of (10) is

maximize
P

vTWv − P ◦W

subject to Pii = v2
i

P � 0

(11)

13

Since (10) has a positive definite solution, strong duality holds. Thus, v is a GLEV iff the optimum
of (11) is 0.

Now, the optimum of the dual is 0 iff the perturbation of W defined by W ′ij = |vi| · |vj | ·Wij

is GW-Bipolar. To see that, note that the mapping P ′ 7→ P where Pij = |vi| · |vj | · P ′ij maps
the feasible solutions to the primal GW-relaxation (8) for W ′ onto the feasible solution to (11).
Moreover, P ◦W = P ′ ◦W ′. Thus, the optimum of (11) is zero iff the optimum of the primal GW
relaxation of W ′ is vTWv = δTSW

′δS . Consequently, the optimum of (11) is 0 iff the optimum of (8)
is attained by a ±1 vector, making W ′ GW-bipolar. Note that if v ”strongly induces” the cut S –
that is, if all coordinates |vi| are roughly equal, then W ′ is just a small perturbation of W . Taking
this to the extreme, we conclude that the cut is induced by a ±1 GLEV iff W is GW-bipolar.

A.2 The GW algorithm and GW-bipolar instances

We start with a primal-dual characterization of D(W) and P(W).

Theorem A.1 Let W be a non-negative symmetric matrix with 0-diagonal. Then,

1. D(W) is a singleton7.

2. P(W) = {P ∈ P : P (W −D(W)) = 0}

Lemma A.2 For every D0 ∈ D(W), P 0 ∈ P(W) we have

P(W) = {P ∈ P : P (W −D0) = 0}

D(W) = {D ∈ D : (W −D) � 0, P 0(W −D) = 0}

Proof Let D0 ∈ D(W), P ∈ P. By strong duality,

P ∈ P(W)⇔W ◦ P =
n∑
i=1

D0
i ⇔W ◦ P = D0 ◦ P

Since W −D0 and P are PSDs, P ◦ (W −D0) = 0⇔ P (W −D0) = 0. Thus,

P(W) = {P ∈ P : P (W −D0) = 0}

Similarly, let P 0 ∈ P(W), D ∈ D such that W −D � 0 then

D ∈ D(W)⇔W ◦ P 0 =

n∑
i=1

Di ⇔W ◦ P 0 = D ◦ P 0

Thus
D(W) = {D ∈ D : (W −D) � 0, P 0(W −D) = 0}

2

Proof (of Theorem A.1) Part 2 follows from part 1 and Lemma A.2, so it only remains to prove
part 1. Fix some P 0 ∈ P(W) and let D ∈ D(W). By considering the (j, j) entry of P 0(W −D) = 0,
we have

Djj =
n∑
i=1

P 0
jiWij

which determines D uniquely.

7Henceforth we usually do not distinguish between D(W) and the single matrix that it contains.

14

2

Corollary A.3 GW is a spectral algorithm.

Proof Suppose that the optimum of the GW-relaxation is attained at P and let v1, . . . , vn ∈ Sn−1

be vectors such that Pij = 〈vi, vj〉. Let v ∈ Sn−1 be the vector sampled by the algorithm and let∑n
j=1 αjvj be its orthogonal projection on span{v1, . . . , vn}. The cut returned by the algorithm is

the one induced by the vector ui = 〈v, vi〉 =
∑

j αjPij . The vector u is a linear combination of P ’s
columns. Thus, by Theorem A.1 it is in the kernel of the PSD matrix W −D(W).

2

Corollary A.4 The GW algorithm correctly solves Ω(n3)-stable instances.

Proof In [BL] it is shown that if u is a GLEV of a γ-stable instance W such that γ ≥ max(i,j)∈E |uiuj |
min(i,j)∈E |uiuj |

then u induces the optimal cut. Let u be defined as in the proof of Corollary A.3. As shown, u is
a GLEV. Moreover, by an easy probabilistic argument, w.h.p., ∀j, n−1.5 ≤ |uj | ≤ 1.

2

Here is a characterization of GW-bipolar matrices.

Theorem A.5 Let W be an instance for MAXCUT with maximal cut S. Denote v = δS and let
D be the diagonal matrix defined by Dii = −vi

∑
jWijvj. The following conditions are equivalent.

1. W is GW-bipolar.

2. δS is a GLEV of W .

3. W +D � 0

4. The optimum of the dual of the GW-relaxation is attained at −D.

Proof As shown in section A.1 condition 1 is equivalent to condition 2. Suppose now that 3 holds.
It is not hard to see that δS is in the kernel of W + D, so 2 holds. Condition 4 clearly entails
condition 3. Finally, suppose that 1 holds. Let D′ be the solution of problem (9). Since W is GW-
bipolar, δS · δTS is an optimal primal solution. By Lemma A.2 we deduce that δS ∈ ker(W −D′).
It follows that D′ = −D and 4 holds.

2

As noted before, strongly GW-bipolar instances can be efficiently solved using the GW algorithm.
In fact, for those instances there is no need to choose a random vector to produce a cut. Moreover,
those instances can be solved simply by taking the sign pattern of the least eigenvector of W +D
where D is the solution to problem (9). As we explain next, strong GW-bipolarity is just slightly
stronger than GW-bipolarity. Let W be a GW-bipolar instance with maximal cut (S, S̄). Let W ′

be the (1 + ε)-perturbation of W that is obtained by multiplying cut edges by 1 + ε with ε > 0
arbitrarily small. We claim that it is strongly GW-bipolar. Let D be the diagonal matrix defined
in Theorem A.5. We have W +D � 0 if and only if for every u ∈ Sn−1

uT (W +D)u =
∑

ij∈E(S,S̄)

Wij(ui + uj)
2 −

∑
ij /∈E(S,S̄)

Wij(ui − uj)2 ≥ 0 (12)

15

Inequality (12) clearly holds for W ′ as well making it GW-bipolar. Moreover, since the maximal
cut is connected, if u 6= ± 1√

n
· δS then

∑
ij∈E(S,S̄)W

′
ij(ui + uj)

2 >
∑

ij∈E(S,S̄)Wij(ui + uj)
2. Thus,

uT (W ′+D′)u > uT (W +D)u ≥ 0 where D′ is the matrix corresponding to W ′ from Theorem A.5.
Thus, the matrix W ′ + D′ has rank n − 1. By Theorem A.1 we conclude that δS · δTS is the only
solution to the primal GW-problem for W ′, making W ′ strongly GW-bipolar.

B A randomized algorithm for ε · n
log(n)-stable instances

We now describe a simple randomized algorithm that correctly solves ε · n
log(n) -stable instances of

MAXCUT. So let w : V × V → [0,∞) be a γ-stable instance with γ = ε · n
log(n) . Our algorithm

proceeds as follows.

1. Set V0 = {v0} for some v0 ∈ V and set E0 = ∅.

2. For t = 1 to |V | − 1

• Sample a random edge vtut ∈ E(Vt−1, V̄t−1), where the probability of every edge is
proportional to its weight.

• Set Vt = Vt−1 ∪ {vt, ut}, Et = Et−1 ∪ {vtut}

3. Note that (Vt, Et) is a tree for every t and for t = |V | − 1 this is a spanning tree. Return the
bipartition corresponding to the two-coloring of this tree.

Analysis: In order to return the maximal cut, it is sufficient (in fact, also necessary) that for
every t, the edge vtut be in the maximal cut. But, by observation 1, the edges in E(Vt, V̄t) that are
in the maximal cut constitute ≥ γ

γ+1 fraction of all the edges in E(Vt, V̄t). Thus a lower bound on
the success probability of the algorithm can be derived as follows:(

γ

γ + 1

)n−1

≥
(

1− 1

γ + 1

)n
=

(
1− 1

ε · n
log(n) + 1

)n

≥

(
1− 1

ε · n
log(n)

)n
=

(
e−ε + o(1)

)ln(n)

= nln(e−ε+o(1)) = n−ε+o(1)

In particular, for ε fixed the process succeeds with probability that is at least inverse polynomial
in n.

16

	Introduction
	Stable instances
	Distinguished and Expanding instances
	Metric and Dense instances
	Relation with other work

	Algorithms for locally stable dense and metric instances
	Dense instances
	Metric instances
	A faster algorithm for (3+)-stable metric instances

	Distinguished and Expanding Instances
	Algorithms for stable instances
	A deterministic algorithm for O(n)-stable instances

	Conclusion and open problems
	The Spectral approach and the GW algorithm
	Cuts induced by GLEV's
	The GW algorithm and GW-bipolar instances

	A randomized algorithm for nlog(n)-stable instances

