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Abstract
An internal partition of a graph G = (V , E) is a partitioning of V into two parts such
that every vertex has at least a half of its neighbors on its own side. We prove that for
every positive integer r , asymptotically almost every 2r -regular graph has an internal
partition. Whereas previous results in this area apply only to a small fraction of all
2r -regular graphs, ours applies to almost all of them.

Keywords Graph partitions · Internal partition · Satisfactory partition · Asymptotic ·
Vertex degree · Optimization

1 Introduction

1.1 Notations

Let x be a vertex in a graph G = (V , E). We denote its neighbor set by N (x) and its
degree by d(x). The number of neighbors that x has in a subset A ⊆ V is denoted by
dA(x) = |N (x) ∩ A|. We denote by N≥k the set {k, k + 1, . . .}. For a vertex x and a
set A we use the shorthand notation A ∪ x and A\x rather than A ∪ {x} and A\{x}
respectively.

Our main concern is with partitions of V into two parts 〈A, B〉. We denote by
e(A, B) the cut size of this partition, i.e., the number of edges e = (x, y) with x ∈ A
and y ∈ B.
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1.2 Internal Partitions

Let G = (V , E) be a simple graph. A partition 〈A, B〉 of V is called external if
every vertex has at least as many neighbors on the other side as it has on its own side.
Since the partition that maximizes the cut size e(A, B) is external, every graph has an
external partition. Likewise, in an internal partition every vertex has at least as many
neighbors on its own side as on the other side. This requirement is clearly satisfied by
the trivial partition 〈∅, V 〉, but we insist on a non-trivial internal partition where both
parts are non-empty.

As it turns out, it is worthwhile to consider a more general class of problems:

Definition 1.1 Let G = (V , E) be a simple graph and let a, b : V → N be two
functions. We say that a partition 〈A, B〉 of V is (a, b)-internal, if:

1. dA(x) ≥ a(x) for every x ∈ A, and
2. dB(x) ≥ b(x) for every x ∈ B.

In these terms, an internal partition is synonymouswith a
(
� d(x)

2 �, � d(x)
2 �

)
-internal

partition.
A vertex in A (resp. B) for which condition (1) (resp. (2)) holds, is said to be

satisfied. Otherwise, we say that it is unsatisfied. Clearly, a partition is internal if and
only if all vertices are satisfied.

The problem whether an internal partition exists, and the algorithmic problem of
efficiently finding such partitions, appear in the literature under various names:Decom-
position under Degree Constraints [23], Cohesive Subsets [19], q-internal Partition
[2] and Satisfactory Graph Partition [13]. A related subject isDefensive Alliance Par-
tition Number of a graph. A short survey about alliance and friendly partitions, and
the link to the internal partitions, can be found in [11]. A generalization (and a survey)
of Alliance Partitions can be found in [12].

Note that 〈A, B〉 is an (a, b)-internal partition if and only if dB(x) ≤ d(x) − a(x)
for every x ∈ A and dA(y) ≤ d(y) − b(y) for every y ∈ B. This perspective suggests
that an (a, b)-internal partition can be viewed as a strong isoperimetric inequality for
G. The isoperimetric number (or Cheeger constant) of a graph is defined as min e(A,B)

|A|
over all partitions 〈A, B〉 where |A| ≤ |B|. Namely, it is determined by a set A with
at most a half of the vertices which minimizes the average 1

|A|
∑

x∈A dB(x), whereas
an (a, b)-internal partition calls for an upper bound dB(x) on each vertex in A. We
return to this perspective in the open problems section.

While every graph has an external partition, there are simple examples of graphs
with no internal partitions, e.g., cliques or complete bipartite graphs in which at least
one part has odd cardinality. On the other hand, it is not easy to find large sparse graphs
that have no internal partition. Also, as some of the theorems mentioned next show,
nearly internal partitions (the exact meaning of this is clarified below) always exist.
Stiebitz [21], responding to a problem of Thomassen [23], made a breakthrough in
this area. His results and later work by others in a similar vein are summarized in the
following theorem.

Theorem 1.2 Let G = (V , E) be a graph and let a, b : V → N. Each of the following
conditions implies the existence of an (a, b)-internal partition:
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1. [21] d(x) ≥ a(x) + b(x) + 1 for every x ∈ V .
2. [16] d(x) ≥ a(x) + b(x) and a(x), b(x) ≥ 1 for every x ∈ V and G is triangle-

free.
3. [10] d(x) ≥ a(x)+b(x)−1 and a(x), b(x) ≥ 2 for every x ∈ V and gir th(G) ≥

5.
4. [18] d(x) ≥ a(x)+b(x)−1 and a(x), b(x) ≥ 1 for every x ∈ V and G is C4-free.

Note that the last three conditions asymptotically hold only for a small fraction of all
regular graphs.

Further work in this area falls into several main categories:

• The decision problem: Does a given graph have an (a, b)-internal partition?
This issue is investigated in a series of papers byBazgan et al., surveyed in [7]. Each
existence statement inTheorem1.2 comeswith a polynomial time algorithm tofind
the promised partition. For large a and b the problem seems to become difficult.
For example, a theorem of Chvátal [8] says that the case a(x) = b(x) = d(x) − 1
is NP-hard for graphs in which all vertex degrees are 3 and 4.

• Generalizations and variations: Gerber and Kobler [13] introduced vertex- and
edge-weighted versions of the problem and showed that these are NP-complete.
Recent works by Ban [3] and by Schweser and Stiebitz [22] extend Theorem 1.2 to
edge-weighted graphs. It is NP-hard to decide the existence of an internal bisection
i.e., an internal partition with |A| = |B| [6]. There is literature concerning approx-
imate internal partitions, partitions into more than two parts etc. See [4,5,7,14,15].

• Sufficient conditions: In [15,20] one finds several sufficient conditions for the
existence of an internal partition in general graphs, and more specific conditions
for line-graphs and triangle-free graphs.

• Necessary conditions: It is proved in [20] that there is no forbidden subgraph
characterization for the existence or non-existence of an internal partition. Given
a graph’s edge-density it is possible to bound the cardinality of the parts of an
internal partition, if it exists [13].

• Regular graphs: For d = 3, 4 the only d-regular graphs with no internal partition
are K3,3, K4, K5 [20]. As shown by Ban and Linial [2], every 6-regular graph with
12 or more vertices has an internal partition. The case of 5-regular graphs remains
open.

The most comprehensive survey of the subject of which we know is [7].

2 The Theorem: 2r-Regular Graphs

As mentioned, the repertoire of known graphs with no internal partitions seems rather
limited, and for d ∈ {3, 4, 6} there are only finitely many d-regular graphs with no
internal partition. This has led to the following conjecture [2]:

Conjecture 2.1 For every d only finitely many d-regular graphs have no internal par-
titions.

The main theorem of this paper is a weaker version of this conjecture, namely, an
asymptotic result for even d.
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We say that a graph G is 4-sparse if every set of four vertices spans at most four
edges (i.e., G contains no 4-clique and has no diamond-graph subgraph). We prove:

Theorem 2.2 Let G = (V , E) be a graph and let a, b : V → N≥1 be such that
d(x) ≥ a(x) + b(x) for every vertex x ∈ V . If G is 4-sparse then it has an (a, b)-
internal partition.

Corollary 2.3 If G is a 4-sparse graph and all its vertices have even degrees, then G
has an internal partition.

We note the following simple fact about random regular graphs:

Proposition 2.4 For every d ≥ 3 asymptotically almost every d-regular graph is 4-
sparse.

Proof We work with the configuration model of random n-vertex d-regular graphs.
Let X be the random variable that counts the number of sets of four vertices that span
five or six edges. Then E(X) ≤ O(n4) · (dn−11)!!

(dn−1)!! = O( 1n ). ��
We can now conclude the theorem in the title of this paper, namely:

Corollary 2.5 Asymptotically almost every 2r-regular graph has an internal partition.

Before we prove Theorem 2.2, we need to introduce several definitions.

Definition 2.6 Let G = (V , E) be a graph, and let f : V → N.

• We say that A ⊆ V is f -internal if dA(x) ≥ f (x) for every x ∈ A.
• We say that A ⊆ V is f -degenerate if every non-empty subset K ⊆ A has a vertex

x ∈ K such that dK (x) ≤ f (x).

Remark 2.7 Clearly, a set is not (a−1)-degenerate if and only if it contains a non-empty
a-internal subset.

Proof of Theorem 2.2

For the proof of Theorem 2.2 it is clearly sufficient to consider the case where d(x) =
a(x) + b(x) for every x ∈ V . Our proof is based on the methodology initiated by
Stiebitz [21]. We assume throughout that G is 4-sparse.
For a function f : V → N and S ⊆ V , we denote f (S) := ∑

x∈S f (x). We next
associate a potential with every vertex partition 〈A, B〉 of V . Namely:

w(A, B) = a(B) + b(A) − e(A, B)

A good feature of the functional w is the way it changes when some vertex switches
sides. E.g., it is easy to verify that if

〈
A′, B ′〉 = 〈A ∪ x, B\x〉, then

�w = w(A′, B ′) − w(A, B) = 2 (b(x) − dB(x)) . (1)
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Namely, the change in w as a single vertex changes sides is the local improvement
towards internal partition. Thereforew is a goodmeasure for how internal the partition
at hand is. In this view, we formulate the rest of the proof and the algorithmic part
of this paper as optimization problems. We define F as the family of all non-empty
sets A � V that are a-degenerate, but not (a − 1)-degenerate. We first note that F
is non-empty, i.e., such sets A exist. E.g., let A be an inclusion-minimal a-internal
subset. By Remark 2.7 it is not (a − 1)-degenerate. If A is not a-degenerate, then by
the same argument it has a non-empty (a + 1)-internal subset, and therefore also a
proper a-internal subset contrary to the assumed minimality.

Proposition 2.8 For every A in F there holds |A| ≥ 2.

Proof Since A ∈ F , it is not (a − 1)-degenerate, and therefore it has a non-empty
a-internal subset A′. But then, for every x ∈ A′ there holds |A| ≥ dA(x) + 1 ≥
dA′(x) + 1 ≥ a(x) + 1 ≥ 2. ��

Let A be a member of F that maximizes w(A, V \A) and minimizes |A| under this
condition.1 Namely, we assume:

For every A′ ∈ F there holds w(A) ≥ w(A′), and if

w(A) = w(A′), then |A′| ≥ |A|. (2)

Proposition 2.9 The set A thus chosen is a-internal.

Proof Suppose there is v ∈ A with dA(v) ≤ a(v) − 1. The set A\v is in F , since it is
non-empty (by Proposition 2.8), a-degenerate and not (a−1)-degenerate. In addition,
�w ≥ 2, contradicting the maximality of w. ��
We denote throughout B = V \A.
Proposition 2.10 If B is not (b−1)-degenerate, thenG has an (a, b)-internal partition.

Proof If B is not (b − 1)-degenerate, then it contains a non-empty b-internal subset.
Let B ′ ⊂ B be such a subset that is inclusion-maximal. If B ′ = B, then 〈A, B〉 is
an (a, b)-internal partition. By the maximality of B ′, every vertex x ∈ B\B ′ satisfies
dB(x) ≤ b(x) − 1 and therefore dV \B(x) ≥ a(x) + 1. It follows that 〈V \B, B〉 is an
(a, b)-internal partition. ��
Lemma 2.11 B is not (b − 1)-degenerate.

Together with Propositions 2.10 and 2.9 this lemma implies that 〈A, B〉 is indeed an
(a, b)-internal partition.

The proof of Lemma 2.11 is by contradiction and is comprised of several proposi-
tions. We assume B is (b − 1)-degenerate, and show that this contradicts our choice
of A as in Condition (2): either the maximality of w or the minimality of |A|.
1 In Sect. 3 we present a polynomial time algorithm that finds a partition whose existence is stated in
Theorem 2.2. For algorithmic purposes we cannot consider a globally optimal A ∈ F as described here,
but as we show below, a properly chosen locally optimal version of such A will do.
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Consider the vertices of “low internal-degree” in A and in B. Denote

C = {v ∈ A | dA(v) = a(v)} and D = {v ∈ B | dB(v) ≤ b(v) − 1}.

Note that C �= ∅ since A is non-empty and a-degenerate. In addition, D �= ∅, since
B is assumed to be (b − 1)-degenerate and by the definition of F it is non-empty.

Equation (1) implies that if any vertex is moved from C to B, then w stays
unchanged. Also, if any vertex is moved from D to A, then w grows at least by
2.

Proposition 2.12 For every A′ ⊆ A, if A′ is a-internal, then C ⊆ A′.

Proof Suppose there is y ∈ C\A′, and we show that A\y is a “better” member of
F than A. Clearly, A\y is a-degenerate, but it is also not (a − 1)-degenerate since it
contains the a-internal subset A′. In additionw(A\y, B∪y) = w(A, B), contradicting
the minimality of |A|. ��
Proposition 2.13 For every x ∈ D there is a subset Ax ⊆ A such that Ax ∪ x is
(a + 1)-internal.

Proof Asmentioned, moving x from D to A yields�w ≥ 2. Also, A∪ x is clearly not
(a−1)-degenerate. Consequently, by the maximality of w(A, V \A), A∪ x cannot be
a-degenerate, whence it must contain an (a+1)-internal subset. This (a+1)-internal
subset must contain x , as claimed. ��

Note that for every x ∈ D, such a set Ax is necessarily a-internal, and hence,
according to Proposition 2.12, C ⊆ Ax .

Proposition 2.14 Every vertex in C is adjacent to every vertex in D.

Proof Consider some x ∈ D and y ∈ C . Then dA(y) = a(y). But y also belongs to
the (a + 1)-internal set Ax ∪ x , so that dA∪x (y) = a(y) + 1. The conclusion follows.

��
Proposition 2.15 Every vertex in C has a neighbor in C.

Proof We know already that C �= ∅. Consider some y ∈ C . Clearly A\y is a-
degenerate. Also w(A\y, B ∪ y) = w(A, B), therefore, by the minimality of |A|,
the set A\y must be (a − 1)-degenerate. In particular there is z ∈ A such that
dA\y(z) ≤ a(z) − 1, whereas dA(z) ≥ a(z), which implies that z is in C and a
neighbor of y. ��

As mentioned, D is not empty, so fix x ∈ D. If some vertex in C has two or
more neighbors in C , then by Proposition 2.14 this yields a set of four vertices with
five or more edges, contrary to the assumption that G is 4-sparse. Together with
Proposition 2.15 this implies that the subgraph ofG induced byC is a perfectmatching.

We claim that D = {x} is a singleton. Otherwise if x1, x2 ∈ D, then together with
an edge in C , this is a set of four vertices and five or more edges, contrary to the
assumed 4-sparsity of G.
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Proposition 2.16 C is a proper subset of A.

Proof We show that if A = C , then B\x is b-internal, contrary to the assumption that
B is (b−1)-degenerate. Every vertex v in B\D, i.e., every v ∈ B other than x satisfies
dB(v) ≥ b(v). Thus, if v is not a neighbor of x , then also dB\x (v) ≥ b(v), as claimed.

On the other hand, if v ∈ B is a neighbor of x , then it has no neighbors in A = C
due to the assumed 4-sparsity of G. But then dB(v) = d(v) ≥ b(v) + 1, so that
dB\x (v) ≥ b(v), as claimed. ��

Let y, z ∈ C be neighbors and let A′ := A\{y, z}. We claim:

Claim 2.17 A′ ∈ F .

Proof By Proposition 2.16, A′ is not empty. Clearly A′ is a-degenerate, being a subset
of A ∈ F . We show next that dA\{y,z}(v) ≥ a(v) for every v ∈ A′.

Consider first a vertex v ∈ C\{y, z}. Since yz is an edge in the perfect matching
spanned by C , there holds dA′(v) = dA(v) ≥ a(v), because v is adjacent to neither y
nor z.

Consider next some vertex v ∈ A\C . It satisfies dA(v) ≥ a(v) + 1 by definition of
C . Also, since G is 4-sparse, v can have at most one neighbor in {y, z}. It follows that
dA′(u) ≥ a(u) for every u ∈ A′, so A′ is not (a − 1)-degenerate, as claimed. ��

To conclude the proof of Lemma 2.11 and with it of Theorem 2.2, we note that
applying Equation (1) sequentially to y and then to z, yields �w = 2, i.e., w(A′) >

w(A), contrary to the defining condition of A. ��

3 Computational and Experimental Results

3.1 Algorithmic Realization

As mentioned, to the best of our knowledge, all previous existence proofs of
(a, b)-internal partitions translate into polynomial-time algorithms (under specific
assumptions). This applies as well to Theorem 2.2 and its proof. The observation that
we need is that the argument goes through even if rather than work with the globally
optimal set A ∈ F we settle for a local optimum, as follows. For two sets A, A′ ⊆ V
we denote A′ ∼ A if their symmetric difference is small, |A ⊕ A′| ≤ 2.

We observe that our proof of 2.2 holds even if we relax our requirements and seek
an A ∈ F such that condition (2) holds for all A ∈ F with A′ ∼ A. This yields the
following polynomial-time algorithm that finds an (a, b)-internal partition of G.

The validity of the output and the polynomial-time computability of each step is
proven as follows:

• Initialization of A can be done in polynomial time, since (i) for any ϕ : V → N it
takes linear time to check whether a given S ⊆ V is ϕ-degenerate, (ii)G is (a+b)-
internal, (iii) if S is not (ϕ +1)-degenerate, then S\x is not ϕ-degenerate for every
x ∈ S and (iv) if, moreover, d(x) ≤ ϕ(x), then S\x is not (ϕ + 1)-degenerate.

• For a given A ∈ F , finding all sets A′ ∼ A such that A′ is also in F can also be
done in polynomial time.
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Algorithm 1: Internal Partition
Input: G(V , E) : A 4-sparse graph, such that d(x) = a(x) + b(x) for every x ∈ V
Output: An (a, b)-internal partition 〈A, V \A〉

1 Initialization. Find A ∈ F . Define B ← V \A
2 if B is not (b − 1)-degenerate then
3 Find b-internal inclusion-maximal subset B′ ⊂ B
4 Update A ← V \B′
5 Return 〈A, V \A〉;
6 else
7 C ← {v ∈ A|dA(v) = a(v)} and D ← {v ∈ B|dB (v) ≤ b(v)}
8 while D �= ∅ do
9 if there is A′ ∼ A s.t. A′ ∈ F and w(A) < w(A′) then

10 Update A ← A′ and B ← V \A
11 else
12 Find A′ ∼ A s.t. A′ ∈ F , w(A) = w(A′) and |A′| < |A|.
13 Update A ← A′ and B ← V \A
14 Update C ← {v ∈ A|dA(v) = a(v)} and D ← {v ∈ B|dB (v) ≤ b(v)}
15 Return 〈A, V \A〉;

• The condition in line (2) is checked in polynomial time, and the existence in line
(3) and the correctness of output is proven in Proposition 2.10.

• The if-else dichotomy in lines (9) and (11) and the existence of A′ in line (12) is
proven in Claim 2.11 and in the propositions following it.

• The algorithm terminates, since in initialization,�w > 0, and at each iteration line
(10) increases w or line (13) decreases |A| while keeping �w ≥ 0. Termination
is proved by induction on lexicographically-ordered pairs (w, |A|).

• A �= ∅ remains a-internal and B �= ∅ throughout, and upon termination D = ∅
which means B is b-internal.

3.2 Improving Previous Experimental Results

In [13] some experimental results are presented. They apply a heuristic algorithm

in an attempt to find a
(
� d(x)

2 �, � d(x)
2 �

)
-internal partition in random graphs. Their

algorithm starts from a random partition and at each iteration minimizes f (A, B) =∑
v∈A(dA(v)−dB(v))+ +∑

v∈B(dB(v)−dA(v))+ where the minimum is taken over
all partitions which were achieved by switching an unsatisfied vertex. The process
can terminate with either an internal partition or a trivial partition. It can also loop
indefinitely. In the latter two cases, they restart the process.

Wehave experimentedwith a similar algorithm.Themain change is thatwe consider

only near-bisections 〈A, V \A〉, and insist that
∣∣∣|A| − |V |

2

∣∣∣ ≤ c(n) for c(n) = logd(n).

When this condition is violated, we move a random vertex from the big part to the
small. This algorithmmay either output an internal partition or loop forever. However,
in extensive simulations with random d-regular graphs (30 ≤ n ≤ 10,000 and 4 ≤
d ≤ min(50, n

2 )) the algorithm has always found an internal partition in fewer than
5n iterations. It may be that this phenomenon is barely affected by the choice of c.

123

Author's personal copy



Graphs and Combinatorics

4 Discussion and Some Open Problems

4.1 Even vs. Odd Degrees

The problem of internal partition for d-regular graphs seems harder for odd degree
d; for an even d, a random vertex in a random partition is biased towards being
satisfied, while for an odd d, the probability is exactly one half. Thus, perhaps, it is no
coincidence that wewere able to settle the case of 2r -regular graphs, but are still unable
to prove the analogous statement for 2r +1 regular graphs. E.g., while Conjecture 2.1
is already known for 4- and 6-regular graphs, it is still open in the 5-regular case.

4.2 Further Open Problems

We have mentioned above the analogy between the existence of internal partitions and
upper bounds on Cheeger constants. As shown by Alon [1], the Cheeger constant of
every large d-regular graph is at most d

2 − c
√
d for some absolute c > 0. In this view

we raise:

Problem 4.1 Is it true that for every δ ≥ 1 there are integers d and n0 such that for
every n > n0 almost every d-regular graph on n vertices has a ( d2 +δ, d

2 +δ)-internal
partition?

On the other hand, D. Cizma and the first named author [9] have constructed, for
all r ≥ 2 infinitely many 2r -regular graphs such that in every proper partition of the
vertices there is a vertex whose internal degree is at most r .

Also, the upper bound on Cheeger’s constant in Alon’s paper is actually attained
by a bisection (the two parts differ in size by at most one). This suggests:

Problem 4.2 Does Conjecture 2.1 hold also with “near” bisections? E.g., where the
cardinalities of the two parts differ by Od(1).

How does the computational complexity of the internal partition vary as n grows?
So far, existence theorems have gone hand-in-hand with efficient search algorithms.
Is this a coincidence or is there a real phenomenon?

Problem 4.3 How hard is it to decide whether a given d-regular n-vertex graph has an
internal partition? Conjecture 2.1 implies that this decision problem is trivial, since
the answer is always positive provided that n > n0(d). Even if this conjecture holds,
we may still wonder how hard it is to find an internal partition when one exists.

Note Added in Proof

After the submission of this paper another proof of the theorem was published by Liu
and Xu, see Theorem 1.3 in [17].

Acknowledgements We thank Amir Ban, David Eisenberg, David Louis, Zur Luria, Jonathan Mosheiff,
and Yuval Peled for careful reading and useful comments.
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