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20 ABSTRACT of the functions and interactions of all genes and proteins in a ge-

21 Motivation: Large-scale RNA expression measurements are gener- nome.

22 ating enormous quantities of data. During the last two decades, Data such as large-scale gene expression is usually represented by

23 many methods were developed for extracting insights regarding the a matrix, where n genes are examined in d experimental condi-

24 inter-relationships between genes from such data. The mathematical tions. Here, we view such data as a set of n points (vectors) in d-

o5 and computational perspectives that underlie these methods are dimensional space, each of which represents the profile of a given

26 usually algebraic or probabilistic. gene over d different experimental conditions. Many known meth-

o7 Results: Here we introduce an unexplored geometric view point ods that have yielded meaningful biological insights in fact seek

o8 where expression levels of genes in multiple experiments are inter- geometric or algebraic features of these vectors. For example, ana-

59 preted as vectors in a high-dimensional space. Specifically, we find, lyzing the angles between vectors amounts to a correlation-based
for the expression profile of each particular gene, its approximation analysis. Similarly, the direction in space along which these points

30 as a linear combination of profiles of a few other genes. This method are most “‘spread out” correspond to SVD (Alter, et al., 2000) and

31 is inspired by recent developments in the realm of compressed its  principal component analysis (PCA) implementation

32 sensing in the machine learning domain. To demonstrate the power (Raychaudhuri, et al., 2000; Yeung and Ruzzo, 2001). These are

33 of our approach in extracting valuable information from the expres- powerful tools in providing biological inference (Misra, et al.,

34 sion data, we independently applied it to large-scale experiments 2002). In general, methods and disciplines developed toward ex-

35 carried out on the yeast and malaria parasite whole transcriptomes. tracting information from expression data include pairwise proper-

36 The parameters extracted from the sparse reconstruction of the ties (e.g., correlation, variance, entropy-based distance) (Amato, et

37 expression profiles, when fed to a supervised learning platform, al., 2006; Jeffery, et al., 2006), clustering (Alon, et al., 1999;

38 were used to successfully predict the relationships between genes Eisen, et al., 1998), Bayesian networks (Friedman, er al., 2000),

39 throughout the Gene Ontology (GO) hierarchy and protein-protein information theory, ordinary differential equations and other so-

40 interaction map. Extensive assessment of the biological results phisticated distance measures (reviewed in (Quackenbush, 2006;

41 shows high accuracy in both recovering known predictions and in Slonim, 2002)).

42 yielding accurate predictions missing from the current databases. In this study, we applied a different approach to gene expression

43 We suggest that the geometrical approach presented here is suit- data analysis. The geometric principle that underlies it is very natu-

44 able for a broad range of high-dimensional experimental data. ral and different from existing methods, though it is close in spirit,

45 Contact: michall@cc.huji.ac.il and inspired by, recent advances in compressive sensing and sparse

46 Supplementary information: Supplementary data are available at signal recovery (Candes, 2008; Candes and Tao, 2005; Donoho,

47 Bioinformatics online. 2006). A simple probabilistic consideration implies the following

geometric claim: given a set of n randomly chosen points in the d-

48 dimensional space, it is “very unlikely” that a linear subspace Y

49 1 INTRODUCTION exists where more than dim(Y) points of the chosen points reside

50 High-throughput technologies have come to play a central role in “very close” to Y (see Methods).

51 biological and biomedical research in the last decade. Advances in In this study, we present a natural, yet unexplored, approach for the

52 large-scale technologies on a genome-wide scale produce enor- seemingly exhausted problem of gene expression analysis. Adopt-

53 mous amounts of data (Bader, er al., 2004; Barrell, er al., 2009;  ing a sparse signals reconstruction mindset, we recover a support

54 Beyer, et al., 2007; Desiere, et al., 2005). Yet, a major goal of set of genes for each gene in a genome. Geometrically, we uncov-

55 functional genomics is the quest for a comprehensive description ered linear subspaces which are over-populated with expression-

56 profiles in the multidimensional space of the experiments set. We

57 could verify the robustness and significance of the sparse recon-

58 “To whom correspondence should be addressed. structions using measures intrinsic to the method and data. For-

59
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mally, we are interested in subsets S of our n-point set that (nearly)
resides on a subspace of dimension strictly smaller than ISI. Having
found such sets, several immediate questions suggest themselves:
(i) Are these findings robust? (ii) If they are robust, can we directly
interpret their biological meaning? (iii) Can such representation
uncover meaningful structures? (iv) Does the method generalize?
In this paper, we answer these questions by considering gene ex-
pression alone and testing data sets coming from the transcrip-
tomes of the budding yeast Saccharomyces cerevisiae and the ma-
laria parasite Plasmodium falciparum.

A conceptually new method that we call SPARCLE (SPArse Re-
Covery of Linear combinations of Expression) is introduced. It is
inspired by the plausible assumption that expression data, when
considered over a broad range of experimental conditions, encodes
profound layers of systematic (yet hidden) behaviors. We further
confirmed the stability and robustness of SPARCLE results for
entire transcriptomes under perturbations to the data. Extracting
features from the geometric parameters of SPARCLE’s results, and
training AdaBoost, a machine learning platform, to exhaustively
reveal pairwise associations between gene function (represented by
GO annotations and by the protein-protein interaction (PPI) map)
confirmed the principal information encoded by the geometric-
based representation. The generality of the method is confirmed by
applying it to both the knowledge-rich yeast model and the poorly
annotated malaria parasite proteome.
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Fig. 1. Sparse reconstruction of yeast genes expression profiles by
SPARCLE. (A) Support sizes of the solutions to the SPARCLE optimiza-
tion problem (the number of genes used to reconstruct each particular
gene), for all 6254 yeast genes analyzed. (B) The expression profile recon-
struction for MEP1 (ammonium transporter) as recovered by SPARCLE.
The expression profile of the gene (bottom) is displayed as a linear combi-
nation of the profiles of its supporting genes, with their corresponding
coefficients (left). For comprehensibility, only the 15 genes with the largest
absolute value coefficients are shown, as well as a third of the 85 condi-
tions. *transmembrane transporters; foxidation-reduction proteins;
Fammonia-related processes. (C) Genes in the support of MEP1. The objec-
tive gene (MEP1) is indicated by an arrow. Note that the majority of the
genes are part of a PPI network. (D) Sample of 4 objective genes (marked
by arrows) whose supports are indicated by poor connectivity and a frag-
mented PPI network. PPI connectivity is retrieved from the BioGrid

(http://thebiogrid.org/) repository. Graphics are based on Pathway Palette
(Askenazi, et al., 2010).

2 SPARSE REPRESENTATION OF EXPRESSION
We wish to discover linear dependencies within groups of expres-
sion profiles, using full transcriptome mRNA expression measured
under a wide range of environmental conditions. Given an objec-
tive gene expression profile, one would seek, then, the smallest
number of profiles, whose linear span contains the expression pro-
file of the objective gene. Formally, this is expressed as the follow-
ing problem:

min ”X”()

(Po) s.t. Ax=b

Here A eR%"is a matrix of RNA expression levels of n genes
(the entire genome excluding the objective gene) measured in d
different experiments, bR is the vector of expression levels of
the objective gene in the d experiments, and xeR" are the n opti-
mization variables, which are n coefficients corresponding to the n
genes in the genome. The llxll, notation stands for the L, "norm" of
x, which is the number of non-zero entries in x (See example in
Fig. 1, A and B). We should note here that we consider the com-
mon situation where n is much larger than d, hence Ax=b is an
underdetermined system of linear equations. In its general form,
this optimization problem is NP-hard (Natarajan, 1995). Fortu-
nately, theoretical developments in recent years imply that this
problem can be efficiently solved in practice, or at least approxi-
mated well, in many practical cases. The theory developed around
this problem (Candes and Tao, 2005; Donoho, 2006; Rudelson and
Vershynin, 2008) shows that for generic instances of this problem,
the solution of P, coincides, at least nearly, with the solution of the
following problem:

min llxlly

P s.t. Ax=b

The advantage is that P, where the L, "norm" has been replaced
by the L; norm, can be stated as a linear programming problem and
is hence efficiently solvable. In order to apply this method to noisy
biological data, we use a relaxed form of P;:

min llxIl;

(Ps) s.t. IAx-bll, < €
Where ¢ is a sufficiently small noise parameter. We use a linear
programming solver to solve this optimization problem, for each
gene in the dataset as an objective gene in its turn. This is followed
by an intrinsic assessment of robustness. We refer to this combined
procedure as SPARCLE.

3 METHODS

3.1 Datasets

Gene expression measurements were extracted from the GEO database
GSE11452 (Knijnenburg, et al., 2009) and consist of a microarray com-
pendium of 170 steady-state chemostat cultures of S. cerevisiae, which
encompass 55 unique environmental conditions. The full data consists of
9335 Affymetrix probes, representing the full S. cerevisiae transcriptome.
We used a set of 6254 genes, after elimination of most non-coding tran-
scripts including transposons, tRNAs, and rRNAs, and selecting one probe
for each coding gene. The same filters were applied to GEO database
GSE19468 of the malaria parasite P. falciparum. We used a set of 208
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lected support for gene j, and vice versa). (b) The number of genes in the
intersection of the two supports as recovered by SPARCLE. (c) The num-
ber of supports containing both of the two genes. (d) The L, distance of
each gene’s expression profile from the convex hull of the other genes’
vectors, as recovered by the high-dimensional geometric analysis (Section
3.5). (e) The Euclidean distance of the expression profile of gene i from the
subspace spanned by gene j’s supporting profiles, and vice-versa. (f) Sup-
port size for each gene. (g) Number of appearances in other supports for
each gene. (h) Average and standard deviation for features (a)-(g) over 20
perturbation runs of SPARCLE on the same data (where 25% of the genes
were randomly removed each time). (i) Pearson correlation between i's and
J's expression profiles, for both the normalized and unnormalized expres-
sion data. (j) For each gene, the mean, median, and standard deviation of
feature (i) over the entire set.

All listed features (a)-(j) were used in the supervised learning of shared GO
annotations and PPI by the AdaBoost algorithm. To test the principal in-
formation from SPARCLE, we separated features (i), (j) for a direct evalua-
tion of the contribution of features that can be extracted directly from the
raw data. We denoted the analysis based on AdaBoost using features (i), (j)
collectively as Correlations+AB (Fig. 4, Figs. S3-S7).

3.8 Prediction of gene associations

The Gene Ontology (GO) is structured as three directed acyclic graphs
(DAG): the cellular component (CC), the biological process (BP), and the
molecular function (MF) ontology. Each term, used to annotate genes,
resides at a different depth with respect to its root (CC, BP, or MF). The
deeper the term resides in the graph, the higher its annotation resolution,
i.e., it is more specific (as illustrated in Fig. S2). In order to label two genes
as associated by similar GO terms, one should first choose the resolution of
interest. We choose to measure the depth of the term as the length of the
shortest path from the root to the term in the DAG. We tested our predic-
tions both at low resolution (close to the root) and at high resolution (deep
in the GO structure, i.e., specific annotations). The low-resolution depth
was chosen as the lowest level of description where less than 50% of the
gene pairs would be considered as associated with a GO term (depths 5, 2,
and 1 for CC, BP, and MF, respectively for the yeast data, and depths 3, 1,
and 1 for the malaria parasite data). The high-resolution depth was chosen
as the highest level of description where at least 1% of the gene pairs would
be assigned the same annotation (depths 11, 8, and 7 for the yeast, and
depths 7, 5, and 5 for CC, BP, and MF, respectively for the malaria para-
site). In addition to using the depth measure for resolution, we also applied
the GO-Slim (Barrell, et al., 2009) set of manually selected GO terms,
constructed to eliminate the hierarchical structure of GO.

3.9 Interpreting the results of supervised learning

We trained the AdaBoost method (Freund and Schapire, 1997) to classify
the feature vectors as positive (i.e., same GO annotation) or negative for
biological association. The training set included 15,000 randomly selected
pairs, half positively and half negatively labeled. The test set contained
200,000 randomly selected pairs that were not used in the training set,
again half positively and half negatively labeled. We applied a simple
threshold on the AdaBoost raw classification values in order to assign
confidence values to its classifications. The confidence level granted a
tradeoff between coverage and accuracy. In essence, this requires higher
confidence in making any classification at all, hence refusing to classify
some of the examples. In order to obtain x% coverage, we ignore all but the
x% highest positive classification values, and x% lowest negative values.

3.10 Comparing predictions

We compared SPARCLE-based learning by AdaBoost to three other meth-
ods of predicting associations among genes. First, we used AdaBoost to

learn associations using only correlation-related features. Second, we used
the correlation-based transitive shortest path (SPath) evaluation method
(Zhou, et al., 2002). Briefly, an undirected graph is constructed, with genes
as nodes, and edge weights 1-P, where P = the Pearson correlation between
the pair (for P>0.6). A shortest path was then constructed between each
pair, and its weight was used as an estimator for a distance between the
genes. Lastly, we used the absolute value of the Pearson correlation be-
tween genes as a measure of their association, applying a confidence level.

3.11 Inspection SPARCLE-based predictions

We chose to manually test the possibility that the false predictions are due
to incomplete labeling of gene products by GO annotations. To this end, we
sampled a set of 10 predicted associations (gene pairs) from the yeast data,
which were not annotated as being associated (false positives), and com-
pared them with a random sample of 10 pairs predicted as not associated,
conforming to GO annotation (true negatives). This process was done for
all three GO sub-ontologies (CC, BP, and MF); hence, 60 pairs were manu-
ally investigated (Table S3). For each pair, a shared annotation (if found)
was retrieved from a literature based association protocol (Jenssen, et al.,
2001). Further analysis included the use of PPI networks based on the
BioGrid (Stark, et al., 2006) and STRING (von Mering, et al., 2003) ex-
perimental data servers. When the servers found an association, they also
returned a p-value for the connection. The minimal number of intermediate
nodes connecting a pair of genes in the network was retrieved using Path-
way Palette (Askenazi, et al., 2010).

4 RESULTS

To demonstrate the utility of SPARCLE on gene expression data,
we analyzed two very large experimental data sets: from the yeast
S. cerevisiae, and from the malaria parasite P. falciparum com-
prised of 170 and 208 experiments, and covering 6,254 and 4,365
genes, respectively. While the SPARCLE methodology is not re-
stricted by the type or source of data, we used mRNA expression
measurements from (Knijnenburg, et al., 2009), which constitute a
microarray compendium of chemostat cultures of S. cerevisiae that
cover 55 unique growth conditions, including nutrient-limiting
substrates, growth rate, aeration, pH, and temperature. This data set
was divided randomly into two equal-sized sets of d=85 experi-
ments covering n=6254 yeast genes. Our matrix has full row rank
d=85 and linear algebra implies that the smallest support (of a
solution to Py) will never exceed d. Indeed, the coefficient vectors
obtained were considerably sparser with an average support size of
67 (Fig. 1A). Thus our goal of achieving a ‘short’ compact linear
representation is achieved. To ensure robustness, half of the ex-
periments (85) were not used for such representation, and were
reserved for the purpose of cross-validation and evaluation. Ran-
dom partitions of the data into two parts were performed 5 times
with essentially identical results (see Methods). Following this new
geometrical representation of the data and confirming its stability
to perturbations (Fig. 2), we turned to extracting valuable biologi-
cal information for the entire proteomes.

The first functional test was based on searching enrichment in GO
(Barrell, et al., 2009) annotations. For 10% of the genes, signifi-
cant enrichment of functional annotation could be found among
their set of supporting genes retrieved by SPARCLE. An example
is the gene MEP1 (Fig. 1B) for which many of the support mem-
bers share annotations (Table S1). The statistical enrichments of
GO annotations for a sample of gene supports are shown (Table
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As SPARCLE results proved meaningful and robust by the cross-
validation test (Fig. 2, Fig. S1), we expect the method to capture
hidden information. To this end, we used SPARCLE results as
input for a machine learning procedure (Fig. 3A). Specifically, we
trained the AdaBoost framework (Freund and Schapire, 1997) to
classify whether each pair of genes has a reported protein-protein
interaction or not, using information that is only extracted from the
input data itself (i.e., the expression matrix) and the SPARCLE
analysis (see Methods). Together, the results of SPARCLE, with
the input expression data, were condensed into feature vectors for
each pair of genes (Fig. 3A).

We tested whether functional information that is encoded in the
yeast PPI map can be successfully recovered. Using a confidence
threshold for the classification, accurate performance can be traded
off in exchange for providing lower coverage of the data. The re-
sults of the supervised learning were exceptionally good (Fig. 3B).
For 50% coverage of the high confidence predictions, an accuracy
of 78% was reached. Even for 100% coverage, the accuracy
reaches 70% (Fig. 3B). Recall that the yeast unfiltered PPI map
still exhibits a high false positive rate (FP) (Wu, ef al., 2006). The
combined protocol of the unsupervised SPARCLE method and
supervised learning platform (based on SPARCLE feature vector,
Fig. 3A) was then tested for the task of recovering the GO associa-
tions between genes, with the three functional branches covering
molecular function (MF), cellular component (CC), and biological
process (BP) (Fig. 3C). Specifically, gene pairs were classified as
sharing, or not sharing, similar GO annotations.

For comparison, we compare the prediction results to other correla-
tion-based methods (Figs. 3B, 3C). While the GO hierarchical
database covers different descriptive resolutions (Fig. S2), our
protocol exhibited accurate predictions at all resolution levels (Fig.
S3-S5). For example, with 20% coverage at high GO resolution the
accuracy reached 97.6%, 91%, and 99% for CC, BP, and MF, re-
spectively (SPARCLE+AB, Figs. 4A-4C and Figs. S3-S5). For full
coverage, we still achieved 65-72% accuracy for all ontology
branches at low resolution (SPARCLE+AB, Figs. 4A-4C), and 73-
89% for the more specific terms of the high resolution of GO anno-
tations (SPARCLE+AB, Figs. S3-S5). An additional perspective
on the SPARCLE+AB method is retrieved from the tradeoff of
sensitivity and 1-specificity as presented by the ROC (receiver
operating characteristic) curves. In all tests (for PPI, GO low and
high levels and GO Slim) when compared SPARCLE+AB and
Correlation+AB, a higher sensitivity is measured for the same
specificity (not shown).
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Fig. 4. Prediction of genes' associations according to GO, where accuracy is defined as in Fig. 3. A comparison of SPARCLE-based AdaBoost learning
(SPARCLE+AB), correlation-based AdaBoost learning (Correlations+AB), correlations-based shortest path (SPath) (Zhou, et al., 2002), and pairwise
correlations for the raw data (Correlations) for S. cerevisiae (A-C) and P. falciparum (D-F) transcriptomes. The ontology branches CC (A,D), BP (B,E)
and MF (C,F) were examined. A detailed analysis for all GO resolution levels is shown for S. cerevisiae (Figs. S3-S5) and P. falciparum in Fig. S7.

Next, we tested whether our inference method “happens” to do
well on the yeast as a model system. Indeed, the yeast genome is
extremely rich in annotations and currently 88% of its genes are
associated with some informative GO annotation. Similarly, the
quality and density of the yeast interactome exceed those of any
other model system. We thus repeated the entire protocol for a set
of 208 experiments (Hu, et al., 2009) measuring 4365 P. falcipa-
rum genes expression levels, from cells exposed to ~30 anti-
malaria drugs. Note that only 5% of the malaria genes are reviewed
by SwissProt, 65% of the proteins are annotated as ‘putative’ and
only 46% of the genes are associated with some GO annotations
(often at a low resolution, Fig. S7). The SPARCLE-based protocol
again demonstrated high predictive power (Figs. 4D-4F, Fig. S7).
Lastly, we systematically tested the novel knowledge gained from
the above-described protocols (Figs. 3-4, S3-S5). To this end, we
randomly sampled pairs of yeast genes which were annotated as
unrelated and yet which we predicted to be related (false positives,
FP) and, for comparison, pairs of genes which were annotated as
unrelated and predicted to be unrelated (true negatives, TN). We
manually examined each such pair of genes for functional connec-
tions. Remarkably, we verified our predictions for interrelations in
~80% of all FP samples, yet could only detect relations in about a
third of the TN set (Table S3). While this manual inspection cannot
be considered to stand on solid statistical ground, it provides sup-
port for the relevance of SPARCLE based properties, when they
are fed into a machine-learning platform to empower functional
inference.

5 DISCUSSION

The value of the information retrieved by the SPARCLE approach
was demonstrated by using its results as a basis for machine learn-
ing classification of gene associations. A systematic and compre-
hensive evaluation, ranging from PPI networks and going through
all resolution levels of the GO annotation database, covering the
immensely explored yeast transcriptome and the poorly annotated
malaria-parasite genome, revealed the large potential of using such
a poorly studied geometric approach to extract principal insights
from gene expression data.

Many approaches aim to develop a systematic way to unravel hid-
den structure in data. Most studies that looked for biological co-
herence in gene expression data applied clustering (at different
levels of sophistication), revealing the existence of some hidden
‘structure’ in the data. In the current research, comparisons to clus-
tering results were not carried out, as our goal here is quite differ-
ent. The high performance of SPARCLE-based AdaBoost learning
should be considered as evidence for the principal information that
is embedded in the geometric properties of the data. Therefore, a
critical comparison was performed to evaluate the information that
is embedded in correlation (a form of geometric representation, see
below). We show that the correlation performed very poorly on the
malaria data and somewhat better on the yeast data. In addition, by
combining the AdaBoost learning protocol with the correlation
(Correlation+AB), we isolated the contribution of the AdaBoost
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learning itself. SPARCLE+AB outperformed these other ap-
proaches for the entire range of accuracy and coverage (Figs. 3,4
and Fig. S3-57).

Several aspects of our approach differ from common practices, and
should be elaborated. Most of the activity in the machine-learning
area can be viewed as a modern-day approach to the classical ques-
tions of statistics. The data at hand is considered as being sampled
from some distribution and the question is to get as accurate as
possible a description of that distribution. Our approach is differ-
ent.

When data items are (or can be naturally viewed as) points in
space, it is possible to utilize any “unexpected” geometric proper-
ties that this set of points (corresponding to data items) has. In fact,
many successful existing methods in machine learning can be
viewed from this perspective. Thus, if S is a generic set of N points
in d-dimensional space and if N is sub-exponential in d, then we do
not expect to see any pairs of points (even nearly) in the same di-
rection from the origin. If the set of points that is your data set
violates this statement, you can conclude that it has a geometrically
non-trivial structure. This structural property is very likely a reflec-
tion of an interesting (albeit not necessarily interpretable) property
in the domain from which the data set came. This is our interpreta-
tion of correlation analysis, one of the most reliable workhorses of
bioinformatics. Likewise, a generic point set in Euclidean space is
not expected to be stretched in any special directions in space.
Therefore if your data set, viewed geometrically, is stretched in
certain directions, it tells you something, which can often be used
to discover interesting phenomena, this is our interpretation of
SVD analysis.

Correlations and stretch are only two of the numerous properties
that one may consider in a point set in Euclidean space. Our work
considers another very basic property that we know not to exist in
generic sets: (Nearly) linearly-dependent sets of points of cardinal-
ity that is substantially smaller than the dimension of the host
space. When such an unexpected property of the data set is discov-
ered, two questions suggest themselves: (i) Is this phenomenon
only coincidental? and (ii) How can this geometric property of the
data help us learn something about the system which it represents?
In this study we confirm the robustness of this property under mul-
tiple perturbations (Figs. 1-2, Fig. S1) and the generality for multi-
ple model organisms (Figs 3-4, Fig. S3-S7). The SPARCLE based
machine-learning analysis is a first step toward a deeper under-
standing of the underlying complexity of the biological gene asso-
ciations.

In this study, we present a natural, yet unexplored, approach for the
seemingly exhausted problem of gene expression analysis. Adopt-
ing a sparse signals reconstruction mindset, we recover a support
set of genes for each gene in a genome. Geometrically, we uncov-
ered linear subspaces which are over-populated with expression-
profiles in the multidimensional space of the experiments set. We
could verify the robustness and significance of the sparse recon-
structions using measures intrinsic to the method and data.

A notable byproduct of the process is the observation that a bio-
logical interpretation of the support sets was mostly indirect. This
is to be expected, since we only consider the smallest support size
for each given vector while often many other representations of the
same vector can be found with sub-dimensional supports. Another
offshoot is the partial ability to identify unannotated genes, which
somewhat contributed to the high precision in the case of the P.

falciparum study. Such genes are mostly evolutionary branch-
specific genes, and identifying them from expression data is stimu-
lating in and of itself.
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