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step if and only if it is silent then and precisely one of its neighbors transmits. This 
stringent rule poses serious difficulties in performing even the simplest tasks. This 
is true even under the overly optimistic assumptions of centralized coordination 
and complete knowledge of the network topology. We look at the question of 
simulating two of the standard message-passing models on a radio network. In the 
general message-passing model, a processor may send each of its outgoing neigh- 
bors a possibly different message in each round. In the uniform message-passing 
model, in each round a processor must send an identical message to all its 
outgoing neighbors. Roth message-passing models can easily simulate the radio 
model with no overhead. In the other direction, we propose and study a primitive 
called the single-round simulation (SRS), enabling the simulation of a single round 
of an algorithm designed for the standard message models. We give lower bounds 
for the length of SRS schedules for both models and supply constructions or 
existence proofs for schedules of matching (or almost matching) lengths. o is92 
Academic Press, Inc. 

1. INTRODUCTION 

Communication is a major aspect of every distributed system. Its role 
and cost are widely studied in many areas of computer science. Less 
attention is being paid, though, to the difficulties arising in communicating 
over various communication media; usually one adopts the most conve- 
nient medium of point-to-point non-interfering communication lines. A 
notable exception is multipIe-access channels (such as Ethernet) which did 
receive rather extensive attention (cf. [HLR, GFL, GGMM]). The main 
difference is that two stations transmitting at the same time interfere with 
each other. 

In the growing field of communications, other mechanisms are being 
proposed, studied, and implemented. However, important aspects of these 
new communication modes and relationships between them are left some- 
what neglected, and there is much more to be said about these issues from 
the algorithmic and computational standpoint. 

In this paper we study the standard model of packet radio networks 
[BGI, CKl, CK2, CK3, CW, GVF, K, KGBK, SC]. A radio network is a 
directed graph G = (V, E) whose vertices are processors (or stations) that 
communicate among themselves in synchronous time-slots using radio 
transmissions. (In fact, the Ethernet is a special case of a radio network.1 
The properties of this medium are described by the following rules. In 
each step a processor can either transmit or keep silent. A processor x 
receives a message from a processor y in a given step if and only if x keeps 
silent and y is the only incoming neighbor of x (i.e., such that (y, X) E E) 
to transmit in this step. If more than one incoming neighbor of x 
transmits, a collision occurs in which case x hears only noise, but no 
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message. On hearing noise, n can only conclude that some of his neigh- 
bors tried to transmit at this round. Also, a processor cannot hear while 
transmitting. Directed edges reflect asymmetric situations, e.g., some 
stations may be more powerful transmitters than others. 

It is intuitively clear that the possibility of collisions should make radio 
networks hard to coordinate and control and that performing even the 
simplest tasks may pose serious difficulties. This effect is especially marked 
when the processors operate in a distributed fashion, and have no a priori 
knowledge of the network’s topology. This difficulty was demonstrated, for 
instance, by the a(n) lower bound given by [BGI] for the time required for 
deterministic distributed broadcast protocols in radio networks. Their 
lower bound takes full advantage of the assumptions of the distributed 
environment and processors’ ignorance of the graph topology. 

In order to study the inherent limitations of radio communication in this 
way, we need to neutralize the effects of (the absence of) knowledge of the 
network. This can be done by concentrating on topology-bound schedules, 
rather than distributed algorithms. A topology-bound schedule is a pre- 
fixed, oblivious algorithm designed for the particular network at hand. 
Such a schedule supplies every vertex with an individual list of instructions 
specifying what actions to take in each round of the run. (Note that the 
assumption of a central control being oblivious causes no loss in power.) 
To be more specific, a schedule S is a list CT,, . . . , T,) of transmissions. For 
each round i, i = 1,2,. . . , t, the set T = KU,, M,), (u2, M,), . . .) specifies 
the processors that have to transmit in round i and the contents of their 
messages. Such a schedule may be generated by a centralized algorithm 
whose input contains the network’s topology. Clearly, a schedule for a 
given problem on a given graph will generally outperform any distributed 
algorithm for the same problem (run on the same graph). Thus when 
studying worst scenarios, lower bounds on the number of rounds required 
for a schedule apply also to distributed algorithms. Conversely, the exis- 
tence of a distributed algorithm induces a schedule of the right complexity 
for the problem on every graph (although the schedules derived in this way 
might not be optimal for some graphs). 

In [ABLP] we prove the existence of a family of radius-2 networks on n 
vertices in which any broadcast schedule requires at least R(log* n) 
rounds of transmissions. This matches an upper bound of O(log* n) 
rounds for networks of radius 2 proved in [BGI, CW]. Thus, even with a 
complete knowledge of the topology the radio network causes many 
difficulties in achieving simple tasks such as broadcasting. 

When trying to demonstrate that one mode of operation is slower or 
weaker than another, a natural approach is to study possible simulations 
between the two modes. This paper concerns simulations between the 
standard synchronous point-to-point message-passing model and the radio 
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model. Clearly, the simulation of algorithms for radio networks on mes- 
sage-passing systems with the same underlying topology can be achieved in 
a straightforward manner with no overhead at all (in terms of number of 
rounds). However, in the other direction our results imply that the 
simulation of message-passing based algorithms in radio networks causes a 
considerable slowdown, typically depending on the vertex degrees in the 
network. This observation lends additional support to one’s feeling about 
the relative difficulty in radio communication. 

The notion of network simulation may have practical significance as 
well. Whenever a new type of communication mode is invented, new 
algorithms have to be developed for it for all standard network operations. 
Simulation procedures could help to convert algorithms designed for 
networks with the same topology but different means of communication to 
algorithms for the new communication mode. In particular, since design- 
ing algorithms for radio networks from scratch turns to be a hard task, the 
simulation of algorithms for standard message-passing systems may prove 
to be a plausible approach. 

We concentrate on round-by-round simulations where a separate phase 
of radio transmissions rounds is dedicated to simulating each single round 
of the original algorithm. We propose and study a general primitive called 
single-round simulation (SRS), serving as a building block in such simula- 
tions. The role of this primitive is to ensure that every message passed by 
the original algorithm during the simulated round will be transmitted (and 
received) during the simulating phase. The hardest round to simulate is 
one where a message is to be sent over each link of the network. The 
simulating phase should guarantee that for every edge (u, U) there is a step 
in which u transmits the message MU, designated to u and u manages to 
receive it. (The resulting communication primitive, SRS, bear close resem- 
blance to the “network testing” primitive of [EGMTI, although their roles 
are different. The task of performing SRS on a radio network is in fact 
equivalent to the problem described as phase allocation in [CK31.) 

Denote by A, and by Aout the maximum indegree and outdegree of any 
vertex in the graph, respectively, and let A = max(Ai,,, A,,J. (Without loss 
of generality, hi,, A,,, _ > 2.) We deal with two variants of the message- 
passing model. In the general model, a processor x may send each of its 
outgoing neighbors y a (possibly different) message MX,, in each round. A 
more restricted model is what we call the uniform model, where in each 
round a processor x may send a single message h4, to all its outgoing 
neighbors. 

Clearly every algorithm that works in the uniform model works also in 
the general model. Conversely, a single round of an algorithm for the 
general model may require fl(A,,,) rounds in a simulating algorithm in 
the uniform model, since each processor needs to send its messages to its 
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outgoing neighbors in A,,, separate rounds. If messages of unbounded 
length are allowed then the two models are equivalent. To simulate a 
round of the general model each processor concatenates all its messages 
along with indicators of the destinations. In this paper we assume mes- 
sages to have a fixed length and therefore the models are not equivalent. 
We would like to point out that many realistic models consider the 
individual message as indivisible and thus forbidding concatenation of 
messages. 

Our main results for the single-round simulation problem are as follows. 
For the general model we first consider single-round simulation (SRS) 
schedules. We prove a matching lower and upper bound of O(AinAout) 
rounds. The upper bound is achieved by a simple construction method for 
SRS schedules, based on coloring a certain related graph called the 
interference graph. Our lower bound is based on a family of graphs with 
Ain = Aout = A that forces every SRS schedule to last at least Ln(A2) 
rounds. 

We then turn our attention to distributed algorithms for SRS in the 
general model. We present a randomized (Las-Vegas) distributed SRS 
algorithm for general graphs. With probability 1 - p (0 < p < l), it re- 
quires O(Ai”A,,t log(n/p)) rounds. Deterministic SRS algorithms are 
presented under the assumption that processors have distinct identities 
(1,. . . , n}. In addition to the obvious O(nA,,[) round algorithm, we 
present an O(A,,, A,(log2 n/log(Ai, log n))) round deterministic algo- 
rithm. 

For the uniform model there is an obvious global lower bound of 
MA,) on the length of an SRS schedule for every graph. Further, there 
are graphs for which we can show a lower bound of n(A, log A) rounds. 
In these graphs A, and A,,, are considerably different. For the special 
case of an undirected network in which A = A, = A,,,, we describe 
another lower bound of fi(A log A). A probabilistic argument using the 
Lovisz local lemma establishes the existence of an SRS schedule of 
O(A, log A) rounds for every graph. We also present a (centralized) 
algorithm for constructing a schedule of O(A, log n) rounds for every 
graph. The previously known solution required O(A2) rounds [CK3]. 

Finally we consider distributed algorithms for SRS in the uniform 
model. We exhibit a randomized (Las-Vegas) distributed algorithm for 
general graphs, which with probability 1 - p requires only O( A in log (n/p)) 
rounds. We also present deterministic algorithms based on the assumption 
of distinct id’s [l, . . . , n]. These algorithms are faster by a factor of AoUt 
than the corresponding algorithms for the general model. 

Let us comment that our distributed algorithms are run on the radio 
network itself, and require no control message exchange (i.e., the only 
messages sent are those the processors wish to pass to their neighbors). In 
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contrast, the distributed algorithm of [CR31 has to be run on a standard 
point-to-point message passing network built on the same set of vertices as 
the radio network and assumed to have the same topology. 

Remark. Unless specified otherwise, all logarithms are to base 2. For 
easier readability we omit all floor and ceiling rounding throughout. Also, 
we assume without further notice that all our parameters are sufficiently 
large whenever needed. 

2. THE GENERAL MODEL 

Let us first give a precise description of the SRS primitive for the 
general message-passing model. We are given a directed graph G = (V, E). 
For every edge (x, y) E E, the processor x has a message MxY destined 
for y. The single-round simulation problem calls for the delivery of all of 
these messages. We say that an edge (x, y> is sati.sfie~ by a transmission 
step T if T contains the instruction (x, M,,) and neither y nor any other 
incoming neighbor z of y transmits in T (so y gets to receive MJ. A 
schedule S = CT,, T2, . . . ) satisfies an edge if at least one of its transmis- 
sions does. A schedule S is a single-round simulation (SRS) schedule if it 
satisfies all edges in E. 

2.1. Schedules 

For every directed graph G = (V, E), define the simple undirected 
interference graph of G, Z(G) = (V,(o,, E,&, as follows. The vertices of 
Z(G) are the edges of G (v;Cc, = E). There is an edge between the 
vertices (x, y> and (z, w) if at least one of the following two conditions 
holds: 

1. The edges (x, y) and (z, w> are adjacent edges in G (i.e., 1(x, y) f~ 
{z,w)I r 1 and (x, y> f (z,w)). 

2. At least one of the two edges (z, y) and (x, w) exists in G. 

Intuitively, an edge between the vertices (x, y) and (z, w) indicates that 
a collision would occur if both x and z transmit at the same round. Note 
that the neighbor set of (x, y) in Z(G) consists of at most (2A, - 1) + 
(%ut - 1) edges (z, w> contributed by Condition 1 and at most 2(A, - 
lm3ut - 1) contributed by Condition 2. Altogether we obtain the follow- 
ing lemma. 

LEMMA 2.1. The maximum degree of Z(G) is at most 2AinAo”t. 
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Denote the chromatic number of an undirected graph H by x(H). The 
following lemma expresses the least length of an SRS schedule for G in 
terms of Z(G). 

LEMMA 2.2. x(Z(G)) roun& are necessary and sufficient for an SRS 
schedule for the general model. 

Proof. Let r = x(Z(G)) and let 

rp: VfcO, + (L...,r} 

be a coloring of Z(G) with r colors. Construct the following SRS schedule 
S. If (x, y) is colored by cp with the color i, 1 < i I r, then processor x 
transmits MI,, (i.e., the message designated to processor y) in round i of 
the schedule S. 

Since for every z E V the vertices (x, y) and (x, z) are adjacent in Z(G) 
this rule is well defined and in each round x has to transmit at most one 
message. Every directed edge of G is colored, so each processor transmits 
each of its messages exactly once. It remains to prove that all of the 
transmissions succeed. 

Assume that in round i of the schedule S processor x transmits MI,,. 
Since for any z E V the vertices (y, z) and (x, y) are adjacent in Z(G) it 
follows that y does not transmit at round i. The second rule in construct- 
ing the edges of Z(G) guarantees that at round i none of the incoming 
neighbors of y transmits. The above two arguments assure that this 
transmission succeeds and y receives MXy at round i. 

For the other direction, assume that S is an SRS schedule of r rounds. 
Color the vertex (n, y) of Z(G) with the color i where i is the first round 
in S in which x succeeds in transmitting MXY. The construction of Z(G) 
and arguments as before prove that this is a legal coloring. q 

By Lemma 2.1 no degree in Z(G) exceeds 2A,A,,,, hence a greedy 
coloring of Z(G) and Lemma 2.2 yield the following theorem. 

THEOREM 2.1. For every directed graph G there is a (polynomial time 
constructible) SRS schedule for the general model of 2AinAoUt + 1 rounds. 

If G contains a complete bidirected bipartite graph with A vertices in 
each side, then Z(G) contains a clique of size 2A*, whence x(Z(G)) 2 2A2 
and the next theorem follows from Lemma 2.2. 

THEOREM 2.2. For every A 2 2 and n r A there exkts a graph with n 
vertices and maximum indegree and outdegree A for which every SRS 
schedule requires 2A2 roun&. 
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2.2. Distributed Algorithms 

We now turn our attention to the subject of finding a randomized 
distributed algorithm for the problem. We assume that each processor 
knows the identity of its neighbors in the network, as well as IZ, Ain, and 
A OUt, but does not know the entire topology. The following procedure will 
be used several times in the sequel. 

PROCEDURE Random-TransmitCM, T). In each round i, 1 I i I r, 
transmit M with probability l/Ai,, and keep silent with probability 
1 - l/bin. 

In all cases, this procedure is applied at every processor x simultane- 
ously using the same r values, with appropriate messages M,. For an edge 
(x, y) denote by A,, the event: “the processor y fails to receive M, over 
the edge exy during all r rounds.” 

LEMMA 2.3. For every edge (x, y), 

Pr(4,) s exp( -r/(2eL>). 

proof. The probability that a single transmission step of the procedure 
succeeds on the edge (x, y) for y with indegree d is bounded below by 

&(l-t)“+-t)“‘%&- 

Therefore, it is only with probability at most 

(%+“j-&) 
that the algorithm fails to transmit M, on (x, y) in all r rounds. 0 

Our randomized algorithm for SRS consists of A,, phases. Let 
Yl,..., yk be the outgoing neighbors of x in the network. In phase i 
(1 < i I k), x applies the procedure Random-Transmit(M,,i, r), where 

for some safety parameter 0 < q < 1. As a result of Lemma 2.3 we obtain 

LEMMA 2.4. The probabilistic algotithm succeeds in transmitting on all 
the edges with probability 1 - q. 
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Proof. Denote by P the probability that the algorithm fails on some 
edge, 

P = Pr ( u 
(x. Y)EE 

By Lemma 2.3 and the choice of r, 

Thus the entire algorithm succeeds on all edges with probability at least 
l-q. El 

THEOREM 2.3. For every 0 < q < 1 and 1 5 Ain, Aout I n the SRS 
problem for the general model has a randomized (Las-Vegas) distributed 
algorithm requiring O(Ai”A,“, lo&z/q)) rounds with success probability 
1 - q on any n-vertex graph G. 

Finally, we consider deterministic algorithms for SRS. We make the 
assumption that processors have distinct identities (1,. . . , n). Under this 
assumption there is an obvious O(nA,,t) round algorithm where each 
edge is associated with a distinct round. We now present an 

O( A..tA$(log2 n/lo& Ai,, log 4)) 

round deterministic algorithm. 
As a consequence of the prime number theorem (cf. [D]) we have 

Fact 2.1. Let P be the set of all primes p I x. Then lIpc pp = 
e(’ +4w 

Our algorithm relies on the following lemma. 

LEMMA 2.5. Let 1 I x1,. . . , x, I n be s distinct integers. Then for every 
1 < i I s there exkts a prime p I s log, n such that (xi mod p) # 
(xi mod p) for every j f i. 

Proof. Fix i and consider the set P of all primes p I s log n. Suppose 
that for each p E P there is an index j such that (xi mod p) = (xi mod p). 
Then, denoting aj = (Xi - xi I, we have that II r i j ~ n, j + iaj is divisible by 
each p E P. Hence 

ns 2 I-i Uj2 np. 
llj5n,j#i PEP 
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By Fact 2.1 we obtain that 

ns 2 e(l+ow)s b32 n > ns 
, 

a contradiction. q 

The algorithm operates in A,,, phases. In phase i, each vertex x 
transmits its message Mi destined to its ith neighbor yi. Let {pr, . . . , p,} 
be the set of primes in the range [2. . (A, + 1)log n]. Since, approximately, 
there are n/log n prime numbers p, where p < n, it follows that t = 
(t + o(l)X(A, + 1)log n/lOg((A, + 1)log n)). Each phase consists of t 
subphases, where subphase j proceeds for pi rounds and vertex x trans- 
mits Mi at time (x mod pi). 

LEMMA 2.6. The above algorithm is correct. 

Proof Let (x, y) be an edge in G, where y = yi is the ith neighbor of 
x and let zr,. . ,, zk be the other incoming neighbors of y. The set of 
vertices x, y, zr, . . . , zk is of cardinality at most Ain + 1. By Lemma 2.5 
there is a prime pi < (Ai” + 1)log n such that (x mod Pj) is different from 
( y mod piI as well as from (z, mod Pi) for 1 I 1 I k. Now in round 
(X mod pi) of subphase j of phase i, x successfully transmits Mi to y. q 

There are Aout phases each consists of at most 

o( Ain log n/lo& Ain log n)) 

subphases. Each subphase consists of at most (Ah, + 1)log IZ rounds. 
Therefore the overall complexity of this algorithm is 

THEOREM 2.4. For every 1 5 Ain, A,,, I n the SRS problem for the 
general model bus deterministic distributed algotithms requiring 

O(nAout) or o(A o”,At” (log2 n/log( Ai” log n))) 

rounds on any n-vertex graph G with distinct processor identities (1,. . . , n). 

3. THE UNIFORM MODEL 

We now consider the SRS primitive for the uniform model. That is, in 
the single round which we simulate, each processor x sends an identical 
message M, to all of its outgoing neighbors. 
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3.1. Schedules 

We first consider the existence of efficient schedules for the problem. 
The next obvious lower bound follows from the fact that each processor 
has to hear from Ain different processors. 

THEOREM 3.1. For every graph G, any SRS schedule for the uniform 
model requires MA in 1 rounds. 

Note that this lower bound is global in the sense that it holds for every 
graph. In contrast, the CI(A*) lower bound of Theorem 2.2 for the 
simulation of the general model is true only for some particular graphs. 

We can also prove a tight (but non-global) lower bound. 

THEOREM 3.2. For infinitely many values of n there exist n-vertex graphs 
for which every SRS schedule requires R(A, log A) rounds. 

Proof For s 2 2, construct a directed bipartite graph G = (V, U, E) 
with V= {l,..., s), U = ({i, j}ll I i < j I s} and all directed edges 
(i, {i, j}) for every 1 I i # j I s. In this graph Ain = 2 and A,,, = A = s - 
1. Associate the edge (i, (i, j}) in G with the edge (i, j) in the complete 
graph on s vertices, K,. 

We now claim that for this graph, every SRS schedule needs 
R(A, log A) = R(log s) rounds. Notice that the set of edges in G, satis- 
fied by a transmission round T L V, is associated with the cut T X 
(V - T) in K,. This is true as vertices which transmit cannot receive any 
message and vice versa. By induction on s it can be shown that the edges 
of K, cannot be covered by fewer than [log sl cuts and the claim follows. 

It remains to show the induction proof of the last statement. When 
s = 1, then trivially zero cuts cover K,. When s > 1, independent of the 
first cut, the other cuts must cover a Kls,*, subgraph. 0 

We remark that the above argument uses graphs in which A, and A,,, 
are considerably different. For the interesting special case of an undi- 
rected network (in which A = A, = AOUt) the CI(A log A) lower bound 
still holds, although its proof becomes quite involved and is of indepen- 
dent interest. We have 

THEOREM 3.3. There exists a constant E > 0, such that for every A > 1 
and for each sufficiently large n with n A even, there exist n-vertex A-regular 
undirected graphs for which every SRS schedule requires at least E A log A 
rounds. 

The proof of this theorem is deferred to the Appendix. 
We now prove that for every graph there exists a simulation schedule of 

r = O(A, log A) rounds. In order to prove the existence of the desired 
schedule it suffices to show that on any given graph, applying the proce- 
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dure Random-Transmit(M,, r) at every vertex for r rounds, where r is as 
above, succeeds with positive probability. 

The proof is based on the Lovisz local lemma ([EL], cf. [S]). Let 
A 1,. . . ,A, be events in a probability space. A graph H on the vertices 
11,. . . , n) (the indices for the Ai) is called a dependency graph for 
A 1,. . . , A, if for all i the event Ai is mutually independent of all Aj with 
G, j) 4 H. 

LEMMA 3.1 (EL). Assume that for all i, Pr(Ai) I p and let d be the 
maximum degree of vertices in H. If 4dp I 1 then 

Pr Cl 

For every directed edge (x, y) in the network G the event A,, is 
defined as in the previous section: “the processor y fails to receive M, 
over the edge exY during all r rounds.” 

LEMMA 3.2. There is a dependency graph H for these events with maxi- 
mum degree d I 2A3. 

Proof. For all (x, y> the event A,, is independent of all A,,, where 
(v, w) is an edge at distance at least four from the edge (x, y). (Distance is 
measured in the underlying graph of G and two incident edges are at 
distance one.) The lemma follows as there are at most 2A3 directed edges 
at distance at least three from (x, y). 0 

LEMMA 3.3. Applying Procedure Random-Transmit(M,, r) at every 
vertex for 

r = [2eAi,, ln(96)] 

rounds succeeds in transmitting on all the edges with positive probability. 

Proof. Consider the dependency graph of the events defined above. By 
Lemmas 3.2 and 2.3 and by the choice of r we have that 

Hence by Lemma 3.1 

Pr 
( 1 

ii& > 0. 
i=l 
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In other words, Lemma 3.3 states that with a positive probability all the 
edges are satisfied by some transmission and hence we obtain the follow- 
ing theorem. 

THEOREM 3.4. For every directed graph G there exists an SRS schedule 
for the uniform model of O(A, log A) rounds. 

As in the case with other instances where the Lovhz local lemma is 
used we are not able to constructively find a schedule of O(A, log A) 
rounds. Rather we describe a construction of a schedule with O(A, log n) 
rounds. Note that since every schedule for the general mode is also a 
schedule for the uniform model we already have a constructive schedule of 
O(A,A,,,) rounds for the uniform case. 

The schedule is constructed by a doubly iterative process. On the 
highest level, the schedule is constructed sequentially round by round. For 
each round i select a set of transmitters T by an internal iterative process. 
Suppose that I;. is already constructed for 1 I j I i. Denote by Si the set 
of edges satisfied in one of the first i rounds and by Fi = E - Si the set of 
failed edges (x, y), i.e., such that M, still needs to be received by y. 
Initially F, = E and S, = 0. The construction process continues until a 
round i when Si = E. 

We now describe the internal iterative procedure for constructing the 
transmission set I;:+ r of round i + 1. Let F = Fi and S = Si. For every 
processor x and for every set W c V denote by f&j (respectively, 
s&x)) the number of edges (x, z> for z E W belonging to F (respectively, 
S). Note that the total number of edges pointing to W is C, E V( f&z) + 
SW(X)) I Ainl WI. 

Throughout the construction the set V of processors is partitioned into 
four groups: 

(1) T-the transmitters 

(2) H-processors with exactly one incoming neighbor in T. These 
processors will hear a message (and contribute an edge to S) if the 
processors in T transmit. 

(3) C-processors having at least two incoming neighbors in T, they 
hear no message if the processors in T transmit. Also, processors having 
one incoming edge from T which already belongs to S. 

(4) R-the rest of the processors. 

Initially T, H, C = 0 and R = V. 
Call a processor x usefif if it satisfies one of the following conditions: 

1. x E H and f&x) > 2(f&) + SJX) + 11, 

2. x E C u R and fR(x) > 2(fH(x) + sH(x)). 
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Note that a useful processor can never belong to T because processors in 
T have no outgoing neighbors in R. Intuitively, a useful processor is a 
processor whose addition to T will increase the number of satisfied edges 
while maintaining some invariants needed for the analysis of the algo- 
rithm. 

In each step we select a useful processor x from H U C U R, transfer it 
to T, and change the sets H, C, and R accordingly. Repeat this selection 
process as long as such a vertex can be found. Once no processor is useful, 
let T,+l = T and start constructing the next round. 

LEMMA 3.4. The invariants 

ITI I IHI and ICI I IHl 

are maintained by the construction procedure described above. 

Proof The proof is by induction on the number of iterations in the 
construction of T. The base case is trivial since I TI , ICI, I HI = 0. Assume 
that the claim holds after j selection steps and that x is chosen in step 
j + 1 to be transferred to T. Let H’, C’, and T’ be the new sets of 
processors and denote by a the number of new processors that were added 
to H (from R) and by b the number of processors that were removed 
from H (mostly to C, except for x E H which is moved to T). 

The definition of a useful processor implies that a > 2b. Therefore, 

IH’( = IHI +a-bz IHI +b+l. 

By the inductive hypothesis and the above inequality, 

IH’I 2 IHI + 1 2 ITI + 1 = IT’1 

and 

IH’I > (HI + b 2 ICI + b 2 ICI. 0 

LEMMA 3.5. The construction of Tproceeds as long as IHI < IFI /5A,. 

proof. Assume to the contrary that (HI < IFI /5A, and yet no proces- 
sor x 65 T is useful; i.e., every x E R u C satisfies 

fR(X) s -qfHW + %A~)) 

and every x E H satisfies 

fR(X) s 2(fHW + SAX) + 1). 
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Summing these inequalities over all the processors in R U C U H implies 

c f!?(x) s 2xE~~T(fffw + +f(x)) + 2v-A. (1) 
XEV-T 

The edges in F are classified according to the sets into which they point. 
This implies that the cardinality of F is 

c fdx) + &fT@) + x$(x) + x&fC(x) 
XEV-T 

s xE$wTfR(x) + AJH u C u Tl. 

(The first summation does not include processors in T, since there are no 
F edges from T to R.) This inequality and Lemma 3.4 imply that 

C f~( x) 2 IFI - A,(lHI + ICI + ITI) 2 IFI - 3AinIHI. (2) 
xcV-T 

Since there is exactly one incoming edge from T into each vertex of H and 
this edge is in F, I HI = 1 XETfH(~). Using this fact and bounding by A, 
we obtain 

2 C (f~(x) + so) + 2IHI I2 C (f~(x) +s~(x)) s 2AinIHI. 
xcV-T XEV 

(3) 

Combining inequalities (l), (2), and (3) we obtain 

(F( - 3Ai~IHI I 2A,(H( 

and hence, 

IHI 2 IFI/5Ai,, 

contradicting the assumption. 0 

THEOREM 3.5. There is a (polynomial time constructible) SRS schedule 
for the uniform model of only r = O(A, log n) rounds. 

Proof. Let 4 denote the set of unsatisfied edges at the end of round i. 
Lemma 3.5 implies that in round i the transmission succeeded on at least 
IFi- 1 I/5A, edges. Hence for every i 2 1, 

IFi- 3 
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so 

Therefore, after at most 

r = [5Ai,, ln( Ai,n)l = 0( A, log n) 

rounds, I&I is bounded by a constant. Now, after O(1) additional rounds, 
one per each unsatisfied edge, all edges are satisfied. o 

We remark that an alternative procedure for the internal selection step 
can be derived by using the method of conditional probabilities (cf. [S, 
Lecture 41). This is done by observing that if we choose every vertex 
independently, with probability l/A, to transmit, then the expected 
number of edges satisfied is about a fraction l/(eAi”). Since this estimate 
concerns only expected values, it is possible to de-randomize this algo- 
rithm and find an appropriate set of transmitters deterministically. This is 
done by considering the vertices one by one and deciding for each whether 
to choose it or not, so as to maximize the conditional expectation of the 
number of edges satisfied, given the specific choices made so far and 
assuming that every vertex to be considered later will be chosen with 
probability l/A, independently. 

3.2. Dtitributed Algorithms 

We now consider a distributed randomized algorithm for SRS. We may 
apply Procedure Random-Transit(M,, r) (for a sufficiently large number 
of rounds) as a randomized algorithm for the problem, with any desired 
success probability. 

THEOREM 3.6. For every 0 < q < 1 and 1 I Ain, A,,, I n the SRS 
problem for the uniform model has a randomized (Las-Vegas) distributed 
algorithm requiring O(A, lo&z/q)) rounds with success probability 1 - q 
on any n-vertex graph G. 

Proo$ From Lemma 2.3 and the fact that (El 5 An we obtain that the 
probability to fail on at least one of the edges is 

Pr( U 
(x, YkE 

A,,) I c Pr(A,,) I Ane-‘/2eAin. 
(x, YhE 
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A simple calculation shows that for 

r = [2e*i”lnF1, 

this probability is less than q. 0 

Deterministic algorithms for SRS can again be designed under the 
assumption that processors have distinct identities (1,. . . , n]. The algo- 
rithms presented for the general model can be modified to run faster in 
the uniform model, saving a factor of A,,, as each processor has only one 
message to transmit. 

THEOREM 3.7. For every 1 I Ain, Aout I n the SRS problem for the 
uniform model has deterministic distributed algorithms requiring O(n) or 
O(A~Jlog* n/log(A, log n))) rounds on any n-vertex graph G with dtitinct 
processor identities (1, . . . , n}. 

APPENDIXA: PROOF OF THE WA log A) LOWER BOUND 

We prove Theorem 3.3, providing the lower bound of fi(A log A) on the 
length of an SRS schedule for an undirected graph in the uniform model. 
Here, A = A, = AoUt. We first state the problem in a different way (see 
also [ABLP] for a similar formulation). 

Let G be a bipartite graph with vertex classes A and B. If X is a subset 
of A and (a, b) is an edge of G with a E A and b E B we say that X hits 
(a, b) if N,(b) n X = {a}, where N,(b) is the set of all neighbors of b in 
A. We say that a family of subsets .P= IX,, . . . , X,) of A hits (a, b) if 
there is an i, 1 I i I 1, such that Xi hits (a, b). 9 hits G if it hits all the 
edges of G. Let h(G) denote the minimum cardinality of a family F that 
hits G. 

By an application of the local lemma it was shown in Theorem 3.4 that 
for every graph G with maximum degree A, h(G) I O(A log A.). We show 
here that there is an E > 0 such that for every A 2 1 there is a bipartite 
graph G with maximum degree A such that h(G) 2 E A log A. Therefore, 
the maximum possible value of h(G), as G ranges over all graphs with 
maximum degree A is @(A log A). 

Our proof is probabilistic. Let A and b be two disjoint sets, IA ( = 
IBI = n. Let E > 0 be a small real number (e.g., E = 10e3) and put 
p = l/n’. Let G be the random bipartite graph on the vertex classes A 
and b in which, for each a E A, b E B, independently (a, b) is chosen to 
be an edge with probability p. To complete the proof we show that almost 
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surely (i.e., with probability that tends to 1 as n tends to 001, the maximum 
degree of G is at most $z’-’ and h(G) > HZ’-& log n. 

For convenience we split the proof into several lemmas. Whenever it is 
needed, we assume that n is sufficiently large. Throughout the proof all 
logarithms are in the natural basis e. We omit all the integral part signs 
whenever it is clear those can be omitted. 

LEMMA A.l. The probability that the maximum degree of G exceeds 
$aleE is at most 2ne -n’-“/16 (and, in particular, tends to 0 as n tends to 
infinity ). 

Proof. The degree of every vertex of G is a binomial random variable 
with parameters n and p = l/n’. By the standard estimates for binomial 
distributions (see, e.g., [S]), the probability that this degree exceeds its 
expectation by y is at most e-Y2/2(np)+“3/~n”)2. The result now follows by 
taking y = np/2 = &1-C and by observing that G has 2n vertices. 0 

LEMMA A.2. Almost surely G satisfies the following property: for every 
A’ c A and B’ L B with IA’ I = I B’ I = 10n” log n, the induced subgraph of 
G on A’ u B’ has more than 10n” log n edges. 

Proof The probability that there are A’ and B’ that violate the above 
claim is at most 

( 10nEnlog n) ( 10nEyog n) ( yy:;;;n) * (1 - p)loonZr’ogZn-lOn”ogn 

I n30n” log ne -9th~ 102 n + 
n+m 0. q 

COROLLARY A.1. Almost surely there tk no set X L A of cardinality 
1x1 2 10n” log n that hits at least 10n” log n edges of G. 

Proof. If there is such an X, put Y = {b E B: X hits at least one (and 
hence exactly one) edge incident with b}. Then ]Y] 2 10n” log n. Let 
A’ c X be an arbitrary subset of cardinality 10n” log n of X and let 
B’ c Y be an arbitrary subset of cardinality 10n” log n of Y. Since 

I&(b) n XI = 1 

for all b E B’, IN,(b) n A’1 I 1 for all b E B’ and hence the induced 
subgraph of G on A’ U B’ has at most IB’I = 10n” log n edges. Thus 
Lemma A.2 implies Corollary A.l. 0 

Our objective is to prove that almost surely h(G) 2 enlee log n. Sup- 
pose this is false and let 9= {X,, . . . , X,) be a family of subsets of A that 
hits G, where 1 I enlAE log n. By the last corollary, the subfamily of 9 
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consisting of all sets Xi whose cardinality is at least 10n” log n almost 
surely hits at most 1 * 10n” log n < n log2 n edges of G. Therefore, in 
order to complete the proof it suffices to prove the following: 

PROPOSITION A. 1. Almost surely, for every family Z= IX,, . . . , XJ of 
subsets ofA, where 1 5 en’-& log n and IX,1 I 10n” log n for all i, there are 
more than n log2 n edges of G that are not hit by S#?. 

In order to prove this proposition, which is the main part of the 
argument, we prove several additional lemmas. 

LEMMA A.3. Let Z’= IX,, . . . , X,} be a family of subsets of A = 
11,2, - * * , n}, where 1 I en ‘-“lognand IX,1 I lOn”lognforalli, 1 <i I 1. 
Then there is a subset A’ E A, IA’1 = n/2 such that each a E A’ belongs to 
at most log2 n subsets in SV and for no 1 I i I I, IX, n AI = 1. 

Proof The average number of subsets in X containing an element of 
A is at most 

1 . 10n” log n 1 
I 10&log2n I -log2n. 

n 3 

Thus there is an A” c A containing at leat two-thirds of the points of A 
each member of which belongs to at most log2 n subsets in 2. Omitting 
repeatedly (while modifying A’> the points a with (a} = Xi n A” for some 
1 I i I I, we complete the proof. 0 

LEMMA A.4. For any real p, 0 < p < 1, and any integer k, k 2 2, 

[l - (1 -p)k-l]k 2 ee2/Pe 

Proof Since 

(1 -P)~-* I e-@-l) = -&J I PCk -11) + l9 

we have 

-p)k-l 
1 1 

1 - (1 2 l- 
p(k-l)+l=l+ 1 . 

p(k - 1) 
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Therefore, 
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LEMMA AS. Let A’ be a set, IAl = n/2. Let Z?’ be a family of at 
most en’-’ log n subsets of A’, each subset having at least two element. For 
each a E A’, define a weight 

w(a) = F aEQEz[l - (I -p)‘r~-~], wherep = I/n&. 

Then 

Proof. We have 

rI,ww = rIF acgEp(l - (1 -pP1) 

= JT,T& alF(l - (1 - PP1) 

= r-J1 - (1 -p)‘F’-l)‘F’ 

2 Fpz ( eT21P) (by Lemma A.4) 

> ,-2n’.m’-EIogn = ,-2mlogn = n1/2&n - cl 

LEMMA A.6. Let A” c A’ be two sets, IA’1 = n/4, IAl = n/2, and let 
S?’ be a family of at most enteE log n subsets of A’, each of cardinality at 
most 10n” log n. Suppose, further, that no member of A’ belongs to more 
than log’ n subsets in 2’. Then there is a subset J of A” satisfying 

(i) (JI 2 n/(400n2” log6 n). 

(ii) For every two distinct j, j’ E J, and for every (not necessarily 
distinct) F, F’ E 2”, with j E F and j’ E F’, we have IF f~ F’( = 0. 
(Thus, in particular, there is no F E 2’ containing both j and j’). 

Proof: We construct J greedily. Choose an arbitrary element of A” as 
jl and omit from A’ the set J, of all the elements of A’ contained in one 
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of the edges containing j,, and all the elements of A’ contained in an edge 
containing one of the elements of J,. Since by the assumptions we get 
IJ,l I log2 n . 10n” log n, at most (10n” log3 n)log2 n . 10n” log n = 
lOOn’” log6 n elements are omitted in this manner. We now pick j, among 
the elements left in A”, omit all the elements of A’ of distance at most 2 
(in the hypergraph Z’) from j, and continue in the same way. The result 
clearly follows. 0 

Returning now to our random bipartite graph G on the classes of 
vertices A and B, where IA] = ]BI = II, let us fii a family x= 
IX,, * *. , XJ of subsets of A, where 1 I HI’-’ log n and IX,\ I 10nglogn 
for all 1 I i I 1. In order to prove Proposition A.1 we show that the 
probability that for this fixed Z, 2 hits all but at most n log2 n edges of 
G is extremely small. By Lemma A.3 there is an A’ CA, IA’] = n/2 
satisfying the conclusions of Lemma A.3. Define 2 = {Xi fI 
A’: Xi f~ A’ # 0, 1 I i I 1}. For each a E A define w(a) as in Lemma 
A.5. By the assertion of this lemma, 

Since w(a) I 1 for all a, this implies that there is a set A” CA’, IA”] 2 n/4 
such that for each a E A”, w(u) r l/n’“. Applying Lemma A.6 for A” c A 
and .Z’ we obtain a set J satisfying the conclusions of this lemma. 
Consider, now, a fixed vertex b E B and a fixed element j E J. Let 
E,(b, j) be the event that (b, j) is an edge of G. Let E,(b, j) be the event 
that b has a neighbor in every set F \ (j} for all sets F E Z” that satisfy 
j E F. Notice that the two events E, and E, are independent and that if 
they both occur then .%’ fails to hit the edge (b, j). Note also that 
pdE,(b, j)) =p = l/nE. We can now use the FKG-inequality [FKG], 
which is one of a family of inequalities that enable us to bound the 
correlation between monotone increasing subset systems or properties of 
random events (see, e.g., [Bo, Chap. 19, Theorem 5 and Corollary 71). By 
the FKG-inequality, 

Pr(E,(b,j)) L FEzQjEF(bhasaneighborin F - tj)) 

= Ftgj-F(l - (1 -P)‘+‘) = w(j) 2 l/n*&, 

where the last inequality holds since the weight w(j) of each element of 
A” (and, in particular, of each element of J) is at least l/n*&. Therefore, if 
we denote by E,(b, j) the event that both E,(b, j) and E,(b, j) occur (and 
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hence X fails to hit (b, j)), then 

Pr(E,(b,j)) 2 -$ * -$ = $a 

Moreover, since J satisfies the assertion of Lemma A.6 part (ii), we 
conclude that all the events E,(b, j) and E&b, j), as j ranges over J and b 
ranges over B are mutually independent. We have thus proved that for 
each fixed family Z’ satisfying the assumptions of Proposition A.l, when 
G is taken randomly as before, the random variable Y which counts the 
number of edges of G which are not hit by &V satisfies the following: for 
each number s, the probability that Y is at least s is at least the 
probability that a binomial random variable with parameter N = IBI . IJI 2 
n2/400n2” log6” and p = l/n9” is at least s. By applying the standard 
estimates for Binomial distributions [S] we obtain the following: 

LEMMA A.7. For every j!xed Z’ satisfying the assumptions of Proposi- 
tion A.l, the probability that X hits all but at most n2/10,000n1’” log6 n 
edges of G (and certainly the probability that it hits all but n log* n of these 
edges) is smaller than e-n2/10@“n’1E lo&. 

Since there are less than 

possible choices for the family Z’ this implies the assertion of Proposition 
A.1 and completes the proof of our main result, namely: 

THEOREM A.l. There exists an E > 0 such that for all sufficiently large n 
there is a graph G with maximum degree A < :n’-’ such that h(G) L 
en’-& log n 2 EA log A. 

Remark 1. Clearly if H is a subgraph of G then h(G) 2 h(H). This, 
together with Theorem A.1 and an adjustment of E, enables one to prove: 

THEOREM A.2. There exists an E > 0 such that for every A 2 1 there is 
a A-regular (bipartite) graph G satisfying h(G) 2 EA log A. 

Remark 2. The parameters in the proof above (i.e., the size of A, that 
of B, the probability p, and the two epsilons in the expression HZ-& log n 
(which can differ from each other)), can be adjusted to get lower bounds 
for h(G) for graphs G with maximum indegree d, and maximum out- 
degree d,. The interested reader can make the required computation. 
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