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HARD ENUMERATION PROBLEMS IN GEOMETRY
AND COMBINATORICS*

NATHAN LINIAL

Abstract. A number of natural enumeration problems in geometry and combinatorics are shown to be
complete in the class # P introduced by Valiant. Among others this is established for the numeration of
vertices and of facets of a polytope, acyclic orientations of a graph and satisfying assignments of implicative
boolean formulas.
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Introduction. This article contains a contribution to the theory ofhard enumeration
problems. The foundations of this area were laid by Valiant [Val], [Va2] who defined
the class : P of enumeration problems and the subclass of problems complete in P.
The most interesting of his results is the : P completeness of computing permanents
of 0-1 matrices. This problem can also be stated as the problem of enumerating perfect
matchings in bipartite graphs. While deciding whether a bipartite graph has a perfect
matching can be done in polynomial time [HI the enumeration problem is P-complete.

Valiant’s pioneering work was continued by a recent article of Provan and Ball
[PB] who prove the P-completeness of a number of natural enumeration problems.
With every enumeration problem there is an associated decision problem. Instead of
asking for the number of objects in question we ask whether this number is zero or
not. The decision problem associated with the computation of the permanent function
is the question whether a given bipartite graph has a perfect matching. While this
decision is solvable in polynomial time, it is by no means trivial. Notice, however, that
for many ofthe problems discussed in [PB] the situation is even more extreme: Consider
for example the problem of enumerating independent sets in a bipartite graph, the
decision problem associated with this enumeration problem is trivial: Every graph has
an independent set of vertices. So an enumeration problem can be = P-complete even
if the existence problem is trivial.

This article assumes acquaintance with the theory of = P-completeness as presented
in [Val], [PB] and [GJ]. Our purpose is to present a number of natural enumeration
problems which belong to the class of = P-complete problems. The problems are
geometric, combinatorial and from propositional calculus.

Here is our main theorem"
THEOREM. The following enumeration problems are P-complete.

(1) Vertices in a polytope.
Input: A system of linear inequalities Ax <-_ b defining a polytope P
Output: The number of vertices of P.

(2) d-dimensional faces of a polytope (fixed d).
Input: As in (1).
Output: The number of d-dimensional faces of P.
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(3) Facets of a polytope.
Input: A finite set of points in R n.
Output: The number of facets ((n-1)-dimensional faces) of P.

(4) Components of slotted space.
Input: A set {Hil I} of hyperplanes in Rn.
Output: The number of connected components of {R"\U Hili I}.

(5) Acyclic orientations of a graph.
Input: A graph G V, E).
Output: The number of orientations of G with no directed circuit.

(6) 3-colorings of a bipartite graph.
Input: A bipartite graph G- (A, B, E).
Output: The number of ways to properly color G with 3 colors.

(7) Satisfying assignments of an implicative Boolean formula.
Input: A Boolean formula B on variables Xl,"’,x, of the form B=
AI=, (x,1 v
Output: Number of truth assignments for Xl,. ", X which makes B true.

Proof. (1) We use the fact from [PB] that enumerating order ideals is : P-complete.
Given a poset (P, ->_) with P- n] we associate with P a polytope B- B(P) in " as
follows:

B {x I"[1 -> xi-> 0, x> xj if i>-j in P}.

(See [St2], [Li], [KS] where use is made of this polytope.)
We claim that the vertices of B are in 1"1 correspondence with the order ideals

of (P, >_-). First we prove that all vertices of B have 0-1 coordinates. Let x B have
some 0<x < 1. If a =max {xj]0 < x < 1}, then by replacing all coordinates x a by
a + e or by a e we will get a point of B. This implies that x is not a vertex of B. The
correspondence between vertices and ideals is as follows"

x vert (B) --> S {1 <-_j <= n[xj 0}.

It is easily verified that S is an ideal and that this correspondence is bijective.
(2) Suppose that for some fixed d we can find fa (K) the number of d-dimensional

faces of a polytope K. Consider r-fold pyramids P with K as basis. In [Gru, p. 55]
one finds

If we write (*) for r= O, , d and have all fe(P) evaluated, then we obtain a system
of equations in unknown

fo(K), ,f(K).

This system of equations has a triangular matrix and so they can be solved successively
and fo(K) can be determined in polynomial time. Since evaluating fo(K)= the number
of vertices of K is #P-complete by (1), our claim follows.

(3) This is just the dual of (1): See [Gru, p. 46] for polytope duality.
(5) The proof here is based on two observations.
PROPOSITION [Stl]. Let G=(V, E) be a graph with n vertices and let P(G, A) be

its chromatic polynomial. Then (- 1)nP( (3, 1) equals the number of acyclic orientations

of G.
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For the other observation we have to define the operation of join of two graphs
G V1, El), H V2, E2) where V1 fq V2 . The join G+ H has V1 U V2 as its vertex
set and

E U E2 U {Ix, y]lx V, y V2}

as its edge set. The following observation is immediate.
PROPOSITION. P(G+ K,, A)= A(A 1), , (A t+ 1)P(G, A t).
Now we can combine these two facts as follows. Being able to enumerate acyclic

orientations is equivalent to computing P(G,-1) for the graph. But if we have the
values of P(G 4-K,,-1) for t- 1,..., n, that means we can calculate the integers

P(G, -j) (n+ 1 _->j_-> 2).

But P is a monic polynomial of degree n so from these numbers we can compute
P(G, A), the chromatic polynomial of G. This is a 4 P-complete problem because the
reduction to coloring is parsimonious [GJ, p. 169].

(4) The proof here makes use of (5) that enumerating acyclic orientations is
4 P-complete and on the following result of Greene. H

_
R is the hyperplane given

by {x Rnlx, xj}.
PROPOSITION [Gre]. Let G V, E) be a graph on n vertices and consider

S( G) "\U Hj

where the union is over all i, j such that i, j] E. The number of connected components
of S( G) equals the number of acyclic orientations of G.

(6) We base this proof on the P-completeness of enumerating independent sets
in bipartite graphs [PB]. Let G- (A, B, E) be a partite graph for which we want to
find I(G) the number of independent sets. Consider a graph H which is obtained by
adding two new vertices a, b with a being adjacent to all vertices in B U {b} and b to
all vertices of A U {a}. Now let us compute x(H, 3), the number of 3-colorings of H.
Suppose w. l.o.g, that a, b are colored 1, 2 respectively. The 3-coloring is now uniquely
defined by the set of vertices colored 3. This can be any independent set of G and so

x(H, 3)=6I(G).

This proves the 4 P-completeness of computing 2’(H, 3).
(7) This follows from : P-completeness of enumerating ideals in posets [PB]: Let

(P, >_-) be a poset with P- {Pl,""", P,}. Associate with it the Boolean expression

B ^ {xi v Xjl Pj > Pi in P}.

It is fairly easy to verify that the set of xi which are assigned a true value in any
assignment satisfying B is an ideal in (P, _->) and that all ideals are obtained in this way.

Let us mention in closing a most intriguing problem in this field: For a poset
(P, >=) a linear extension is a 1:1 mapping f:P{1,..., [P[} such that if x<y in P
then f(x)<f(y). Consider the problem:

Enumeration of linear extensions.
Input: A poset (P, >-_).
Output: L(P), the number of linear extensions of (P, =<).

Conjecture. The enumeration of linear extensions is a # P-complete problem.
A proof of this conjecture will provide a first explicit statement to the effect that

computing the volume of a convex polytope is a hard computational problem. To see
this we remind the reader about the polytope B(P) which was used in proving part 1
of our main theorem. We quote without proof of the following fact from [Li]:
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PROPOSITION. For a poset (P, >-) on IPl=p elements L(P) the number of linear
extensions of P satisfies

L(P)=p!vol(B(P)).

The connection between the P-completeness of enumerating linear extensions
and the complexity of evaluating the volume of a convex polytope is now clear.

Let us also comment about the relationship between the number of linear
extensions of a poset and enumerating order ideals. We use I(P) to denote the number
of ideals in the poset P. For posets P, Q we define their product P x Q to be a partial
order on the cartesian product of P and Q with (Xl, yl)>= (x2, Y2) if xl >= x2 in P and

Yl => Y2 in Q. A mapping f: P-> Q is order preserving if x => y in P implies f(x) >=f(y)
in Q.

PROPOSITION. Let (P,->_) be a poset and let Ct be the chain on elements. Then
I(P x Ct) equals the number of order preserving maps f: P --> {0, 1,. , t}.

Proof. With an ideal J
_
P we associate a function f: P--> {0,..., t} as follows:

For every xP there is unique t>-j>-O such that (x,j)J and (x,j-1)J. Let
f(x) t-j for that value j. Since J is an ideal, f is well defined and easily seen to be
order preserving. It is also a routine matter verifying that this correspondence is
bijective.

Now we come to the expression for the number of linear extensions of a poset.
THEOREM. For a poset (P, ->) on IPI n elements, the number of linear extensions

L(P) satisfies

L(P)= I(Px C,_I)-nI(Px C,_2)+(n2)I(Px C,-3)

-+. .+ I(P
n-2

X C1) :::
n-1

Proof. This follows from the previous proposition and Inclusion-Exclusion.
Classify order preserving maps f: P->{0,..., n-1} according to their range. There
are I(Px C,_1) such mappings altogether. Say f has property (n-l>- t>-0) if is
not in the range of f. L(P) is the number of order preserving maps which arc onto,
i.e., have no property and there are

n)I(P+ C,,__,)
J

maps having a given set of j properties.
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