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Suppose distinct real numbers are assigned to the elements of a finite partially 
ordered set P in an order preserving manner. The problem of determining the fewest 
numbers of comparisons required to locate a given number x in P is investigated. 
Some general bounds are provided for the problem and analyzed in detail for the 
case that P is a product of chains and that P is a rooted forest. t- 19x5 Academic 

Press. Inc. 

I. INTRODUCTION 

Suppose an m x n real matrix A = { aij} with distinct entries is known 
to be increasing along rows and columns, that is, ajj < uk, if i < k and 
j < 1. Given a real number x, the matrix is to be searched to determine 
whether x is one of its entries. What is the algorithm which minimizes the 
number of entries that must be searched in worst case? For m = 1, a binary 
search is optimal and requires looking at log,(n + 1) entries in worst case. 
For any m, by searching each row separately, the search can be done by 
looking at no more than m log,(n + 1) entries. Alternatively, by examining 
the upper right-hand entry a,,, either the first row or the n th column of the 
matrix is eliminated depending on whether x > a,, or x < ui,,. By repeating 
this we obtain an algorithm requiring at most m + n - 1 steps. If m = n, 
this is optimal, but if m = 1 it is very bad. What is the optimal algorithm 
for arbitrary m and n? 
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This is an example of the general problem of searching a partially ordered 
data structure. Suppose P is a finite partially ordered set. Distinct real 
numbers are assigned to (stored at) the elements of P in such a way that if 
p -C pq then the number assigned to p is less than the number assigned to q. 
We wish to find an algorithm to locate a given number x in P or determine 
that it is not stored in P. The matrix problem is the case where P is the 
product of a chain of length m and a chain of length n. 

In this paper, we investigate the (worst case) complexity of this problem. 
For the general problem, two lower bounds on the number of elements 
which need be searched are given; the main bound is an “information 
theoretic” type bound. We note that a recent result of Sands [9] implies that 
for posets whose longest chain has 1 elements there is a constant K(I) such 
that the number of comparisons required for the optimal algorithm is at 
most K(I) times the information theoretic lower bound. 

For the matrix case, we discuss the equivalence of this problem with the 
problem of merging two sorted lists of length m and n, which has been 
studied extensively [4,11,2,1,3]. The known results for the merge problem 
provide a lower bound of log,( “,’ “) and an algorithm requiring at most 

lo&( “,’ “) + m comparisons. 
We also investigate the case where P is the product of three or more 

chains (higher dimensional arrays) and give some lower and upper bounds 
on the complexity. In the case of an n X n X n array, we describe an 
algorithm requiring at most &r’ + cn log,n comparisons and prove a lower 
bound of ln2. 

Next wt consider the class of posets which are rooted forests (each 
element covers at most one element). We prove that a poset of this type can 
be searched in at most 3/log,5 times the number of steps given by the 
information theoretic bound and describe the class of rooted forests for 
which this number of steps is necessary. 

Throughout this paper, we use lgx to denote log,x. The notation f(n) = 
o( g(n)) means that f(n)/g(n) tends to 0 as n approaches infinity and 
f(n) = 0( g( n)) means that f( n)/g( n) is bounded as n approaches infinity. 

II. PRELIMINARIES 

Let P denote a finite partially ordered set with relation < . An ideal of P 
is a subset I c P with the property that if p E I and q -c p then q E I. A 
filter of P is the complement of an ideal. If S is any subset of P, then the 
ideal (resp. filter) generated by S, denoted I(S) (resp. F(S)) is the set of all 
elements which are less than (resp. greater than) some element of S. A 
section of P (also called a conuex subset) is a subset S with the property 
that if pl, p2 E S and p1 < q < p2 then q E S; equivalently, S is the 
intersection of an ideal and a filter. 
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We define the function i(P) to be the number of ideals of P; for 
p E P, i( p; P) is the number of ideals of P which contain p. The following 
observation will be useful. 

PROPOSITION 2.1. For any element p E P, 

i(P) = i(P\Z(p)) + i(P\F(p)). 

Proof. The ideals of P which contain p (resp. do not contain p) are in 
natural correspondence with the ideals of P \ Z(p) (resp. P \ F(p)). 

For n a positive integer, we let [n] denote the totally ordered set 
(L2, * f * 9 n }. We will be interested in one-to-one order preserving functions 
s from P to R, i.e., functions satisfying 

(9 S(P) + s(q) if P + 4, 

(ii) 4~) < s(q) if P < 4, 

for all p, q E P. Such functions are called storage functions and we say that 
the real number s(p) is “stored” at the element p. The problem we consider 
is: given an unknown storage function s on P and a real number x find 
s-l(x) or show it does not exist by evaluating s on as few elements of P as 
possible. Let c(P) denote the minimum over all search algorithms for P of 
the maximum number of elements that the algorithm must search in order 
to determine s-l(x). 

If s(p) is evaluated for some p E P, we obtain the information that 
either x = s(p), x < s(p), or x > s(p). In the first case s need not be 
evaluated on any additional elements. In the second case, since s is order 
preserving, we know that x < s(q) for all q E F(p) and the problem 
reduces to finding the optimal search procedure for the poset P \ F( p). 
Similarly, if x > s(p), the problem is reduced to searching P \ Z( p). This 
gives the following recursion for c(P). 

PROPOSITION 2.2. c(P) = 1 + min, E Pmax{ c( P \ Z( p)), c( P \ F(p))}. 

Of course, computing c(P) directly in this way is cumbersome (to put it 
mildly) and we would like to find ways to simplify the computation. 

Note that each time that s(p) is evaluated for some p E P, the problem 
is reduced to an equivalent problem on a smaller poset. Thus to describe an 
algorithm for the search problem for arbitrary posets it suffices to give a 
rule for selecting the first element to be searched in any poset. 

III. SOME BOUNDS ON c(P) 

Suppose the search procedure is applied in a case where x is not stored in 
P. In this case, the search will terminate only after each element p E P is 
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classified according to whether s(p) -C x or s(p) > x. Thus, in worst case, 
the problem requires identifying the ideal of P for which the values stored 
are less than X. Therefore the standard “information theoretic” bound [K] 
for c(P) is 

PROPOSITION 3.1. c(P) 2 lg i( P). 

Proposition 3.1 suggests that an optimal algorithm for the search problem 
would be obtained by evaluating s on an element p contained in exactly 
half of the ideals of P. If every poset had such an element then this 
algorithm would attain the lower bound. Unfortunately, it is easy to 
construct posets that have no such element. However, one could still employ 
an algorithm which evaluates s on an element p which is contained in as 
close to half of the ideals as possible. This idea leads to 

PROPOSITION 3.2. Zf B is a class of posets and 4 d /I -C 1 is a constant 
such that 

(i) every section of a member of 9 is a member of 9 

(ii) evev poset P E 9 possesses an element p such that 

1 - B Q i(p; P)/i(P) 6 P 

then c(P) < -l/lgfllgi(P). 

Proof: By induction on IPI. If P E 9 and p E P satisfies condition (ii) 
then by Proposition 2.2, condition (i) and the induction hypothesis, 

c(P) G 1 + max{c(P\Z(p)),c(P\F(p))} 

G 1 + ~max{lgi(P\Z(p)),lg’(P\F(p))J 

G 1 + $max{lgi(p: P),lg(i(P) - i(p; P))} 

G 1 + $lg(Pi(P)) 

= f&i(P). 0 

Thus for any class of posets satisfying the conditions (i) and (ii), c(P) = 
O(lgzi(P)). Let P, denote the class of finite posets with no I + 1 element 
chain. For p E P, let a( p; P) denote the number of antichains (sets of 
incomparable elements) of P containing p. Sands [9] recently proved 
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THEOREM 3.3. For each integer I > 1 there exists a number P(l), + < 
/3(l) -C 1 such that euery poset P E B, has an element satisfying 
a( p; P)/i( P) >, 1 - P(1). 

It is easy to show that a( p; P) < i( p; P) and a( p; P) Q i(P) - i( p; P). 
With Theorem 3.3 this yields 

PROPOSITION 3.4. For each I > 1, there exists a number /3(l), 4 < p(Z) 
c 1, such that every poset in 8, has an element p satisfying 

1 - P(l) d i(p; P)/i(P) < P(l). 

Letting K(1) = - l/lg&/), Propositions 3.2 and 3.4 imply 

THEOREM 3.5. For each integer I > 1, there exist a constant K(1) such 
that for each P E g,, 

c(P) Q K(f)lgi(P). 

Sands [9] conjectured that there is a constant /3 independent of I that 
satisfies Proposition 3.4. If true, this would imply that the search problem 
can always be done in O(lg if P)) comparisons. 

To obtain another lower bound on c(P) we first observe 

PROPOSITION 3.6. If Q is a section of P then c(Q) G c(P). 

Proof: By induction on IPI. If p E Q then Q \ I(P) is a section of 
P \ I(p) and Q \ F(p) is a section of P \ F(p), so by induction, 

max{c(p\l(p)),c(P\F(P))) 2 mm{ c(Q\l(dh c(Q\Fb))). 

If p E P\ Q then Q is a section of either P\I( p) or P\ F(p), so by 
induction, 

max{c(P\z(p)),c(P\F(p))} 2 c(Q). 

Thus by Proposition 2.2, 

c(P) = 1 + ~~max{c(P\l(p)),c(P\F(p))} 

2 1 + ~~max(c(Q\r(p)),c(e\F(p))} = c(Q). 0 

It should be noted that if Q is an arbitrary subposet of P, that is, not a 
section, then c(Q) may be larger than c(P). 

PROPOSITION 3.7. If Q is a poset with no three element chain, then 
c(Q) = IQI- 
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Proof. Restrict attention to storage functions s : Q + W for which s(p) 
< x if p is a minimal element of Q and s(p) 2 x otherwise. Each 
comparison of x with s(p) for any p only eliminates the possibility 
s(p) = x and thus in worst case all comparisons are required. [7 

Combining Proposition 3.6 and 3.7 gives 

PROPOSITION 3.8. Zf Q is any section of P containing no three element 
chain then c(P) >, IQl. 

IV. PRODUCTS OF Two CHAINS 

We consider the search problem mentioned in the introduction, where P 
is the product of an m element chain and an n element chain, i.e., 
P = [m] X [n] = {(i, j)]l Q i < m, l<jgn} with (i,j)g(k,I) if and 
only if i < k and j d 1. A storage function s on P can be thought of as an 
m X n matrix A = (aij}, with aij = s((i, j)), which is increasing along 
rows and columns. Let @(m, n) = c([m] x [n]). 

In the introduction we noted @(l, n) = [log,(n + 1)] and @(m, n) $ m 
+ n - 1 for all m and n. When m = n the set Q = ((i, j)(i + j = n or 
i +j = n + l} satisfies the conditions of Proposition 3.8 and ]Q] = 2n - 1 
so we obtain 

PROPOSITION 4.1 [2]. @(n, n) = 2n - 1. 

Computing @(m, n) in general is much more difficult. The search prob- 
lem on an m x n matrix is closely related to a well-known sorting problem. 
Let ur < u2 < a.+ < IJ,,, and wr < wz < . . . < wn be lists of distinct real 
numbers. The problem is to merge these two lists into a single sorted list, 
that is, determine whether ui < wj holds or ui > wj holds for each pair 
( ui, wj). M( m, n) is defined to be the minimum number of comparisons 
needed in worst case to merge the lists. The following result was noticed by 
Shearer [lo]. 

THEOREM 4.2. @(m, n) = M(m, n). 

Proof Given a procedure for one problem we obtain one for the other 
by the following correspondence: 

merge problem search problem 
compare ui to wj e compare x to ain+l-j 
branch on ui < wj 0 branch on x > ain+I-j 
branch on ui > wj H branch on x < ain+l-j 

It is easy to see that the trees representing these algorithms are the same. q 
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The merge problem is well studied. By applying the known results for 
M(m, n) and Theorem 4.2, we obtain 

THEOREM 4.3. 

Id -in) +min(m,n) > +(m,n) > lg(“,+“) [4] 

+(2,4 =IkB(n + 01 + lwxn + 91 L51 
$(3,n) = rk%n + 2)l + Ik%(n + 31 PI 

+ flg(7n + 13/17)] (n a 8). 

For more details on the merge problem’see Knuth [6]. 

V. PRODUCTS OF 'I~REE OR MORE CHAINS 

Suppose now that P is a product of d chains, [ nr] x [ n2 ] X * - + X [n,]. 
As in the 2-dimensional case, think of a storage function on P as a 
d-dimensional array A with distinct real entries satisfying ail,. , i, < ai,, , /d 
if i, 6 j,,i, Q j,,..., i, 6 j,. We want to bound @(n,, n2,. . . , nd) = c([n,] 
x [nz] x * . - x[nJ). 

Consider first the case where n, = n2 = . . . = nd = n. Define r(n, d) = 

Wnld). 
THEOREM 5.1. Ford 2 2, n > 1, 

cl(d)nd-’ 2 ~(n,d) 3 c2(d)nd-’ + o(nd-‘), 

where (i) c,(d) is a nonincreasingfunction of d and c,(d) < 2 and 

(ii) c,(d) = {md-“” + o(d-1’2). 

Proof. Partition [ nld into n isomorphic copies of [ nld- ’ each consisting 
of all elements whose d th coordinates are the same. By searching each 
separately we have 

?(n, d) < nT(n, d - l), 

and in the last section we saw T( n, 2) < 2n so the first inequality follows by 
induction. 

For the second inequality consider the subset of [n] d given by Q( n, d ) = 
Q,(n, d) u Q,(F 4, where 



SEARCHING ORDERED STRUCTURES 93 

Q( n, d) is a section of [nld with no chain of length 3, so by Proposition 
3.8, ~(n,d) >, ]Q(n, d)l. To estimate lQ(n, d)l for large n, we estimate 
]Q,( n, d )I for n odd, enabling us to drop the greatest integer brackets; a 
nearly identical calculation yields the same estimate for n even and for 
Q,<n, 4. 

For fixed n, let X,, X2,. . . , X, be identically distributed random varia- 
bles with discrete distribution, 

P(X, = u) = ; ifa= 2 n-l n - - 
n’ n’**- n ’ n’ 

We associate an instantiation (xi, x2,. . . , xd) of (Xi, X2,. . . , X,) with the 
element (nx,, . . . , nxd) of (n] d. Thus 

IQl(n,d)l = ndP (Xl + ... +X,) = (’ inlId 

and by an elementary argument, 

(n + 1)d 
x1+.*.+x,= 2n 

= ilp( x, = ;)P( x, + ..’ +x&l = (’ lnl’” - ;) 

1 =- 
np 

(n + 1)d - 2n ~ x + 
2n 1 * * * +x,-, < 

With (1) this gives 

(n + lb+- 2n < x 
2n 1 

+ *-a +xdpl < 

If we let n approach infinity, the distribution of each Xi approaches that 
of a continuous random variable Ui with uniform density on the interval 
[O, 11. so 

lim Q,(nJ) 
rid-l 

n-+m 

f - 1 < u, + u, + . . . (2) 

To evaluate this we use the formula 

+u,+*** 
d 

+&-I < y 

e-ir(d/2-1) _ ,-if(d/Z) 

it [q(t)] d-1dt, (3) 
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where q(t) is the Fourier transform of a uniform [0, l] variable and is equal 
to E(e’“) = (ei’ - l)/it (see, e.g., [12]). 

Simplifying (3) and substituting x = t/2 yields 

P 
( 

; - 1< u, + *em +udpl ( $) = yyy)“dx. (4) 

Combining (2) and (4) and using a similar calculation to estimate 
lQ,<n, 41 we get 

lim lQ(n, ‘)I 
n-rm ,,d-1 (5) 

The integrand in (5) can be expanded as Fourier series and evaluated to 
obtain 

lim Q(d) = 1 
n+* rid-l 

c (-l)k(;)(d- 2k)? 
2d-1(d - 1) Odk<d/2 

Finally, we can approximate (1) for large d by applying the central limit 
theorem (CLT): The distribution of the sum of d independent identically 
distributed random variables approaches that of a normally distributed 
variable with mean and variance equal to d times the mean and variance of 
Xi. A simple computation gives E( X,) = (n + 1)/2n and Var(Xi) = (n2 - 
1)/12n2. 

Actually we need a local form of the CLT (see [7,8,12]), since we want to 
make a point estimate for P(X, + . . . +Xd = (n + l)d/2n). Applying this 
we get that for large d, 

Q,(n,d) = ndP( X; + ... +Xd” = (’ in’)“) 

= ..‘jl,/w + c(d)) 

where $,$ +Oasd+oo, 

= - nd-’ + O(~Z~-~) + c(d). 

Since Q(n, d) = 2Ql(n, d), we get 

c,(d) a Q(O) = 
,,d-1 

cl 

For the case d = 3 we can make a much more precise statement than that 
given in Theorem 5.1. 
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THEOREM 5.2. There exists a constan C > 0 so that for n 3 2, 

$ + cnlogn z +,3) >,[3n2/2j. 

Proof. For d = 3, Q(n, d) can be calculated explicitly by simple combi- 
natorial methods to be 13n2/2]. 

To prove the upper bound, we describe an algorithm which solves the 
problem in 3n 2/2 + cn log n steps. 

Step 1. Binary search for x along each of the following six subvectors 
of A. 

u1 = (a,,,,$ < k d n) u1 = (a n,j,lP <j Q ‘) 

w1 = (ai,l,,ll < i < n) 

u2 = (a n.l,kll G k G 4 9 = (Ul,j,nll Q  j < n) 

W2 = (ai, . ,  < i Q  n) 

(see Fig. 1). 

k-n 

j.2 1--____ 
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These searches find integers k,, k,, jl, j,, i,, i, such that 

al.k KXKalnk+l 3 , 1 1 * L 

a “lk <X<anlk+l . . 2 . ) 2 

a 
n.Jl.1 <x <a, I,+1 1 *  3 

%,2,n < x < al jz+l n I > 

ai,,l,n < X < ai,+ 1 n . . 

aiz n 1 I > < x < ai,+l n 1- > 3 

Consider now the face i = 1 of A (the array of entries a,, j, k): {a,, jq kll 

<j, k G n). The searches of Step 1 have left only {al,,,k(n 2 j > j,, n 2 k 
B k,} as entries which possibly equal x, so out of this face of A there 
remains an (n - j2) x (n - k,) submatrix to be checked. On the i = n face 
we only have to check the j, x k, matrix {a,,j,kll <j < jl, 1 < k G k,}. 
Similarly for the j = 1 and j = n faces we have (n - il) x (n - k2) and 

k=” 

FIG. 2. After searching I+, u2, ul, u2, wl, and w2 only the unshaded portions of each face 
need be searched. (Back faces are not shown, but the situation is similar.) 
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(i2 x k,) matrices to be checked, and for the k = 1 and k = n faces we 
have (n - ji) x (n - i2) and jz X i, matrices to be checked (see Fig. 2.) 

Step 2. Apply the “m + n - 1” algorithm described in the introduction 
to each of these six matrices. 

Let us now count the number of comparisons done in Steps 1 and 2. In 
Step 1, at most 6 lg(n + 1) comparisons were made. In Step 2, we need at 
most 

(n -j, + n - k, - 1) +( j, - k, - 1) +(n - i, + n - k, - 1) 

+(i, + k, - 1) +(n - i, + n -j, - 1) +(i, + j, - 1) = 6(n - 1) 

comparisons. Steps 1 and 2 leave an (n - 2) X (n - 2) X (n - 2) array so 

T(n,3) < T(n - 2,3) + 61g(n + 1) + 6(n - 1). 

Solving this recursion gives 

T(n,3) B F + 3nlg(n + 2). 0 

We now return to the general case of a d-dimensional array in which the 
n,‘s are not necessarily equal. The best result we have is 

THEOREM 5.3. Forn, > n, >, .a* 2 nd >, 1, there exists a nonincreasing 
function k,(d) and a function k,(d) such that 

k,(d) ndnd-1 ‘-’ n21g 

a k,(d)ndndmI *.a n,lg 

Proof: The first inequality is obtained inductively. For d = 2, Theorem 
4.3 shows that k,(2) = 2 works, since 

For d > 2, by searching separately the nd copies of [nl] x * * * x [nd- 1] 
obtained by fixing the dth coordinate, we get 

@(n,,..., nd) < nda(nly.. ., ndml), 

which gives the desired bound. 
To obtain the second inequality, we again use induction. Note for d = 2, 

Theorem 4.3 shows that k,(2) = 1 works. For d > 2, think of A as an 
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nd X nd X -se Xn, arrayA’eachofwhoseentriesisa I, X I, X ... Xl,-, 
array, where I, is equal to either 1 ni/nd j or [n ,/ndl. Consider the set 
Q,( nd, d) defined in the proof of Theorem 5.1, which is a set of elements in 
A’ and corresponds to a section of [n,] x . . . X [nd] which we call Q’ and 
so by Proposition 3.6, 

Now Q’ consists of Q,(n,, d) arrays whose dimensions are at least 

bl/ndl X 1Wndl X . . . x 1 n,-Jn,/ with the elements of different 
arrays unrelated, so 

by Theorem 5.1 and the induction hypothesis. Note that 

nl - ‘I I nd 
-+1 n2 - ,I I nd 

\ 

, 

I 

nd I I n, >,2 
nd 2 

and lg([~j/[~j+I)>lg(~+I)/2 

so 

4Q’) 2 
4+Md - 1) 

2d 
ndnd-1 ‘. 

and by defining k,(d) = cZ(d)kZ(d - 1)/2d we prove the theorem. q 

VI. ROOTED FORESTS 

A partially ordered set P is a rootedforesf if every element covers at most 
one element (p couers q in P if p > q and there does not exist r with 
p > r > q). We adopt standard graph theoretic terminology: If q covers p 
in a rooted forest P then p is the father of q and q is a son of p. The 
minimal elements of P are roars, the maximal elements are leaves. A 
maximal connected component of P is a rooted tree. If p E P, the subtree 
rooted at p is the filter generated by p; if q is a son of a root the subtree is 
a principal subtree. 
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The ideal generated by an element p of a rooted forest P is a chain C. 
Thus in any subposet P’ containing p, p covers at most one element, 
namely the maximum element of C fl P’, so we have 

PROPOSITION 6.1. Zf P is a rooted forest, all subposets of P are rooted 
forests. 

Throughout this section (Y is the constant 5 - ‘13. For a poset P let 
b(P) = 3/lg 5 lg i( P). The main result of the section is 

THEOREM 6.2. For any rooted forest P, c(P) G b(P) with equality if and 
onIy if each connected component of P is either a chain of four elements or one 
element covered by two elements (K,,,). 

Proof If P is a chain of four elements or a K,,, then i(P) = 5 and 
c(P) = 3 so the equality holds. If P is a disjoint union of P,, . . . , Pk then 
c(P) and b(P) are the sums, respectively, of c(Pj) and b( Pj) so the 
theorem holds if it holds for each Pj. Hence it suffices to consider the case 
where P has a single component. 

We prove that c(P) < b(P) for any connected poset by induction on the 
number of elements of P. Fix P such that c(P) 2 b(P) and assume that 
the theorem holds for any P’ with fewer elements. We will show that P is a 
chain of four elements or K, *. 

For q E Q let i( q; Q) be the number of ideals of Q containing q, f (q; Q) 
denote the fraction i(q; Q)/i(Q) of ideals of Q containing q, and N(q) = 
i( F( q)), the number of ideals in the subtree rooted at q. 

LEMMA 6.3. Zf q is the father of p in the rooted tree Q then 

$& ‘fh Q) =fb; Qh 

Proof Each ideal containing q but not p can be extended in N(p) - 1 
ways to an ideal containing p, by adding any nonempty ideal of F(p). All 
ideals containing p are obtained in this way. q 

COROLLARY 6.4. Zf p is a leaf of Q then f ( p; Q) < $. 

COROLLARY 6.5. Zf r is the root of the tree Q then f ( p; Q) > i. 

LEMMA 6.6. Let P’ be a subposet of P such that k + c( P’) > c(P), 77ten 
i( P’)/i( P) >/ ak. 

Proof By the induction hypothesis c(P) 2 b(P) and c( P’) Q b( P’) so 

&lgi(P’) + k > & lgi(P). 

Simple calculation yields i( P’)/i( P) > akm 0 
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LEMMA 6.7. Let p E P. 

(i) Zff(p; P) < a then c(P) =G 1 + c(P\F(p)). 

(ii) Zff(p; P) > 1 - a then c(P) < 1 + c(P\Z(p)). 

Proof By Proposition 2.2, c(P) G 1 + max{c(P\Z(p)),c(P\F(p))}. 

(i) If f( p; P) < (Y then i( P\Z( p))/i(P) < (Y, and by Lemma 6.6, 
1 + c(P\Z(p)) -C c(P). Hence c(P) G 1 + c(P\F(p)). 

The proof of (ii) is similar. 0 

COROLLARY 6.8. For any element p E P either f(p; P) > a or f(p; P) 
<l-a. 

Proof If 1 - (Y < f( p; P) < (Y then by Lemma 6.7, c(P) < 1 + 

min{c(P\Z(p)),c(P\F(p))} so by Lemma 6.6, min{ i(P\Z(p), i(P\ 
F( p)}/i( P) 2 (Y, which is impossible. Cl 

An element q of P is critical if f (q; P) > 4 and f ( p; P) < 4 for any son 
p of q. We will determine the structure of P by studying its critical 
elements. 

The following observations are trivial. 

PROPOSITION 6.9. Zf f (p; P) > i then some element in F(p) is critical. 

PROPOSITION 6.10. No leaf of P is critical. 

Henceforth, we let q denote an arbitrary critical element of P. 

LEMMA 6.11. Zf p is a son of q then either p is a leaf or p has exactly one 
son and it is a leaf (such an element will be called a preleaf). 

Proof Applying Corollary 6.8 and Lemma 6.3 we have 

N(Pi P) N Pi P) 
a~f(q;P)=f(P;P)N(p.P)-l “(l-a)N(P.P)-l 

, , 

which implies that N( p; P) d a/(2a - l), i.e., N( p; P) equals two or 
three. N( p; P) = 2 only if p is a leaf and N(p; P) = 3 only if p is a 
preleaf. 0 

LEMMA 6.12. (i) Zf q has a son that is a leaf then f (q; P) < 2(1 - a). 

(ii) Zf q has a son that is a pre-leaf then f (q; P) < 3/2(1 - a). 

Proof. (i) By Lemma 6.3 and Corollary 6.8, f(q; P) = 2f (p; P) 6 2(1 
- ff). 

(ii) f( q; P) = 3/2f (p; P) d 3/2(1 - cy). •I 
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LEMMA 6.13. (i) If q has n or more sons that are leaves then f (q; P) > 
a”+l ” 2. 

(ii) If q has n or more sons that are preleaves then f(q; P) 2 a2”+13”. 

Proof. (i) By Lemma 6.7(i), c(P) < 1 + c(P\I(q)). P\Z(q) is the 
union of the n leaf sons of q (which are disconnected elements) and a poset 
P’, so c(P) G n + 1 + c( P’). By Lemma 6.6, i(P’)/i( P) 2 a”+‘. Now 
i(P’) = i(P\I(q))/2” = i(P)f(q; P)/2” so f(q; P) > ~~“+l2~. 

The proof of (ii) is analogous. 0 

LEMMA 6.14. All of the sons of q are leaves or all are preleaves. 

Prooj: The bounds of Lemma 6.12(ii) and Lemma 6.13(i), with n = 1, 
are contradictory so q cannot have both a leaf son and a preleaf son. •I 

LEMMA 6.15. q has at most 2 sons. 

Proof: By Lemma 6.14 all the sons are leaves or all are preleaves. In 
each case, the bounds of Lemmas 6.12 and 6.13 are contradictory if n z 3. 

cl 

LEMMA 6.16. Either q has exactly one son that is a preleaf or q has exactly 
two sons that are both leaves. 

Proof: By Lemma 6.15, q has either one or two sons. Suppose q has 
exactly one son and it is a leaf. Let t be a father of q. We have 
f(t; P) = N(q)/(N(q) - l)f(q; P) = +f(q; P) >/ 3a2 > 1 by Lemmas 6.3 
and 6.13(i), which is impossible. Thus q is the root, so P is a 2 element 
chain for which c(P) < b(P) contradicting our initial assumption. 

If q has two sons p1 and p2, one of which is not a leaf, then by Lemma 
6.14 both are preleaves with leaves pi and pi. If q is the root then P is 
specified and is easily seen to violate c(P) > b(P). So let t be the father of 
q, then f(t; P) = N(q)/(N(q) - 1) = yf(q; P) by Lemma 6.3. By Lemma 
6.7(i), c(P) 6 1 + c( P’), where P’ = P\F( pl). Also, by Proposition 2.1, 
c(P’) < 1 + max{c(P’\F(t)),c(P’\I(t))}, so c(P) < 2 + max{c(P’\ 
F(t)), c(P’ \ I(t))}. Now i(P’\ F(t))/i(P) = 1 - f(t; P) = 1 - 
Vf(q; P) > 1 - 1ocr ’ by Lemma 6.13(ii), which is less than a2 so by 
Lemma 6.6, c(P) > 2 + c(P’\F(t)). Thus c(P) < 2 + c(P’\I(t)). In 
P’ \ I(t), the chain y < p2 < p; is a detached component requiring two 
steps to search. Let P” = P’\(l(t)u {y,p2,p;})and wehave: c(P)< 4 
+ c( P”). By Lemma 6.6, i( P”)/i( P) > a4. The ideals of P” are in one to 
one correspondence with the ideals of P which contain t but not y, so 
i( P”)/i( P) = f( t; P)/lO so f (t; P) 2 10a4 > 1 which is impossible. So p1 
and p2 are leaves. 0 

A critical element is called type 1 or type 2 depending on the number of 
sons it has. 
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LEMMA 6.17. If q is a type 2 element then it is the root, and P is a K,.,. 

Proof Let t be the father of q, then f(t; P) = $f(q; P) by Lemma 6.3 
and f(q; P) > 4 by Lemma 6.13(i) so f( t; P) > 1 which is impossible. 0 

LEMMA 6.18. If q is a type 1 element, then q is the unique son of its father 
t and t is the root, and thus P is a chain of four elements. 

Let q* be a type 1 element of maximum distance from the root, and let t* 
be its father. Suppose that t* has a son v # q*. 

Case i. v is a leaf. By Lemma 6.7(ii), c(P) G 1 + c( P \ I(q*)). v is a 
disconnected element in c( P \ I( q*)), so c(P) G 2 + c( P \ I( q*) U { v 1)) 

so by Lemma 6.6, i( P \ I( q*) u { v })/I( P) > a’, contradicting i( P \ I( q*) 
U { v))/i(P) = f(4*; P)/2 < $(l - a), which is obtained from Lemma 
6.12(ii). 

Case ii. v is not a leaf. Then N(v) > 2 so f( v; P) > $f(t*; P) 
= f(4)f(q*; p> 2 +a > $ by Lemma 6.3 and Corollary 6.8. By Proposition 
6.9, some element in F(p) is critical. By Lemma 6.17 this element must be 
type 1 and since q* has maximum distance from the root of ah type 1 
elements, v must be that element. Now c(P) Q 1 + c( P \ I( q*)) by Lemma 
6.7(ii), and P \ I( q*) is the disjoint union of a poset P’ and a chain of three 
elements with minimum element v. Thus c(P) Q 3 + c(P’) so by Lemma 
6.6, i( P’)/i(P) 2 a3 = i. This contradicts i(P’)/i(P) = f(q*; P)/4 -c i(l 
- a) obtained from Lemma 6.12(ii). 

Thus q* is the only son of t*. If U* is the father of t* then by Lemmas 6.3 
and 6.13(ii), f (u*; P) = 2 . $f(q*; P) 2 1 which is impossible so t* is the 
root. 

By Lemma 6.16, P has a type 1 or type 2 element. By Lemmas 6.17 and 
6.18, this implies that P is a K,,, or a chain of four elements which 
completes the proof. 

VII. OPEN PROBLEMS 

In this paper we investigated the complexity of the search problem for 
partially ordered data structures. Several questions remain. The key ques- 
tion is whether there exists a constant b independent of 1 in Proposition 3.4, 
which would imply that the search problem can always be done in - l/lg b 
times the information theoretic bound.’ 

The bounds on the multidimensional array problem in Section V can 
almost certainly be sharpened. It would be interesting to try to generalize 
the algorithm for the 3-dimensional cube to higher dimensions. 

‘Note udded in proof. The authors have proved this result, which will appear in J. Corn&n. 
Theory Ser. A. (1985). 
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