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We give various characterizations of k-vertex connected graphs by geometric, algebraic,
and “physical” properties. As an example, a graph G is k-connected if and only if, specifying any
k vertices of G, the vertices of G can be represented by points of R*~? so that no k are on‘a hyper-.
plane and each vertex is in the convex hull of its neighbors, except for the k specified vertices. The
proof of this theorem appeals to physics. The embedding is found by letting the edges of the graph
behave like ideal springs and letting its vertices settle in equilibrium.

As an algorithmic application of our results we give probabilistic (Monte-Carlo and
Las Vegas) algorithms for computing the connectivity of a graph. Our algorithms are faster than

the best known (deterministic) connectivity algorithms for all 4= Vn, and for very dense graphs
the Monte Carlo algorithm is faster by a linear factor.

0. Introduction

The property of k-connectivity of a graph is well-characterized: it is “‘easy”
to exhibit if a graph is not k-connected and, also, if it is.. But there is some asymmetry
in this: to exhibit that a graph is not k-connected, it suffices to present a separating
set with less than k vertices; to exhibit that it is k-connected, we have to present
k openly disjoint paths for each pair of vertices. Is there a more compact *‘proof”
of k-connectivity, say, an additional structure whose presence gives a trivially check-
able proof of k-connectivity? For k=1, a spanning tree provides a trivial answer.
For k=2, various versions of ‘‘ear-decompositions” (see, e.g., [10]) give rise to
such “proofs”. Another structure characterizing 2-connectivity, closely related to
ear-decompositions, is an s—¢ numbering for an edge st: a linear ordering of the
nodes, starting with s and ending with ¢, such that every other node has a neighbor
to its left as well as one to its right.

In this paper, we offer some new characterizations of graph k-connectivity,
based on geometric and physical intuition. Our main theorem is a geometric charac-
terization of k-vertex connected graphs, generalizing s—¢ numberings. It says that
a graph G is k-connected if and only if G has certain “nondegenerate convex em-
beddings” in R*-1,

The proof of this theorem appeals to physics. The embedding is found by
letting the edges of the graph behave like ideal springs and letting its vertices settle

AMS subject classification (1980): 05 C 40, 52 A 20.
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in equilibrium. Algebraic properties of this equilibrium ensure that the embedding
it defines is nondegenerate exactly when the graph is k-connected.

We prove a related, purely matrix-theoretical characterization of connec-
tivity. This result is in fact easily derivable from the results of [12] and [9], which
give a linear representation of certain matroids arising in the study of graph con-
nectivity, called strict gammoids.

These results provide not only more compact characterizations but also
new algorithms. We give probabilistic algorithms for computing the connectivity
of a graph. The first is a Monte Carlo algorithm that runs in time O@*®+nk>?)
where n is the number of vertices and k is the vertex connectivity of the input graph.
The second is a Las Vegas algorithm (i.e., never errs) that runs in expected time
O (kn*5+nk®%). For comparison, the best known algorithm (which is deterministic!)

runs in time k®n™®+k%n® [8]. Observe that our algorithms are faster for all k=yn,
and for very dense graphs the Monte Carlo algorithm is faster by a linear factor!

We also desribe parallel implementations of our algorithms which are sub-
stantially more efficient than previous parallel algorithms for graph connectivity.

1. Notation

Graph Theory. Let G(V, E) be a graph. For a vertex veV, N(v)={u: (v, u)€ E}
denotes the neighborhood of v, and N(v)=N(v)U {v}. Let X, Y be any two subsets
of V. By p(X, Y) we denote the maximum number of vertex disjoint paths from X
to Y (disjointness includes the end points!). We say that X and Y are linked if
| X|=|Y|=p(X, Y). By Menger’s Theorem, this is equivalent to saying that no set
of fewer than |X|=|Y]| vertices covers all X—Y paths in G. The graph G is k-con-
nected if |V|>k and any two k-subsets are linked. The largest & for which this
holds is the vertex-connectivity of G, denoted k(G). It is known that a graph G is
k-connected if and only if |[V]>k and any two nodes of G are connected by k
openly disjoint paths.

Algebra. Let F be any field and d=0. We denote by F¢ the d-dimensional
linear space over F. Let X={x,, ..., x,,} be a finite set of points in R?, The afine

hull aff(X) of X is the set of all points Zm’li x; with JA,=1. The (affine) rank

i=1 .
of X is defined by rank (X)=1+dim (aff(X)). X is in general position if rank (¥)=
=d+1 for every (d+1)-subset Y= X. If X is not in general position, we call it
degenerate. '
If F=R then we will also consider the convex hull conv (X) of X. Note
that aff (conv (X))=aff (X).

2. Convex embeddings
Our main tool is the following notion of embedding graphs in real linear
spaces, which may be interesting for purposes other than the study of connectivity.

Definition 2.1. Let G be a graph and XcV. A convex X-embedding of G is any
mapping f: ¥-~R¥-1 such that for each v€V\X, f(v)econv (f(N(v))). We
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say that the convex embedding is in general position if the set (V) of points is in
general position.

Let us state our main theorem right away.

Theorem 2.2 Let G be a graph on n vertices and 1<k<n. Then the following two
conditions are equivalent:

(1) G is k-connected.
(2) For every XCV with |X|=k, G has a convex X-embedding in general
position.

Note that the special case k=2 of our theorem asserts the existence of an
s—1 numbering of a 2-connected graph (see [6]).
Theorem 2.2 will follow from Theorems 2.3 and 2.4 below.

Theorem 2.3. Let G be a graph and XCV. Then for every convex X-embedding
S of G and every subset U<V U#9, rank (f(U))=p(U, X).

Theorem 2.4. Let G be a graph and XCV. Then G has a convex X-embedding
S such that for every U<V, U=0, rank (f(U))=p(U, X).

Proof of Theorem 2.2. (2)—~(1). Let X, Y be arbitrary k-subsets of ¥, and let f be
an X-embedding guaranteed by (2). Then by Theorem 2.3, p(X, Y)=rank (f(Y))=k,
since f(¥) are in general position. Therefore G is k-connected.

(1)—~(2). Assume G is k-connected and fix a k-subset XY< V. Then Theorem
2.4 implies the existence of a convex X-embedding such that for every k-subset
YoV, rank (f(Y))=p(X, Y)=k, so every k points are in general position. J

Proof of Theorem 2.3, Let f be a convex X-embedding and fix a subset UcV.
Let p(U, X)=k. Then by Menger’s Theorem, there is a k-subset S< ¥ such that
V\S contains no (X, U) paths. Let W be the union of connected components of
G\ S containing a vertex from U. We claim that f(W)<conv (f(S)). Nate that
this implies rank (f(U))=rank (f(WUS))=rank (f(S))=|S|=k=p(U, X).

To prove the claim, let u€ W. Hence u¢ X. Since f is a convex X-embedding,
S @)éconv (f(N(w)) s conv (f(WUS\u)), so f(u) cannot be an extreme point
of f(WUS). Hence the only extreme points in f (I US) are members of f(S),
ie, f(W)cconv(f(S)). k.

Proof of Theorem 2.4. Let X be given and |X|=k. The intuition behind the proof
is of a physical nature. Assume that the edges of G are made of ideal rubber bands.
Glue the vertices of X to the extremes of a k-simplex in R*-2, and let the remaining
vertices settle in a minimum energy equilibrium. It should be clear that if the poten-
tial carried by each rubber band is positive then such an equilibrium exists, and
furthermore, it is a convex X-embedding. To achieve the non-degeneracy properties
required by the theorem, we use a quadratic potential function (namely the rubber
bands satisfy Hooke’s Law) and exploit our freedom in choosing the elasticity
parameters (e.g. the thickness of the rubber bands). For a hystorical survey and
in-depth study of the potential function on similar frameworks, see [5].
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We proceed formally. Let X={x,, Xy, ..., Xx~1}- Let &, be the zero vector
and let ¢, 1si=k—1 be the i-th unit vector in R*~1, An embedding g: ¥—~R*~!
such that g(x)=e¢, for 0=i=k—1 is called an X-embedding. (Such an embedding
is not necessarily convex!)

Assign to every edge (uw, v)€E a positive elasticity coefficient ¢,,, and let
c€RE be the vector of coefficients. '

Now we can define the potential P(g, ¢) of any X-embedding (not necessarily
convex) g and coefficient vector ¢. The edge (rubber band) (u, v)€E carries poten-
tial c,,] g(w)—g@®)|? (our norm js Euclidean). Hence the total potential is defined by

P(g, ) =( Z'eEcuv"g(u)—g(v)na'

u, v}

Let f=f. be the embedding for which P(g, ¢) is- minimized. Notice that
J is uniquely determined since P(g, ¢) is a strictly convex function of g. Then f

. iy o . dpP . .
satisfies the equilibrium condition -E,E—=O. This is a homogeneous linear system:

( ZEc.,,,(g(u)—g(v)); 0 for all v\ X.
5, U} €

From the strict convexity of P it follows that this system has a unique solution.

Putting ¢,= > c¢,, we see that for all b€V \ X,
kEN(Y)

f(v) = '}”—ue%’”) Cunf (1),

which expresses f(v) as a convex combination of f(N(v)). Since f is an X-em-
bedding (i.e., f(x)=e, 0=i=k—1), we get that f is a convex X-embedding of G.
_ Now fix a subset U=V, and let p(U,X)=m. If m=0, we are done
by Theorem 2, so assume m=1. For a given vector ¢, f. may not satisfy
rank ( f.(U))=m. However, we will show that this happens only for a set of measure
zero of possible vectors ¢. Since there are only finitely many subsets U<SV, - the
theorem will follow, . , _ -
~* Let us consider in detail the set of equations which determine f, from ec.
Define T=(t,) (4, v€V) to be the following symmetric matrix (which was also
used by [15]: »
¢y If uv€E,
tpy=13 —C if u=wuv,
~ 0 otherwise.

Assume that the vertices in ¥ numbered such that {x,, x,, ..., x,—,} appear
first, and arrange T as a block matrix of the form

2 Ty
where Ty is a kXk matrix and 73 is an (n—k)X(n—k) matrix. Let F be an
[VIX(k—1) matrix whose (v, j)-th entry is the j-th coordinate in f, of the vertex
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v€V. Then the condition f.(x)=e;, 0=i=k—1. implies

00..0
10..0
F=|: i
901
121

and the stability condition becomes [T,: T3] F=0, or equivalently

where B arises from T, by dropping its first column. This equation expresses the
coordinates of the vertices in ¥\ X as rational functions of the coefficients ¢. (Recall
that (*) has a unique solution since it is the minimum of a strictly convex function.)

Now consider.a subset McU with M={y, u,, ..., u,} and p(M, X)=
=p(U, X)=m. We want to show that f.(3) has rankm almost always. The
(m—1)-dimensional volume of conv (f.(M)) in R*~! is given by the determinant
D, =(det (447))"?, where the matrix 4 is

1 f@uh f (s oo [ (W)k-1
1. f (l.‘z)l J (flz)z oo f (l-‘z)k-1

1 1 (s Stdaeer S Udms

This determinant vanishes exactly when f.(M) does not have full rank. As the
J(u;) are rational functions of the entries of c,-the determinant D is either iden-
tically zero, or it vanishes only for a set of vectors ¢ of measure zero. We wantsto
exclude the first possibility.

As p(M, X)=m, there are m vertex disjoint paths Py, P,, ..., P,, from
M to X, and assume without loss of generality that P, connects #; to x;.

. Set E’={UE(P): i=1,...,m}, and let c=c(R) be defined by c,=1 for
all e€ENE’ and c,=R for all e€cE’. We claim that if we let R tend to infinity,
then the distances ||.f(u)—f(x)ll will tend to zero. Once they are small enough
(all less then 1/(2)'%)), the set f.(M) must have rank m.

Let f=f.g) and recall that f minimizes the potential P(g, c(R)) over all
X-embeddings g. Let f be the embedding with f(V(P))=e, 1=i=m and
(say) f'(v)=e, for any vertex not in X or U P,. Then

P(f,c(R) = P(f’,c(R) = V2 |E,

as every edge in f” has length at most J2, and the coefficients of these edges are 1.
On the other hand,

P(f,c(R)) = (uge Ll f@O—f @ = b , RIS @ -f @I

=1 U, ll)e
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By the Cauchy—Schwartz inequality and the fact that |P|=n we get

z = RIS@~f O = 223 1S @-reI =
=1 |B| ‘w5,

fs=1 (u,v)€

=2 31—/ @it = R maxlf ) -7 @
i=1 n

This proves the claim and thereby the theorem. [j

3. A related result on matrices

Let us modify the matrix T considered in Section 2 as follows. Let us intro-
duce a variable x,, for each vertex », and a variable x,, for each edge uv€E(G).
Define x,,=0 if u and v are non-adjacent vertices. Let us call the matrix Ag=
=(Xuodu,vevicy the free adjacency matrix of G.

A closely related, although not equivalent, result which gives a linear repre-
sentation of the so-called strict gammoids follows from [12] and [9].

Theorem 3.1, Let G be a graph, X,Y<V(G), |X|=|Y|, and let Axy be the
matrix obtained from Ag by deleting the rows corresponding to X and the columns
corresponding to Y. Then det(Axy) is not identically O if and only if X and Y are
linked.

(Note that det (4xy) is a polynomial in the variables x,,.)

Proof. Let k=|X|=|Y|. Assume first that X and ¥ are not linked. Then by Menger’s
Theorem, G can be written as the union of two graphs G, and G, such that
IW(GINV (G, =k—1, X<V (G,) and Y<V(G,). This means that the matrix
Ag has the following form:

Ay 41, O

Ag = |An Az Axn

where there are, say, a, k—1, b columns in the first, second and third block of col-
umns, respectively, and similarly for the rows. Furthermore, the rows in X belong
to the first two blocks while the columns in ¥ belong to the last two blocks. So
Ayxy contains as entries all the 0’s in the lower left aXb block. Since a+b=
=n—(k—1)>n—k, the order of Axy, this implies that Ayy 1s singular for any
values of the x,,.

Conversely, assume that X and Y are linked. To show that det (4xy) is not
identically O we exhibit a special choice of the variables for which this determinant
is not 0. Let Py, ..., P, be k vertex-disjoint paths linking X and Y. Then Ag has
the following form:

A 0 ... O

0 4,..00
Az =1|: I
0 0 ...A,‘O
0 0 ..0 [
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where 4; is formed by the rows and columns corresponding to vertices of P;, and
has the form

11 0

111 0
A‘= 11.

o.l

0 11

and 7 is an identity matrix. Moreover, X consists of the first rows of the first &
blocks, and Y consists of the last columns of the first & blocks. Hence Ayy is an
upper triangular matrix with I’s in the main diagonal, which shows that

det (Axy)=l. l

Remarks. 1. The matrix T occurring in the proof of Theorem 2.4 arises from Ag
by the substitution x,,=c,, if uo is an edge and x,,=—c,=— 2>, ¢, Hence
the “only if” part of Theorem 3.1 remains valid if we replace A by T. This is not
true for the “if” part. The sets X=Y=0 give an obvious counterexample; a less
obvious counterexample is given by X={x} and ¥ ={y} where G is disconnected
and x and y are distinct nodes of the same connected component of G.

2. The result of Theorem 3.1 is valid over any field. It also remains true if we do
not assume that the matrix is symmetric.

4, Algorithmic applications

Our model of computation is the logarithmic cost RAM, see [1]. Both Theo-
rems 2.4 and 3.1 lend themselves to (randomized) graph connectivity algorithms
which have good runmng times and are easily parallelizable.

Using our previous results, we do not directly obtain a test for the k-connec-
tivity of a graph, but rather a test for checking whether or not two given k-tuples
are linked, or a test whether or not a given k-tuple is linked to all other k-tuples.
The following remarks show how to use such a subroutine in connectivity testing.

1) Let, for every vertex €V, N.(v) denote an arbitrary k-subset of N(v). Then G
is k-connected iff Ny(u) and N,(v) are linked for every u and v. The “only if* part
follows from the property of k-connected graphs that any two k-subsets are linked.
The ““if” part follows from the observation that.if N,(x) and N,(v) are linked then
u and v are connected by &k openly disjoint paths. Thus the linkedness subroutine
needs be called at most O (»n®) times.

2) But we do not even have to check the linkedness of Ny(¥) and N, (v) for every
palr u, v of vertices, if we use the following simple lemma.

Lemma 4.1. Let G be any graph and H, a k-connected graph with V(H)= V(G)
Then G is k-connected iff u and v are connected by k openly disjoint paths in G

Jor every edge wcE(H). |}

This implies that it suffices to check that N, () and N,(v) are linked for
every edgzc)a w€ E(H). This means O(nk) calls on a linkedness subroutme rather
than O(n
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3) Using Theorem 2.4, we shall be able to test whether a given k-tuple N, (u) is
linked to every N,(v) faster than carrying out the corresponding linkedness test
n—1 times. Calling this subroutine a “‘multilinkedness test for u”, it is clear from
the previous remarks that it suffices to check for the multilinkedness of & distinct
vertices. This may be more efficient than than doing O(nk) simple linkedness tests.

4) If we allow randomization then we can do even better. Let r=r(n, k) be the
least integer for which ( ]>n(k:1]. It is casy to see that r=k and also r=

=(nlog n)/(n—k) Now choose a set YCV(G), |¥|=r(n k) at random and then
test for the multilinkedness of each y€Y. If the test fails then the graph is of course
not k-connected. If the test succeeds then it is-still possible that the graph is not
k-connected, but the set ¥ must then be contained in every cutset with fewer than
k vertices. The probability that we made such an unfortunate choice for Y is at
most 1/n, by the definition of r(n, k).

In the case of Theorem 2.4, the computation of the “physical” embedding
in the proof requires solving a system of linear equations. For computational pur-
poses it makes sense to solve the system in a finite field rather than in R. Of course,
this ““modular” embedding has no physical or geometrical meamng any more, but
the algebraic structure remains! If we apply Theorem 3.1 then it is quite natural
to take finite fields right away

Let us discuss the detalls of the algorithmic applications of Theorem 2.4
first. Consider a graph G(V, E) with n nodes, and a set X<V. By a random (mo-
dular) X-embedding we mean the following. Choose at random a prime p<n®.
Choose uniformly at random a vector cE(Zp)E Solve (*) in Z, to obtain f=f..

Lemma 4.2. Let UCV. Then the probabzlzty that a random modular X-embeddmg
[ satisfies rank (f(U))=p(U, X) is at least 1—n"3.

Proof. A standard application of Schwartz’s Lemma (Schwartz 1980) and elemen-
tary number theory. Just note that the determinant D in the proof of Theorem 2.4
is a rational function of degree 2(n—k)k=rn* in the coefficients in ¢, and jts deno-
mmator never vanishes. [

Let M (t) be the number of arithmetic steps required to multlply two t><t
matrices. Recall that M(#)=0Q(#*) (Coppersmith and Winograd 1982). The
following lemma is straightforward.

Lemma 4.3. (i) Computing a random X-embedding f requires time O(M(n)logd).
(ii) For a subset U<V, computing rank ( f(U)) and finding a basis for the
affine hull of f(U) requires time O(M({U|)logd). |

From now on, assume we want to test whether or not a graph G(V, E) on
n vertices is k-connected. We may assume that the minimum degree in G is at least
k. As above, choose an arbitrary k-subset N,(v) of N(v), for every vertex vEV,
By the remarks above, we can state a version of Theorem 2.2 which is less appealing
but more applicable in algorithms.

Theorem 4.4, Let G. be a graph and k=0, an integer.. Then the following conditions
are equivalent:
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() G is k-connected.
(i) For at least k distinct vertices yeV, G has a convex N,(y)-embedding

S such that for every v€V\Ni(3), f(N(v)) has full rank. }

The following randomized algorithm takes a graph G and a vertex y¢V,
computes a random N, (y)-embedding and tests condition (ii) of Theorem 4.4.

Algorithm 4.5.

(1) Pick a random prime p<n® and a random vector c€(Z,)IEl.

(2) Compute a modular N, (y)-embedding f=f, by solving the linear
system (). » :

(3) For every veV\ N, () test if rank (f(N,(v)=Fk; if satisfied for all
such v, then return ‘pass’, else return ‘fail’.

With large probability, this algorithm returns ‘fail’ if and only if there exists
a (k—1)-element cut not containing y. So the.only case in which it returns ‘pass’
for a2 non-k-connected graph is when y is contained in every cutset with fewer than
k elements. By the discussion at the beginning of this section, it suffices to choose
r(n, k) distinct vertices y at random and run. the above test for these vertices y.
These considerations yield 2 Monte-Carlo algorithm to test k-connectivity.

Algorithm 4.6.

(1) Choose a set YV, |¥|=r(n, k) at random.

(2) For each y€7Y, call the test in Algorithm 4.5 with the given G, y and k.
If it returns ‘fail’ then print ‘not k-connected’ and halt.

(3) (f for all yeY, the test in Algorithm 4.5 returns ‘pass’ then) print ‘k-
connected’.

Theorem 4.7. The complexity of Algorithm 4.6 is O(n(log n)>M(n—k)/(n—k)+.
+nM(k) log n)=0m**+nk*®). If G is k-connected [not k-connected], then A,
prints ‘k-connected’ [‘not k-connected’] with probability larger then 1—1/n. ||

Next we design a randomized algorithm that is somewhat less efficient, but
never errs. Algorithm 4.6 may err in both directions, If all vertices y it tries happen
to belong to every (k—1)-element cutset, then it may answer ‘k-connected’ when
the graph is not. We mend this by making sure that at least one of the y’s is not
such a vertex, i.e. we select |Y|=k. On the other side, it may answer ‘not k-connec-
ted’, finding a degeneracy of some set f(N,(v)) that is not due to a small cut but
rather to bad random choices. We mend this by looking for a min-cut separating
v from y, and, if not found, try new random choices.

To find a min-cut, we use the lattice structure of such cuts. For two subsets,
X,UcV, one can define a partial order among (X, U) min-cuts in which two
cuts S,, S, are related (§;<S,) if §, meets every path from S; to X. It is a well
known fact (see [10]) that this partial order is a lattice. This lattice has a unique
minimal element S(X, U). The importance of this is that, although there may be
many min-cuts separating U from X, S(X, U) will determine the affine hull of f(U).
More exactly, we have the following lemma whose proof follows easily from this
definition and the proof of Theorem 2.4,
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Lemma 4.8. Let f be a random X-embedding of the graph G. Let USV such
that p(U, X)=m<k; let S=S(U,X), and let T be the set of vertices separated
from X by S (including the vertices of S). Let A be the affine hull of f(U).
Then f(T)c A and with probability at least 1—n¥ld, f(T)=ANf(V(G)).

The following refinement of Algorithm 4.5 takes a graph G, and a vertex
Y€V, computes a random N, (y)-embedding and tests condition (ii) of Theorem 4.4.
In case of failure, it returns a set § of fewer than k vertices which separate y from
some vertex v.

Algorithm 4.9.

(1) Pick a random prime p<n® and a random vector c€(Z,)!El

(2) Compute a modular N,(y)-embedding f=f. by solving the linear
system (). :

(3 For every veV\WN,(») test if rank (f (N, (v))=k; if satisfied for all
such v, then return ‘pass’.

(4) Else, if we find a o€V \ N, (y) with rank (f(N,(v)))<k, then com-
pute A=aff (f(N,(v))) and find the set S of those vertices which either belong to
N, (p) or have a neighbor outside 4;

(a) if |S|<k then print ‘not k-connected because of S and halt;

(b) if |S|=k then start all over again with (1).

Using this algorithm as a subroutine, we obtain the following “Las Vegas”
version of Algorithm 4.6.

Algorithm 4.10.

(1) Choose Y=V, |Y|I=k arbitrarily.

(2) For each y€Y, call the test in Algorithm 4.9 with the given G, y and k.
If it returns ‘not k-connected because of §° then halt.

(3) (If for all ycY, the test in Algorithm 4.9 returns ‘pass’ them) print
‘k-connected’.

The previous considerations contain the proof of the following theorem.

Theorem 4.11. Algorithm 4.10 runs in expected time O((kM(n)+nkM(k)) log n)=
=0 (kn**+nk*®). G is k-connected iff it prints ‘k-connected’, i.e., it never errs. |}

By incorporating binary search it is easy to convert the Algorithms 4.6 and
4.10 into algorithms for finding the vertex connectivity k(G) of the input graph G.
We leave their specification to the reader, and only state that the Monte-Carlo
algoritbm has running time O(#*°+#k(G)*®), and errs with probability less that
1/n. The Las Vegas algorithm has expected running time O(k(G)n*®-+nk(G)*®).

Consider the problem of, for a given source réV, finding the number of
(internally) disjoint paths to the vertex u, simultaneously for all ue¥— {r}.

Algorithm 4.12. .
(1) Pick a random prime p<n® and a random vector c€(Z,)I¥!, and

compute an N(r)-embedding f=f; ,

(2) for each u€¥—{r}, print rank (f(N(u))).
Theorem 4.13. Algorithm 4.12 runs in time O(n**+4-nd>®) where A is the maximum
degree in G. It returns the correct answer with probability 1—1/n. |}
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Proof. The running time estimate is straightforward. To prove the error proba-
bility bound, let p’(u, r) denote the number of internally disjoint (u, r)-paths, and
let f bethe N (r)-embeddmg Then by Theorems 2.3 and 2.4,
(a) If u¢ N(r), then p (u r)=p(N(u), N(r))=rank(f (N(u)))—rank( SING)).
(b) If ueN(r), then p’(u, r)=p(N (), N(r))=rank (f(Nw))).

We could also use Theorem 3.1 to test a graph for connectivity by a Monte-
Carlo algorithm. We choose a prime p and consider our matrices over Z, (the prime
need not be random for this application). We substitute random values for the x;;.
Then for any fixed (n—k)X(n—k) submatrix of 4 whose determinant is not iden-
tically 0, the probability that this submatrix will become singular by substitution is
less than 1—n%lp by Schwartz’s Lemma. So we can check the k-connectivity be-
tween any two vertices by evaluating one (n—k)X (n—h) determinant. This leads
to a Monte-Carlo algorithm whose running time is O(n*(log n)*M (n— k)/(n—k)),

which, for large values of %, is better than Algorithm 4.6, but for small valuyes of
k, is much worse.

For small values of k, we can use the following trick: Compute the inverse
D of the matrix A (after the random substitution). It is well known that an (n—k) X
X (n—k) submatrix 4’ of A is non-singular iff the k Xk submatrix of D formed by
the rows and columns not occuring in 4’ is non-singular. Since the matrix D need
be computed only once, this leads us to an O(M(n) log n+n(log n)*M (k)) Monte-
Carlo algorithm, which is a very slight improvement upon Algorithm 4.6 for small
k. We do not elaborate on these possibilities, however, in this paper.

These algorithms above lend themselves to parallelism. One can easily for-
mulate analogous randomized parallel Monte-Carlo and Las Vegas algorithms,
each running in time O(log®n) on an EREW PRAM ([14]), and use n#(n) proces-
sors respectively, where ¢(n) is the running time of the corresponding sequential
algorithm. (nM(n) is the best known bound on the number of processors needed
to solve nXn linear systems over finite fields in parallel ([2]).)

Acknowledgement. We wish to thank Nick Pippenger and Eva Tardos for helpful
discussions.
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