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We study random lifts of a graph G as defined in [1]. We prove a 0-1 law which states that
for every graph G either almost every lift of G has a perfect matching, or almost none of its
lifts has a perfect matching. We provide a precise description of this dichotomy. Roughly
speaking, the a.s. existence of a perfect matching in the lift depends on the existence of a
fractional perfect matching in G. The precise statement appears in Theorem 1.

1. Introduction

We begin with a brief background on random lifts of graphs1. A comprehen-
sive account can be found in [1,2]. A random n-lift of a graph G=(V,E) is
a graph whose vertex set is V ×[n]. The vertex (v,j) is said to belong to the
j-th level and to the fiber Fv above v. For each edge e=[u,v]∈E(G), there is
a random matching Fe between Fu and Fv . This set of edges Fe is called the
fiber above e. Our discussion is mostly asymptotic, so we adopt a common
abuse of the language and say that a property of lifts holds almost surely
if it holds with probability 1−o(1) as n→∞. In this paper we answer the
following question: Given a graph G, and n large and even, do the n-lifts of
G tend to have a perfect matching?

Mathematics Subject Classification (2000): 05C80, 05C70

* Supported in part by BSF and by the Israeli academy of sciences.
1 Graphs in this paper are in fact multigraphs. Multiple edges and loops are allowed,
unless otherwise stated. A random lift of a loop on a vertex v is the graph of a random
permutation on the fiber of v.
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1.1. Prelude

There is one case in which the answer is obviously positive. If G has a perfect
matching M , then the union of fibers ∪e∈MFe is a PM in every lift of G.
There is also a case where the answer is obviously negative. Let M be a

matching in an n-lift of G. The projection of M is a mapping ϕ :E(G)→R
+

that is defined as ϕ(e) := |M∩Fe|
n , the fraction of edges in the fiber Fe that are

in the matching M . We recall that a nonnegative function f on G’s edges is
called a fractional matching if

∑
e=[v,x] f(e)≤1 for every vertex v∈V (G). If

equality holds at every vertex, f is said to be a fractional perfect matching
(FPM in short). Clearly the projection of a perfect matching in a lift of G is
a FPM. Therefore, if G has no FPM, no lift of G can have a PM. Moreover,
for everyM as above, 2

|V |
∑
ϕ(e) is the fraction of vertices in the lift that the

matching M meets. Therefore, if every fractional matching ϕ in G satisfies∑
ϕ(e)<(1−ε)|V |/2, then every matching in any lift of G must miss at least

a fraction ε of the vertices in the lift.
These two comments cover the first and fourth cases of our main theorem.

Theorem 1. Let G be finite connected graph, and consider Ln(G), the
space of its lifts of order n, where n is an even integer. Then exactly one of
the following situations occurs:

1. Every H∈Ln(G) has a perfect matching.
2. Not every H ∈Ln(G) has a PM, but almost all of them do.
3. In almost every H∈Ln(G), the largest matching misses Θ(logn) vertices.
4. Every matching, in every H∈Ln(G), misses Ω(n) vertices.

The implicit constants in the Θ and Ω terms depend only on G.

The first order of things is to characterize those graphs that have a FPM.
We need some basic definitions:

Definition 1.1. An ordered pair of nonempty disjoint sets (A,B)⊂ V (G)
is called a t-split if N(B)⊂A and |A|= |B|+ t. The smallest t for which a
t-split exists is called the excess of G and is denoted ξ(G).

Remarks: N(B) is the set of all vertices in V (G) adjacent to an element
of B (including elements in B). Also, for graphs with a loop on each vertex
the excess is left undefined.
Here is a characterization of graphs with a FPM that resembles Tutte’s

theorem on perfect matchings:

Lemma 1.2. A graph has a FPM if and only if its excess is nonnegative.
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This lemma can be easily derived from material in [4], or proved directly
via LP duality.

Let us return to the main discussion. If every FPM vanishes on the edge
e∈E(G), then we say that e is a non-FPM edge. In this case, Fe is disjoint
from every PM in any lift of G. Therefore almost every lift of G has a PM iff
the same holds for G\e. In other words, for our purposes, non-FPM edges
can be always eliminated from the graph. It is also clear that lifts of G a.s.
have a PM, iff this holds for every connected component of G. We only care
now about graphs with a FPM, i.e., graphs of nonnegative excess. It’s not
difficult to see that a connected graph of excess 0 and no non-FPM edges
has a PM (the Hall condition is satisfied). Our discussion is now limited
to connected graphs G of positive excess (or with a loop on each vertex),
having no PM, and no non-FPM edges. We want to eliminate next graphs
with eG ≤ vG i.e., trees and unicyclic graphs. But it is not difficult to show
that such a graph must be a odd cycle. A typical lift of an odd cycle consists
of Θ(logn) disjoint cycles, approximately half with an odd order. A matching
must miss a vertex at each odd cycle, and we are led to the third case of the
theorem.
Our discussion thus further narrows to graphs G that are (i) connected,

(ii) have more edges than vertices, and, (iii) either have strictly positive
excess, or have a loop at every vertex. The class of all such graphs is called
G and the main technical part of our work is the proof of:

Theorem 2. Let G be a graph in the class G, then almost every lift of G
has a perfect matching.

The algorithmic realization of Theorem 1 is direct, as it is easy to decide
whether a graph has a PM, FPM, and which are the non-FPM edges.

2. Theorem 2 – An overview

Let Π be the class of those graphs G such that almost every lift of G has
a PM. Theorem 2 thus claims that G ⊂ Π. Our proof is inductive. The
simplest type of an induction step is a deletion of an edge. This argument
works, sinceΠ is clearly a monotone class of graphs. So, for example, if G∈G

is 2-edge connected and has excess 3 or above, it is not hard to show that
we can delete any edge e and argue by induction. If G has bridges, or has
excess 1 or 2, a more careful analysis is required. Specifically, we introduce
a reduction step that we apply only to graphs with excess 1. It is shown
that if G∈G is reduced to the smaller graph H ∈G, and if H ∈Π then also
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G∈Π. The only graphs for which neither edge deletion nor reduction work
are loop stars. The membership of these graphs in Π is proved directly.

Definition 2.1. For any positive integer r, the loop star Br is the graph
that results by placing a loop on each leaf of the star K1,r.

Definition 2.2. Reduction step on G=(V,E): Assume ξ(G)=1 and (A,B)
is a 1-split. Replace S=A∪B by a new vertex s which has a loop for each edge
in E(A). For each edge [x,w]∈E(A,V \S) there corresponds an edge [s,w]
(with multiplicities). IfH is the resulting graph we denoteH=Red(G,A,B)
or H=Red(G,S). The natural bijection between V (H)\{s} and V (G)\S,
and the one between E(H \{s}) and E(G\B) are used freely.

The proof of theorem 2 consists of the following three propositions:

Proposition 2.3. Let G be a graph in G that is not a loop star, and does
not have a PM. Then a series of operations can be applied to G, each of
which is either an edge deletion or a reduction step, so that the components
of the resulting graph still belongs to G.

Note: In most cases of the proof it is enough to carry out just a single
operation.

Proposition 2.4. Let G be a graph with excess 1, let (A,B) be a 1-split
in G and let H=Red(G,A,B). If H∈Π then also G∈Π.

Finally, (or should we say initially?)

Proposition 2.5. All loop stars are in Π.

3. Some simple observations

In this section we collect several simple and useful observations that are used
throughout the proof. First we show that the excess cannot decrease much
under either vertex or edge deletions.

Claim 3.1. Let G be a connected graph with excess t≥2 and let e∈E(G).
Then ξ(G\e)≥ t−2. Moreover, ξ(G\e)= t−2 iff e∈EG(B) for every (t−2)-
split (A,B) in G\e. If G\e is disconnected then ξ(G\e)≥ t−1. For every
vertex v, ξ(G\v)≥ t−1.
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Proof. Let ξ(G\e)=k and consider a k-split (A,B) in G\e, where e=[x,y] is
an edge in G. If B\{x,y} is nonempty, then (A,B\{x,y}) is a split in G and
t≤|A|−|B\{x,y}|≤|A|−|B|+2=k+2, with equality iff both x,y are in B. If,
say B={x}, then (A∪{y},B) is a split in G, so t≤|A∪{y}|−1≤|A|=k+1.
Finally, if B = {x,y}, then (A∪{y},{x}) is a split in G, so t≤ |A|= k+2,
and the condition for equality holds as well.
Consider now a bridge e=[x1,x2] in G and let G1,G2 be the two compo-

nents of G\e, where xi is in Gi. Suppose that ξ(G\e)= t−2, and let (A,B)
be a (t− 2)-split in G \ e. Let A1,A2 resp. B1,B2 be the parts of A resp.
B in G1,G2. By the previous observation, x1 ∈B1, and x2 ∈B2. Therefore,
B1,B2 are nonempty, so that (A1,B1) and (A2,B2) are splits in G\e. Again
by the previous claim, they are suboptimal splits. Namely, |Ai|−|Bi|≥ t−1
for i=1,2. Add these inequalities to conclude that t−2= |A|− |B|≥2t−2,
so t≤0, a contradiction.
For the last part of the claim, assume v ∈ V (G). Let (A,B) be some

k-split in G\v. Then (A∪{v},B) is a split in G which shows that k+1≥ t.

As mentioned above, a connected graph of positive excess cannot have
vertices of degree 1. More generally,

Claim 3.2. If x is a loopless vertex in the graph G, then ξ(G)≤d(x)−1.

We say that a bipartite graph (P,Q;E) has surplus ≥k if |N(X)|≥|X|+k
for every nonempty X⊂Q.

Claim 3.3. Let ξ(G)= t, and let (A,B) be a t-split in G. Then the bipartite
graph (A,B;EG(A,B)) has surplus t. Equivalently, |N(Y )| ≥ |Y | for every
Y ⊂A with |Y |≤|B|.

Proof. (N(P ),P ) is an (|N(P )|− |P |)-split for every P ⊂B, and the con-
clusion follows.

4. Reduction to a loop star

4.1. Graphs of excess 1

In this section we prove Theorem 2 for graphs of excess 1. In this case,
proposition 2.3 simplifies to:

Lemma 4.1. Let G ∈ G be a graph with excess 1. Then there is a 1-split
(A,B) in G such that H=Red(G,A,B)∈G as well.
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Proof. We consider a 1-split (A,B) where |A|+|B| is a as large as possible.
To establish that H∈G, we need to verify three properties.
(i) Connectivity: Clearly H is connected since connectivity is preserved
by identifying vertices in a graph, and a reduction can be realized as a series
of identification steps.
(ii) Excess: Assume by contradiction that there is a t-split (X,Y ) inH with
t≤ 0. Let s∈H be the vertex corresponding to the reduced set S. If s /∈Y ,
then (A∪X,B∪Y ) is a τ -split where τ≤(|A|+|X|)−(|B|+|Y |)=1+|X|−|Y |≤1.
(The first inequality follows since B and Y are disjoint.) This contradicts
the maximality of |A|+ |B|.
If s∈Y we claim that (B∪X,A∪Y \{s}) is a τ -split in G with τ ≤0. Since
s ∈ Y , it follows that N(A)⊂B ∪X. So this is indeed a τ -split in G with
τ= |B|+ |X|−(|A|+ |Y |−1)≤0.
(iii) e(H)>v(H): We need to preclude the possibility that H is a tree or
unicyclic. By Claim 3.2, H cannot have a vertex of degree one unless it is
a loop, so H is either a single vertex with a loop or a cycle. If it is a cycle,
it must be an odd cycle, since an even cycle has excess 0 while we already
know ξ(H)≥ 1. If H is an odd cycle of order > 1, say x1,x2, . . . ,x2k+1, let
us assume that the reduced vertex s is x2k+1. Define X = x1,x3, . . . ,x2k−1,
Y = x2,x4, . . . ,x2k; then (X ∪A,Y ∪B) is a 1-split in G contrary to the
maximality of |A|+|B|. We are left with the case where H is a single vertex
with a loop. That is, A∪B=V (G) and |EG(A)|=1. In this case we exhibit
another 1-split V =A′∪B′ such that Red(G,A′,B′) is not a loop. This single
edge {e}=E(A) cannot be a loop, say in a∈A, for then (B,A\{a}) is a 0-
split in G. Thus e=[x1,x2] for some x1,x2∈A. Note that (B∪{x2},A\{x2})
is a 1-split since N(A\{x2})⊂B∪{x2}. We can repeat the above arguments
for this 1-split and conclude that E(B∪{x2}) consists of a single edge. Since
dB(x2)>0, this must be an edge (x2,x3) where x3∈B. This shows dB(x2)=1
and thus that dG(x2)=2 (and the same for x1 by symmetry). This process
may continue to create a sequence of vertices x1,x2, . . . ,xk each with degree
2 in G. Since G is connected this shows that G is a cycle. This contradicts
the assumption e(G)>v(G).

We turn to prove proposition 2.4:

Proof of proposition 2.4. By claim 3.3 the bipartite graph (A,B,
EG(A,B)) has surplus ≥ 1, so A∪B \x has a perfect matching for every
x∈A. We recall the following result from [4]:

Lemma 4.2. Let K = (P,Q;F ) be a bipartite graph such that for every
x∈P there is a perfect matching in K \{x}. Then there is a spanning tree
T ⊂F such that (P,Q;T ) has the same property.
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We use this lemma to select a spanning tree T in the induced bipartite
subgraph (A,B;EG(A,B)) such that for every x ∈ A, the bipartite graph
(A \ {x},B;T ) has a PM. Let L be a spanning subgraph of G, which is
attained by replacing EG(A,B) by its subset T . We show that if H ∈ Π,
then L ∈ Π as well. Since L is a subgraph of G, this clearly implies that
G∈Π.
We need an observation from [1]: Recall that a graph G̃∈Ln(G) is defined

by assigning a random permutation σe ∈ Sn to each e ∈ E(G). An edge
e ∈ E(G) is called flat in G̃ if σe is the identity. Recall also that a graph
property is a property of graphs that does not depend on vertex labeling.

Proposition 4.3. Let G be a graph and let F ⊂ E(G) be a forest. The
probability of every graph property in Ln(G) stays unchanged under the
conditioning that all edges in F are flat.

We actually exhibit a bijection between PM’s in n-lifts of L and n-lifts
of H. Since H=Red(L,A,B), there is a natural bijection between E(L\B)
and E(H). We assume that the edges of the tree T are flat, which by the
previous claim has no effect on any probabilities we consider. Thus, lifts of
L\B and those of L are in 1:1 correspondence, so finally there is a bijection
of lifts of H and L.
It will suffice to show now that if a lift H̃ of H has a PM then the

corresponding lift L̃ of L has a PM as well. This will show that if H ∈Π,
then the same holds for L.
Let MH be a PM of H̃. We create a PM of the corresponding lift L̃ as

follows: MH naturally induces a (not necessarily perfect) matching on L̃ by
the bijection E(H̃) to E(L̃\B̃) where B̃ is the lift of B⊂S. This matching
uses exactly one vertex in every level of S̃, the lift of S, namely the vertex
which corresponds to s ∈ H. Now the edges E(Ã, B̃) are flat and by the
choice of T , there is a perfect matching of A\{x} into B for every x∈A.
This allows us to extend the induced matching from H̃ to a PM in L̃.

4.2. Reprise: Graphs with excess ≥2

We now turn to complete the proof of proposition 2.3, by proving it for
graphs of excess ≥2. Let H be the family of graphs G∈G with ≥3 vertices
and ξ(G)≥2.
Note 4.4. A graph H ∈ H satisfies e(H) ≥ v(H) + 2, since by claim 3.2,
every loopless vertex in H has degree ≥ 3. If l out of the v vertices have
loops, then e(H)≥ l+(3(v− l)+ l)/2=3v/2. Now

⌈3v
2

⌉
≥ v+2 for v≥ 3, as

claimed.
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Note 4.5. Each of the additional graphs that are still to be checked, con-
tains either B1 or B2 (the smallest loop stars) as spanning subgraphs. These
cases will be considered at the beginning of section 5.

4.2.1. Exceptional edges We consider first “exceptional” edges: Parallel
edges, loops and bridges and show that if they exist, the theorem follows by
a simple inductive argument.

Claim 4.6. Let G∈H have two parallel edges e,f . Then G\f ∈G.

Proof. Obviously G\f is connected, ξ(G)=ξ(G\f) and e(G\f)>v(G\f).
Henceforth we may, therefore, consider only graphs without parallel

edges. We now characterize those loops which cannot be deleted.

Claim 4.7. Let G ∈ H have no parallel edges. Suppose that G\ e /∈ G for
some loop e=[v,v]∈E(G). Then dG\e(v)=1.

Proof. Obviously G\e is connected and has more edges than vertices. So
G\e can fail to be in G only if ξ(G\e)=0. Let (A,B) be a 0-split in G\e. Now
v∈B, or else (A,B) is a 0-split in G as well, contrary to the assumption that
G∈H. If B={v} then indeed dG\e(v)=1 since (A,B) is a 0-split and there
are no parallel edges. If |B| ≥ 2 then (A,B \{v}) is a 1-split in G contrary
to the assumption that G∈H.

We next turn our attention to bridges:

Proposition 4.8. Let G∈H have no parallel edges, and let e be a bridge
in G. Let C1,C2 be the components of G\ e. If C1 /∈ G then C1 is a single
vertex with a loop.

Proof. By claim 3.1, C1 has excess ≥ 1. It is also connected, so it can fail
to be in G only because e(C1)= v(C1), i.e., C1 is an (odd) cycle. If C1 has
length ≥ 3 then it has a loopless vertex of degree 2. This contradicts the
assumption that ξ(G)≥2.
If there is a bridge e such that both components of G\e are in G then

we are done by induction. So we assume from now on that at least one of
the components of G\e is not in G, and is therefore a loop according to the
previous claim.
If G has bridges, then another kind of simple inductive argument applies.

Say that e= [u,v] is a bridge, and consider the graph G\ v. By claim 3.1
ξ(G\v)≥1. Let C1,C2, . . . ,Cl be the components of G\v. Say C1 . . .Ck are
loops, and Ck+1 . . .Cl are not. (Note that k ≥ 1, by proposition 4.8, since
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e is a bridge.) If each of Ck+1 . . .Cl is in G or has a PM, we argue thus:
{v}∪C1, . . . ,∪Ck is a loop star hence in Π, by proposition 2.5 (to be proved
below). By induction each of Ck+1 . . .Cl is in Π and all told, G∈Π as well.
The same holds if those of Ck+1 . . .Cl that are not in G have a PM.
So assume C=Ck+1 /∈G and has no PM. As in the proof of proposition 4.8,

C must be an odd cycle, and not a loop. Also, every vertex w of C is a
neighbor of v, since otherwise d(w) = 2, contrary to ξ(G) ≥ 2. In other
words, each of Ck+1 . . .Cl is an odd wheel centered at v. In G we can replace
such an odd cycle by a cycle shorter by two, to obtain the graph H and
show that H ∈Π implies G∈Π. This process terminates when we arrive at
a loop star.
This shortening of cycles can be carried out in three steps:

(i) Remove an edge e=[v,w] between the cut vertex v and a vertex w of the
odd cycle C.
(ii) Now dG\e(w)=2. We apply a reduction step to the 1-split (N(w),{w}).
(iii) Remove one of the two parallel edges between the vertex representing
N(w) and v.

4.2.2. The 2-edge-connected case In view of the previous subsection,
to complete the proof of proposition 2.3, it suffices to establish it for simple
(no loops, no parallel edges) 2-edge-connected graphs G∈H. In this case we
show that either it is possible to delete an edge and stay in G, or G has a
PM. Now G\e can fail to be in G only if the removal of edge e reduces the
excess from 2 to 0. However, in this case we show that G has a PM.

Lemma 4.9. Let G∈H be a simple 2 edge-connected graph. Suppose that
ξ(G\e)=0 for every edge e∈E(G). Then G has a perfect matching.

Proof. The proof follows by showing that such a graph G is 3-regular and
quoting Petersen’s theorem. We must have ξ(G) = 2, for ξ(G)≥ 3 implies,
by claim 3.1 ξ(G\e)≥1 for every edge e∈E(G) whence G\e∈G.
By Claim 3.2, in a simple graph with excess ≥ 2 all vertex degrees are

≥ 3, and we want to show equality. We employ a theorem of Lovász and
Las Vergnas on bipartite graphs (see [4]): Let H = (P,Q;E) be a bipartite
graph of surplus k. Say that an edge e∈E(H) is redundant if H \e still has
surplus k.

Proposition 4.10 (Lovász, Las Vergnas). Let H = (P,Q;E) be a bi-
partite graph with surplus k≥ 1. If H has no redundant edges, then every
vertex in Q has degree k.
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In a general graph G, an edge e is said to be (A,B)-redundant if it is
redundant for the induced bipartite graph (A,B;EG(A,B)). We will later
prove:

Claim 4.11. Let G be as in Lemma 4.9. If an edge e is (A,B)-redundant
for some 2-split (A,B) then ξ(G\e)≥1.

We are assuming that G has no edges with ξ(G\e)≥1. Hence, no 2-split
(A,B), has (A,B)-redundant edges, so by Lovász-Las Vergnas all vertices in
the B side have degree 3. To show that G is 3-regular, it suffices, then, to
prove that every vertex v∈V (G) belongs to the B-side of some 2-split (A,B).
Consider an edge e=[v,w] incident with v. Since ξ(G\e)=0, by claim 3.1,
there is a 0-split (A,B) in G\e with v,w∈B. Now (A∪{w},B \{w}) is a
2-split in G in which v is in the disconnected side as desired. This concludes
the proof.

Proof of claim 4.11. Let e be a (A,B)-redundant edge for some 2-split
in G. We want to prove that ξ(G\ e) ≥ 1. We argue by contradiction and
consider a 0-split (X,Y ) inG\e. We classify the vertices inX and Y according
to the partition V (G)=A∪B∪(V (G)\(A∪B)). Namely, X=AX∪BX∪QX

and Y =AY ∪BY ∪QY , where AX=A∩X, BX=B∩X, QX=X\(A∪B), and
likewise AY ,BY ,QY . Now e∈E(Y ), by claim 3.1 so e∈E(AY ,BY ), whence
AY ,BY are both non-empty.

Fig. 1. The split X,Y . Solid lines connect sets that may have edges between them.

We prove the following three inequalities:
|AX | ≥ |BY |+ 2: Note that NG\e(BY ) ⊂ A, since (A,B) is a split. Also,
NG\e(BY )⊂X since (X,Y ) is a split. Thus NG\e(BY )⊂X∩A=AX . On the
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other hand, since e is (A,B)-redundant, |NG\e(BY )|≥ |BY |+2, which gives
the needed inequality.
|BX |≥|AY |: Since(X,Y ) is a split, NG\e(AY )⊂X. Now |AY |≤|A|−2 since
AY ⊂A\AX and the previous inequality shows that |AX |≥ 2. Now we can
use claim 3.3 on the bipartite graph (A,B) induced by G\e and deduce that
|NG\e(AY )∩B| ≥ |AY |. Since NG\e(AY )∩B ⊂X ∩B =BX we deduce the
inequality.
|QX |≥|QY |: Otherwise, there is a ≤1-split in G.
Now add these inequalities to conclude that |X| ≥ |Y |+2, contrary to the
assumption that (X,Y ) is a 0-split.

4.3. Graphs with undefined excess

Recall that the excess is undefined for graphs with a loop on each vertex.
Such graphs are in G if they are connected and have more edges than vertices.
This case is easy to deal with by induction:

Proposition 4.12. Let G∈G be a graph with a loop on each vertex, and
v(G)> 1. Then either G has a PM, or we may remove a loop e of G such
that G\e∈G.

Proof. Removing a loop cannot disconnect the graph. Take the vertex v
with degree d(v) maximal in G (disregarding loops in the degree). If v has
more than one loop on it then remove one of the loops e and we are done,
since still e(G\e)>v(G). So assume there is only one loop e on v. If d(v)>1
then ξ(G \ e) = d(v)− 1 > 0 as required. Otherwise G must consist of two
vertices connected by an edge, with a loop on each one – a graph with a PM.

The only case left is a graph with one vertex and two loops (or more) on
it. This will be addressed in section 5.

5. The case of loop stars

In this section we show that all loop stars Br belong to Π. We first deal
with the cases r=1,2. Since B1 has a PM, each of its lifts does as well. In
B2, perform the reduction that corresponds to the 1-split of the two leaves
vs. the root. The reduced graph G has a single vertex with two loops. This
G is in Π, because the edge set of every graph in Ln(G) is the union of two
random independent permutations. It is shown in [3] that such graphs a.s.
contain a Hamiltonian cycle, and hence an PM. From now on, we consider
only r≥3.
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Our strategy is to apply, to every G∈Ln(Br), a random mapping ψ so
that ψ(G) is another random graph. We show that for every G∈Ln(Br) and
every possible mapping ψ, if ψ(G) has a PM, then so does G. Finally, we
show that for almost every such G and a.e. mapping ψ, indeed ψ(G) has a
PM. The latter claim works only for r≥3, but that is enough.

5.1. Variations on a theme

We denote the vertex set of Br as {0,1, . . . ,r}, where 0 represents the central
vertex. Recall that the vertex set of every G ∈ Ln(Br) is {0,1, . . . ,r}× [n],
where the vertex (i,j) is said to be in the i-th fiber Fi and in the j-th
level of G. It is convenient to use proposition 4.3 again, and assume that
the permutation corresponding to each non-loop edge of Br is the identity
(these edges are “flat”). Thus for every G ∈Ln(Br), and every j ∈ [n], the
graph induced on the j-th level of G is the r-star K1,r. Each loop [i, i] of Br is
mapped to the graph of a random permutation σi on Fi. That is, each vertex
(i,j) is adjacent to (i,σi(j)), and to (i,σ−1

i (j)). (The graph corresponding
to each permutation σi is a set of disjoint cycles in the i-th fiber.)
We now explain, for a given G∈Ln(Br) what a random ψ(G) looks like.

For each i∈ [r] we consider the cycles of the permutation σi. In each of these
cycles we randomly select a maximal matching, the edges of which we retain.
For an even cycle there are, of course, just two choices. For an odd cycle of
length l, each of the l possible choices leaves exactly one missed vertex that
is not covered by the matching. We note that a.s., it does not happen that
both (i,j) and (i′, j) are missed for two indices i �= i′, since a.s. altogether
only O(r logn) vertices are missed. In the (unlikely) event that some (i,j)
and (i′, j) are both missed, ψ(G) remains undefined, but this does not affect
our analysis.
Suppose that the vertices (i,α) and (i,β) are adjacent in G for some

r≥ i≥1. The projection of this edge is [α,β]. To construct the graph ψ(G)
we start with the graph on vertex set [n] whose edges are the projections of
all retained edges. Then we delete the projections of all missed vertices, i.e.,
all n≥j≥1 such that (i,j) is missed for some r≥ i≥1. Note that ψ(G) has
no loops, since every vertex with a loop in G is necessarily missed.
We now show:

Claim 5.1. If ψ(G) has a PM then so does G.

Proof. We observe that the set of all retained edges is a matching, so in our
attempt to construct M , a PM in G, we first place those edges in M . Also,
if (i,j) is missed, we add to M the edge connecting (i,j) to (0, j). These
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two vertices are adjacent in G by our flatness assumption. So far, M fails to
cover only vertices in the central fiber F0. Now we assume that K is a PM
in ψ(G). For every edge [α,β] in K we modify M as follows: Say that [α,β]
was projected from fiber Fi. Then we remove the (retained) edge between
(i,α) and (i,β) from M . Instead, we add the edge that connects (0,α) and
(i,α) as well as the edge between (0,β) and (i,β). It is easy to check that
the new M is indeed a PM.

5.2. Finale

Fix some r ≥ 3. In the previous subsection we have considered the distri-
bution over graphs ψ(G) that is defined by picking uniformly at random
G ∈ Ln(Br), as well as a mapping ψ. We wish to show that the resulting
graph a.s. has a PM. Here is an alternative, more convenient recipe for gen-
erating the same distribution of random graphs. For i = 1, . . . ,r we let Ei

be a random perfect matching on the set [n]\Hi. The Hi are i.i.d. random
sets with cardinalities that are distributed as the number of odd cycles in a
random permutation in Sn. In particular, |Hi| is even. Finally, the vertices
in ∪Hi are omitted. Our aim is to show that these graphs a.s. have a PM.
It is not hard to see that it suffices to prove a.s. existence of a PM in

the class of graphs Mr,n. These graphs have n vertices and an edge set of
the form ∪r

1Ei where each Ei is a random perfect matching on a randomly
selected set of n−C1 logn vertices where C1≤2(r−1). Actually, it will suffice
to prove the result for r = 3, since the proof will not rely on this specific
bound on C1. Therefore we can reduce the general case to the case r=3 by
ignoring the matchings Ek with k>3 in the edge set ofMr,n. In the following
discussion let M=M3,n.

Claim 5.2. Almost every G∈M has a perfect matching.

The proof is based on the Tutte criterion (e.g. [4]). If G has no PM,
then there exists a set T ⊂ V (G) such that G \ T has ≥ |T |+1 odd con-
nected components. We show that this almost surely cannot occur. If A
is a set of vertices in a graph G, let f(A) = |EG(A,V \A)| be the size
of the corresponding cut. We also define fs = minA⊂V,|A|=sf(A) and note
that f(A) = f(Ac) and fs = fn−s always hold. So let Ai be the connected
components of G \ T , of which more than |T | have odd cardinality. Also
as = |{j : |Aj |=s}| is the number of components of order s. Observe that
3|T |≥f(T )= |EG(T,V \T )|=∑f(Ai) and since there are more than |T | odd
components:
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(1) −3 ≥
∑

|Ai| is odd

(f(Ai)− 3) +
∑

|Ai| is even

f(Ai)

In the standard proof of Petersen’s Theorem, f(Ai)≥3 whenever |Ai| is odd,
and we get a contradiction. The complications that arise here are solved by
means of the following lemma.

Lemma 5.3. Almost every G∈Mn has the following properties:

1. f1≥2, i.e., all vertices have degree ≥2.
2. At most γ1 logn vertices have degree 2.
3. f3≥3.
4. There are at most ω(n) connected sets A⊂V with |A|=3 and f(A)=3.
5. fs≥4 for every n−5≥s≥5.
6. fs≥(1+γ1) logn for every n−γ2 logn≥s≥γ2 logn.
7. The independence number α(G)<(1/2−ε)n.

Here ω is any function that tends to ∞ with n, γ1=4C1=12, γ2=200γ1,
and ε=0.04.

This lemma (whose proof is in section 5.3), has several useful conse-
quences. For example:

Claim 5.4. A.s. as=0 for every γ2 logn≤s≤n−γ2 logn.

Proof. Inequality (1) clearly yields:

(2) −3 ≥ −b1 + (a3 − b3) +
∑

s≥5 odd

as(fs − 3) +
∑

s even

asfs

where b1≤a1 is the number of isolated vertices in G\T that have degree 2.
Similarly, b3 ≤ a3 is the number of components Ai with 3 vertices, and
f(Ai)=3. By lemma 5.3.2, b1≤γ1 logn. Therefore, γ1 logn≥

∑
s≥5 odd as(fs−

3)+
∑

s even asfs. Now lemma 5.3.6 implies that as must vanish for every
γ2 logn≤s≤n−γ2 logn.

We now show that (exactly) one large component must exist:

Claim 5.5. A.s. for sets T and Ai as above, there holds maxi |Ai| ≥ n−
γ2 logn.

Proof. A simple count of all vertices yields n = |T |+∑sas. The number
of connected components is

∑
as > |T |. Therefore, n ≤ ∑

(s+1)as. But
lemma 5.3.7 implies that a1 ≤ (1/2− ε)n, since the singleton Ai’s form an
independent set. Therefore, 2εn ≤ ∑

s≥2(s+1)as. If all as vanish for s ≥
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n− γ2 logn, then by the previous claim as vanishes for every s > γ2 logn,
whence εn≤γ2 logn

∑
s≥2as.Now let us return to inequality (2) and conclude

that
γ1 log n+ ω(n) ≥ b1 + b3 ≥

∑
s≥2

as

where we have used lemma 5.3.2 and 5.3.4 to estimate b1, b3 respectively
and 5.3.5 to conclude that fs−3≥1 for the relevant range. This is a contra-
diction, since the l.h.s is O(logn), while the r.h.s., as we saw, is Ω( n

logn).

To complete the proof of claim 5.2 it suffices to show that almost surely,
no set T ⊂ V (G) exists so that Ai, the connected components of G \ T
satisfy: (i) |A1| ≥n−O(logn), and (ii) At least |T | of the Ai for i≥ 2 have
odd cardinality. Fix a partition V (G)=T ∪ (∪Ai) as above, and consider a
perfect matching E on a random set V \H of vertices. What is the probability
that E is consistent with the partition? Fix an ordering on the vertices of
each Ai, and construct the matching E sequentially. This probability can
be expressed as a product of conditional probabilities: Each vertex x∈Ai,
at its turn, is either already matched with a previous vertex (and then the
conditional probability is 1) or must be matched with a vertex in Ai∪H∪T
(and then the conditional probability is O( logn

n )). The latter case occurs
in at least

⌈ |Ai|
2

⌉
of the steps, so the probability that E is consistent with

this given partition does not exceed (O( logn
n ))

∑
j≥2

⌈ |Aj |
2

⌉
. There are no more

than n|T |+
∑

j≥2
|Aj ||T |

∑
j≥2

|Aj | partitions to consider (the first factor bounds
the number of choices for the total set T ∪∪i≥2Ai. The second bounds the
number of ways to partition this total set to the subsets T and the Ai,
assuming without loss of generality that there are exactly |T | odd sets Ai).
There are three independent matchings, so a Tutte decomposition of the
type under consideration exists with probability at most

n
(|T |+

∑
j≥2

|Aj |)n
log |T |
log n

∑
j≥2

|Aj |
(
O
( log n

n

))3
∑

j≥2

⌈ |Aj |
2

⌉

But now we can use the fact that |Aj | is odd for at least |T | of the indices
j ≥ 2, to conclude that this probability does not exceed (ignoring some
logarithmic factors)

O
( log n

n

)−|T |/2−
∑

j≥2
|Aj |/2+

(
log log n

log n

)∑
j≥2

|Aj |
= o(1)

as claimed.
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5.3. Proof of Lemma 5.3

We skip the proof of the first four parts of Lemma 5.3, which are rather
easy. For the rest of the proof, the following observation is useful:

Proposition 5.6. For n even, there are exactly (n−1)!! :=(n−1)(n−3) · · ·1
perfect matchings on a set of n vertices. Also, n!!=Θ(n−1/4

√
n!).

The proof follows by Stirling’s formula, or by noting that φ(n)= (n!!)4

n!(n−1)!

is increasing and bounded.
The following two claims imply 5.3.5.

Claim 5.7. A.s. f(A)≥4 for every A⊆V (G) with cardinality 5≤|A|≤n1/7.

Proof. We first note that the upper bound on |A| is arbitrary and anything
� logn would do. Fix a set A of size q. As before, let Hi be the set of
h = C1 logn vertices missed by Ei. Let P (q, l,u) be the probability that
|A∩H1|=u and |E1(A,V \A)|= l.

(3) P (q, l, u) =

(q
u

)(n−q
h−u

)(q−u
l

)(n−q−h+u
l

)
l!(n−q−h+u−l−1)!!(q−u−l−1)!!(n

h

)
(n−h−1)!!

Explanation:
(q
u

)
is the number of choices for A∩H1,(n−q

h−u

)
– the choices for H1 \A,(q−u

l

)
– choices for the set Al of l vertices in A that are matched to V \A,(n−q−h+u

l

)
– choices for the set Bl of l vertices outside A that are matched

to Al,
l! – number of ways to match (Al,Bl),
(q−u− l−1)!! – matchings of A\(H1∪Al),
(n−q−h+u− l−1)!! – matchings of V \(A∪H1∪Bl).
It is easy to estimate:

P (q, l, u)

≤ O

((q
u

)(n−q
h−u

)(q−u
l

)(n−q−h+u
l

)
l!(n

h

) ·
√(

(n−q−h+u−l−1)!(q−u−l)!
(n−h−1)!

))

≤ O
(
q! · n(h−u)+l−h−(q−u+l)/2+o(1)

)
≤ O

(
q! · n−(q+u−l)/2+o(1)

)
.
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The probability that such a set A, of cardinality q, exists for which the claim
fails does not exceed

n1/7∑
|A|=q=5

(
n

q

) ∑
u1,u2,u3≤h

∑
l1+l2+l3≤4

3∏
i=1

P (q, li, ui)

=
n1/7∑
q=5

∑
u1,u2,u3≤h

∑
l1+l2+l3≤4

O

(
q!3 ·

(
n

q

)
n(
∑

li−3q−
∑

ui)/2+o(1)

)

≤
n1/7∑
q=5

O

(
q!3 ·

(
n

q

)
n−3q/2+4/2+o(1)

)
≤

n1/7∑
q=5

O
(
q!3 · n−q/2+2+o(1)

)
≤ o(1)

as claimed.

Claim 5.8. A.s. f(A)≥|A|/100 whenever 100γ1 logn≤|A|≤n/2.

Proof. We omit the proof, whose general structure us similar to that of
claim 5.7.

Proof of Lemma 5.3.7. We start again from equation (3), and argue as
in the proof of 5.8 (with l=q). Consider a given set A of q and a random
matching E as above. The probability that no edge of E is contained in

A is P (q)≤O

(√
(n−q

q )
(nq)

)
. Therefore, the probability that there exists any

independent set of order q does not exceed
(n
q

)
(P (q))3 ≤ (

n−q
q )

3/2

(nq)
1/2 . Now let

λ= q
n . By standard estimates, this probability does not exceed

2(1+o(1))n
2
(3(1−λ)H( λ

1−λ
)−H(λ)).

But 3(1−λ)H( λ
1−λ )−H(λ) is negative for λ>0.4591 and the claim follows.

6. Further work

There are two obvious questions to consider next. (i) Does the theorem stay
essentially unchanged for odd values of n as well? Of course if there is an
odd number of vertices in the lift we can only hope for a matching that
misses only a single vertex. (ii) Under what conditions on G does a.e. lift of
G have a Hamiltonian circuit?
While the first question may not be too difficult to solve now, the other

one surely requires some completely new ideas.
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