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We continue the study of random lifts of graphs initiated in [4]. Here we study the

possibility of generating graphs with high edge expansion as random lifts. Along the way,

we introduce the method of ε-nets into the study of random structures. This enables us to

improve (slightly) the known bounds for the edge expansion of regular graphs.

1. Introduction

In [4] we introduced a simple model for a random finite covering G̃ → G of a fixed base

graph G. (Here ‘covering’ is in the topological sense of covering maps, as in [8] and [9].)

We recall the construction. Given a connected graph G and a natural number n (the

order of the covering), we orient the edges of G arbitrarily and assign a permutation

σe ∈ Sn to each edge e ∈ E(G) using some probability distribution over Sn (usually, we

use the uniform distribution). The graph G̃ is formed by taking V (G̃) = V (G) × [n] and

connecting (u, i) to (v, σe(i)) whenever e = [u, v] is an oriented edge of G. There is a natural

covering map from G̃ to G defined by mapping (v, i) to v. This naturally induces a map

on the edges as well.1 To distinguish this from other notions of ‘coverings’ in graphs (e.g.,

edge covers, cycle covers), we call the random graphs generated in this manner random

lifts of the base graph G. By a common abuse of language, a claim holds almost surely if

the probability that it holds tends to 1 as n → ∞.

† Work supported in part by grants from the Israel Academy of Sciences and the Binational Israel–US Science

Foundation.
1 Technically, this gives a labelled covering, but we have seen in [4] that the model is essentially equivalent to

a uniform random unlabelled covering.
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318 A. Amit and N. Linial

In this paper we try to utilize the model to generate graphs with high edge expansion.

We begin by showing the existence of a lower bound on the edge expansion of random

lifts of a general base graph. We then calculate an explicit bound for the case of the

bouquet Bl as base graph (this is the graph with 1 vertex and l loops). Finally, using

the method of ε-nets, we show the existence of graphs whose edge expansion exceeds the

known bounds.

Specifically, we are concerned with the following problem. Given a fixed connected base

graph G, what can be said about the edge expansion of a random lift G̃ of G? This should

be compared with known results concerning edge expansion of random graphs (see [5]

and the discussion closing Section 3). We prove the following.

Theorem 1.1. Let G = (V , E) be a connected graph with |E| > |V |. Then there is a positive

constant ξ0 = ξ0(G) such that almost every lift of G has edge expansion at least ξ0.

For specific base graphs we can produce explicit bounds on the edge expansion of a

random lift. Let H(x) = −x log2(x) − (1 − x) log2(1 − x) be the entropy function.

Theorem 1.2. Let ξ0 be the smaller root of H(ξ/d) = (d − 2)/d where d = 2l. Then for

every ξ < ξ0, almost every lift G̃ of G = Bl has edge expansion ξ(G̃) � ξ.

It is possible to apply the same technique used for proving Theorem 1.2 for other base

graphs, such as the complete graphs Kr , but the technical details are more tedious. Finally,

we use the method of ε-nets to improve the known bounds on the edge expansion of

random d-regular graphs. The same method applies, mutatis mutandis , for random lifts.

Theorem 1.3. For every d � 3 there is an ε0 = ε0(d) such that if 0 � ε � ε0 then the

following holds. Let µ0 be the larger solution of

2

d
(1 − H(ε)) = 1 − H(µ0)

and let ξ be such that ξ < d(1 − µ − 2ε). Then the edge expansion of a d-regular graph is

almost surely at least ξ.

Throughout these sections, we shall often use the approximation

(
u

v

)
= 2uH(v/u)(1−ou(1)), (1.1)

which is valid for arbitrary v and u → ∞. The inequality

(
u

v

)
� 2uH(v/u) (1.2)

is valid for all u, v.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0963548305007273
Downloaded from https://www.cambridge.org/core. The Hebrew University of Jerusalem, on 28 Feb 2021 at 07:06:20, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0963548305007273
https://www.cambridge.org/core


Random Lifts of Graphs: Edge Expansion 319

2. General graphs

We define the edge expansion of a graph as usual.

Definition. Given a set S ⊂ V (G) of vertices in a graph G, let E(S, S̄) be the set of

edges with one vertex in S and one outside S . The edge expansion ξ(S) is defined to be

|E(S, S̄ )|/|S |, and the edge expansion of G is

ξ(G) = min{ξ(S) | S ⊂ V (G), |S | � |V (G)|/2}.

A lift G̃ of G cannot have higher edge expansion than G. Given S ⊂ V (G) with some

small ξ(S), take S̃ to be the union of the vertex fibres G̃u = {u} × [n] for u ∈ S . Then

ξ(S̃ ) = ξ(S) and |S̃ | � |V (G̃)|/2 if and only if |S | � |V (G)|/2.

The first natural question is whether the edge expansions of G’s lifts are almost surely

bounded away from 0, that is, whether there is a ξ0 = ξ0(G) > 0 such that almost every

lift G̃ of G has edge expansion at least ξ0(G). We must leave out degenerate cases where G

is a tree or unicyclic, since for such base graphs a random lift is not even a.s. connected.

Having ruled out these graphs, the answer to our question is positive.

Theorem 2.1. Let G = (V , E) be a connected graph with |E| > |V |. Then there is a positive

constant ξ0 = ξ0(G) such that almost every lift of G has edge expansion at least ξ0.

As in the δ-connectivity theorem in [4], the probabilistic core of the proof lies in the

following simple lemma.

Definition. Given two permutations σ1,σ2 ∈ Sn and an η > 0, a set A ⊂ [n] is called η-bad

if 0 < |A| < 2n/3 and |A ∪ σ1(A) ∪ σ2(A)| � (1 + η)|A|.

Lemma 2.2. There exists a positive ε such that, for two uniformly chosen random permuta-

tions σ1, σ2 ∈ Sn, almost surely there are no ε-bad sets.

Put differently, the probability that a bad set exists tends to 0 as n → ∞. Notice that

this is meaningful even for sets A that are singletons: almost surely, no element is a fixed

point of both permutations.

Proof. For a fixed set A of size m, the probability that A is ε-bad is bounded above by

(
n − m

�εm�

)((�(1+ε)m�
m

)
(
n
m

)
)2

,

and since there are
(
n
m

)
possible such sets A, it suffices to show that

2n/3∑
m=1

B(m) = o(1)
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320 A. Amit and N. Linial

where

B(m) =

(
n

m

)(
n − m

�εm�

)((�(1+ε)m�
m

)
(
n
m

)
)2

.

First, consider the range n/10 < m < 2n/3. Setting µ = m/n and using (1.1), which is

valid since m → ∞, we obtain (in this range we can neglect the floor brackets):

1

n
logB(m) =

[
(1 − µ)H

(
εµ

1 − µ

)
+ 2(1 + ε)µH

(
1

1 + ε

)
− H(µ)

]
(1 + o(1)).

Since µ/(1 − µ) � 2 and assuming ε < 1/4, we have H(ε µ
1 − µ

) � H(2ε). Using the easy

inequality H( 1
1+ ε

) � H(ε) � H(2ε),

1

n
logB(m) �

[
(1 − µ)H(2ε) + 3µH(2ε) − H(µ)

]
(1 + o(1))

=
[
(1 + 2µ)H(2ε) − H(µ)

]
(1 + o(1)),

which can certainly be made negative in the range 1/10 � µ � 2/3 by choosing ε small

enough. The contribution of B(m) in this range to the sum is, therefore, negligible.

In the lower range, m � n/10, we can bound B(m) from above by

B(m) �
(

n
�εm�

)
5m(

n
m

) .

If �εm� = 0, this is O
(

1

(nm)

)
, which is O(1/n) for m = 1 but o(1/n) for m > 1. Now assume

�εm� � 1. Using
(
n
k

)
�

(
ne
k

)k
we get

(
n

�εm�

)
�

(
ne

�εm�

)�εm�
�

(
2ne

εm

)εm

.

For the denominator we use
(
n
m

)
�

(
n
m

)m
, so

B(m) �
(

5
(

2ne
εm

)ε
n
m

)m

=

(
5

(
2e

ε

)ε(
n

m

)ε−1)m

�
(

10

(
n

m

)ε−1)m

.

Finally, (n/x)(ε−1)x is decreasing for x � n/e, so B(m) = o(1/n) throughout the

range.

We now turn to the proof of Theorem 2.1.

Proof. Fix a vertex z ∈ V (G) and two closed walks P1, P2 starting and ending at z. We

assume that the Pi are independent in the sense that each of them passes through an edge

which is not in the other, and it passes through that edge only once. This is possible since

G is not unicyclic (whence the cycle space of G is at least 2-dimensional), so we can first

choose some edge e1 in a cycle in G, and another edge e2 in a cycle in G \ e1; choosing Pi

as minimal paths from z to ei and back ensures that they satisfy the requirement.

A random lift G̃ of G is determined by assigning permutations in Sn to the oriented

edges of G, and we let σi be the product of these permutations along Pi, inverting the ones

assigned to edges that are traversed against their orientation. An immediate consequence
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Random Lifts of Graphs: Edge Expansion 321

of the definition of G̃ is that, for every k ∈ [n], there is a unique path in G̃ starting at

(z, k) and ending at (z, σi(k)) which is a lift of Pi. Call this path Wi(k). From the covering

property, the paths Wi(k) for fixed i are disjoint.

We let ε > 0 be as in Lemma 2.2, and assume further that ε < 1/4. Almost surely,

the permutations σ1 and σ2 are such that there are no ε-bad sets A ⊂ [n]. This follows

from Lemma 2.2 and the fact that σ1, σ2 are indeed uniformly distributed, independent

permutations (their independence follows from the independence of the paths Pi). In the

rest of the proof, we show that this property of σ1 and σ2 ensures that ξ(G̃) > ξ0 where

ξ0 = ε(1 − ε)
2|V (G)| .

Let T ⊂ V (G̃) be a set with 0 < |T | � 1
2
|V (G̃)|. We need to show that |E(T , T̄ )| � ξ0|T |.

For a vertex v ∈ V (G), let Tv = T ∩ G̃v be the part of T that lies above v, let tv = |Tv|,
and set m = maxv∈V (G) tv . Note that |T | � m|V (G)|.

Suppose that tu < (1 − ε)m for some u ∈ V (G). Let v be any vertex for which tv = m,

and let Q be a v − u path in G. Using again the unique lifting property of paths, there

are n disjoint paths in G̃ starting at G̃v and ending in G̃u. At least εm of those connect

a vertex in Tv to a vertex outside Tu. Therefore E(T , T̄ ) contains at least εm edges, so

ξ(T ) � ε/|V (G)| � ξ0 and we are done.

We can now assume that tu � (1 − ε)m for every u ∈ V (G) (this means that T is

quite evenly distributed across the vertex fibres). It follows that m � 2
3
n and tu > 0 for

every u ∈ V (G). Let A = {k ∈ [n] | (z, k) ∈ Tz} where z is the vertex chosen above. Since

|A| = |Tz | we have 0 < |A| < 2
3
n. It follows that |A ∪ σ1(A) ∪ σ2(A)| � (1 + ε)|A|. Without

loss of generality, there are at least ε
2
|A| indices k ∈ A for which σ1(k) 
∈ A. For such

indices, the path W1(k) contains an edge in E(T , T̄ ), so

|E(T , T̄ )| � ε

2
|A| � ε(1 − ε)

2
m

and since |T | � m|V (G)| we have ξ(T ) � ε(1−ε)
2|V (G)| = ξ0 as required.

In what follows we seek more precise information on the edge expansion of random lifts.

For example, let G be a connected d-regular base graph. We suspect that the behaviour

of edge expansion in random lifts of G resembles that of random d-regular graphs, in the

following sense. Let

ξ∗(d) = lim sup{ξ(G) | G a d-regular graph}.

We conjecture that for every connected d-regular G, almost every lift G̃ of G has edge

expansion

ξ(G̃) � min(ξ(G), ξ∗(d)).

(Perhaps even equality holds.) We cannot decide this question in general, but we were able

to explicitly bound from below the edge expansion of almost every lift for some specific

base graphs, as will be discussed in Section 3.
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Figure 1. Histograms of λ2 for lifts of two graphs.

2.1. The second eigenvalue

It is well known (see, e.g., [2], [1]) that there are close relations between the expansion

properties of a regular graph and the second-largest eigenvalue of its adjacency matrix.

It is interesting to see what can be said about the spectrum of a lift, in particular random

lifts. We denote the spectrum, as usual, by d = λ1 � λ2 � . . . � λv .

A simple observation is that if G̃ is a lift of G, then every eigenvalue of G is also

an eigenvalue of G̃: any eigenvector f(v) of G can be lifted to G̃ by setting f̃(ṽ) = f(v)

whenever ṽ ∈ G̃v . It follows that λ2(G̃) � λ2(G), which should be compared with the fact

that a lift cannot have better edge expansion than the base graph.

In Figure 1 we present empirical results for the distribution of the second eigenvalue

of lifts of Petersen’s graph and the complete graph K8. In both cases, 104 random lifts

were generated and the second eigenvalue was numerically calculated for each one. Even

though the graphs are different, there is a striking similarity between the distributions.

The average value of λ2, compared with the so-called Ramanujan bound 2
√
d − 1,

(cf. [10], [11], [6]), are shown for the two cases. We see that the (approximate) expectation

of the second eigenvalue is below the Ramanujan bound. Recall that a d-regular graph is

called Ramanujan if λ2 � 2
√
d − 1. A natural problem is to what extent random lifts satisfy

the Ramanujan property. We hope to pursue this question, and similar ones concerning

the spectra of lifts, in future papers.

3. Random lifts of Bl

Let G = Bl be the pseudo-graph with one vertex and l loops. An n-lift G̃ of G has a single

vertex fibre V (G̃) = [n] and the edges are formed by choosing randomly l permutations
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σ1, . . . , σl and connecting k to σi(k), for every 1 � i � l and k ∈ [n]. The result is, of course,

a d = 2l-regular graph, possibly with loops and multiple edges. In the census of edges

in E(S, S̄ ) for S ⊂ [n], we count edges according to their multiplicity. Loops are never in

E(S, S̄ ) so there is no question of how to count them.

In this section we present a lower bound for the edge expansion of almost every lift

generated in this way.

Theorem 3.1. Let ξ0 be the smaller root of H(ξ/d) = (d − 2)/d where d = 2l. Then for

every ξ < ξ0, almost every lift G̃ of G = Bl has edge expansion ξ(G̃) � ξ.

Let ξ0(d) be the constant appearing in the theorem. One can calculate ξ0(4) ≈ 0.440111

and ξ0(6) ≈ 1.04371. As d grows, ξ0(d) → d/2 since H−1(1) = 1/2. This is quite easily seen

to be tight (see [5]). Exactly the same formula for a lower bound on the edge-expansion

appears in [5] for random regular graphs. Recently, it was shown [7] that our model

for random lifts of Bl and random regular graphs of degree 2l are contiguous models,

which means that they satisfy the same asymptotic properties. The proof we present,

however, is relatively simple, and can easily be adapted to base graphs other than Bl ,

which correspond to decidedly different models of random regular graphs.

The proof has two main parts. The first (Proposition 3.2) is a bound on the probability

that a random lift has edge expansion below a given ξ. The second, given in Propositions

3.3 and 3.5, is an analytical calculation which proves that for ξ < ξ0, this bound tends to

0 as the order of the lift n → ∞. We start with the bound, which is essentially a simple

union bound.

Proposition 3.2. Let P (a, ξ) be the probability that a random lift of Bl contains a set S of

cardinality |S | = a and ξ(S) � ξ. Then

P (a, ξ) �
(
n

a

)1−l ∑
0�b1 ,...,bl�a∑
bi�a(l−ξ/2)

∏
i

(
a

bi

)(
n − a

a − bi

)
. (3.1)

Proof. Fix a subset S ⊂ [n] of the vertices of G̃. We can calculate the distribution of

|E(S, S̄ )| over the sample space of random lifts. Naturally, this random variable depends

only on a, the size of S . For each permutation σi, let bi = |{k ∈ S |σi(k) ∈ S}| be the number

of elements of S that σi maps into S . The number of elements in S mapped outside S

is a − bi, and the number of elements outside S that σi maps into S is also a − bi, so σi
contributes 2(a − bi) to E(S, S̄ ) and

|E(S, S̄ )| = 2la − 2

l∑
i=1

bi

whence

ξ(S) = 2l − 2

a

l∑
i=1

bi,

so ξ(S) � ξ if and only if
∑

bi � a(l − ξ/2).
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324 A. Amit and N. Linial

The distribution of bi is easy to calculate explicitly: the probability that bi = b is(
a
b

)(
n− a
a− b

)
(
n
a

) .

The bound in (3.1) is simply a union bound over all possible choices of such bi and

choices of S of size a.

The probability P (ξ) that the lift has edge expansion smaller than ξ is therefore bounded

by

P (ξ) �
n/2∑
a=1

B(a),

where B(a) is the right-hand side of (3.1). Let us set

λ = 1 − ξ

2l
= 1 − ξ

d
(3.2)

Q(a, b1, . . . , bl) =

(
n

a

)1−l ∏
i

(
a

bi

)(
n − a

a − bi

)
, (3.3)

so

B(a) =
∑

0�b1 ,..., bl�a
1
l

∑
bi�λa

Q(a, b1, . . . , bl). (3.4)

We seek the maximal ξ0 that guarantees P (ξ) → 0 as n → ∞ whenever ξ < ξ0. As in

the proof of Lemma 2.2, we need to treat separately the small sets a < δn and the large

ones δn � a � n/2. Here δ is some small constant that will be determined later (in fact,

δ = 1/105 will suffice). For convenience, set

n/2∑
a=1

B(a) =

δn∑
a=1

B(a) +

1
2 n∑

a=δn

B(a)

= B1 + B2.

In the following two propositions we prove B2 → 0 and B1 → 0 for the required ξ.

Proposition 3.3. If ξ < ξ0 then B2 → 0.

Proof. Since the number of summands in B2 is O(n), and the number of summands in

B(a) is also polynomial in n, it suffices to prove an exponentially small upper bound on

Q(a, b1, . . . , bl) in the range

(1) δn < a � 1
2
n,

(2) 0 � bi � a,

(3) 1
l

∑l
i=1 bi � λa.

Using (1.1) and (1.2) we obtain

1

n
log2 Q(a, b1, . . . , bl) � q(α, β1, . . . , βl) + o(1) (3.5)
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where α = a/n, βi = bi/n and

q(α, β1, . . . , βl) = (1 − l)H(α) +

l∑
i=1

(
αH

(
βi

α

)
+ (1 − α)H

(
α − βi

1 − α

))
. (3.6)

If q is negative then Q → 0 exponentially as required. The following lemma determines

the points where q is maximized, which enables us to prove that q < 0 in the required

range, for the specified ξ.

Lemma 3.4. Let ∆ = ∆λ ⊂ R
l+1 be the region determined by

(1) 0 � α � 1/2,

(2) 0 � βi � α,

(3) 1
l

∑l
i=1 βi � λα,

with l � 2 and 1/2 < λ. The function q given by (3.6) attains its global maximum in ∆λ

either when α = 1/2 and βi = λ/2 for all i, or when α = 0 and βi = 0 for all i.

Proof. The concavity of H implies immediately that if β̄ = (
∑

βi)/l then

q(α, β̄, . . . , β̄) � q(α, β1, . . . , βl),

so we may assume that all βi are equal, βi = β where β � λα. Note that (α, β1, . . . , βl) ∈ ∆

implies (α, β̄, . . . , β̄) ∈ ∆.

We fix α and optimize over α � β � λα. Now

∂

∂β
q(α, β, . . . , β) = l log

(
α − β

β

)
− l log

(
1 − 2α + β

α − β

)
= l log

(
(α − β)2

β(1 − 2α + β)

)
.

This expression is always negative, because β � λα � 1
2
α � α2 since λ � 1/2 � α. There-

fore, to maximize q, β needs to be as small as possible, namely β = λα. We are left with

the univariate function f(α) = q(α, λα, . . . , λα). Explicitly, f is given by

f(α) = (1 − l)H(α) + lαH(λ) + l(1 − α)H

(
(1 − λ)

α

1 − α

)
,

and its derivatives are

f′(α) = (1 − l) log
1 − α

α
+ lH(λ) − lH

(
(1 − λ)

α

1 − α

)

+
l(1 − λ)

1 − α
log

1 − 2α + λα

(1 − λ)α

and

f′′(α) = log(e)
λl − 1 − α(l − 1)(2 − λ)

α(1 − α)(1 − 2α + λα)
.

Notice that f′′(α) = 0 has at most one root, so f′ has at most a single extremum.

Further,

lim
α→0+

f′(α) = −∞
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since lλ > 1, while

f′
(

1

2

)
= 2l(1 − λ) log

λ

1 − λ
> 0.

It follows that f′(α) = 0 has exactly one root in the range 0 � α � 1/2, so f(α) has a

unique minimum in that range, and the maximal value of f is achieved either at α = 0 or

α = 1/2 as claimed.

Returning to the proof of Proposition 3.3, we set λ0 = 1 − ξ0

2l
. Then λ0 > 1/2, the lemma

applies and at the nonzero critical point we have

q(1/2, λ0/2, . . . , λ0/2) = (1 − l) + lH(λ0) = 0.

Since λ > λ0, q(1/2, λ/2, . . . , λ/2) < 0. We are assuming here a � δn, namely α � δ, so

q is bounded away from 0 throughout the whole range, and Q is exponentially small as

required.

This proof cannot be applied to a = o(n) because q(0, 0, . . . , 0) = 0. For this reason we

have to deal separately with B1. In fact, small sets a.s. have larger edge expansion than

that given by Theorem 1.2.

Proposition 3.5.

(1) If l = 2 and ξ < 1 then B1 → 0.

(2) If l � 3 and ξ < l then B1 → 0.

Proof. Fix a in the range 1 � a < δn. Call 
b = (b1, . . . , bl) admissible if 0 � bi � a

and 1
l

∑
bi � λa. Suppose 
b = (b1 + 1, b2, . . . , bl) is admissible and b1 � b2 + 1. Then 
b′ =

(b1, b2 + 1, . . . , bl) is also admissible, and since

Q(a, b1, b2 + 1, . . . , bl)

Q(a, b1 + 1, b2, . . . , bl)
=

b1 + 1

b2 + 1
· n − 2a + b1 + 1

n − 2a + b2 + 1
· (a − b2)

2

(a − b1)2

we have Q(a,
b′) > Q(a,
b). Starting from any 
b and iterating this procedure we can find

a 
b′ with Q(a,
b′) > Q(a,
b) and (up to rearrangements) 
b′ = (b0, b0, . . . , b0 + 1, . . . , b0 + 1)

where b0 + j/l � λa for some 0 � j < l.

Let
b0 = (b0, b0, . . . , b0). A similar calculation shows that (for large n) Q(a,
b0) > Q(a,
b′).

It is possible that 
b0 is not admissible, but it is not far – in fact,

b0 � λa − l − 1

l
� λa − 1. (3.7)

We have shown that, given a, there exists an integer b0 satisfying (3.7) so that

Q(a, b1, . . . , bl) < Q(a, b0, . . . , b0)

for every admissible (b1, . . . , bl). It follows that

B(a) � (a + 1)lQ(a, b0, . . . , b0) = (a + 1)l
(
n

a

)1−l((
a

b0

)(
n − a

a − b0

))l

= C(a, b0).
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Assume first that l � 3. Here ξ < l so λ > 1/2. Let us consider even values of a; the

odd case is similarly handled. Since b0 is an integer greater than λa − 1 we have b0 � a/2.

Decreasing b0 causes C(a, b0) to increase, so we may take b0 = a/2.

Set f(a) = C(a, a/2). This is decreasing as a function of l, so it is enough to consider

the case l = 3. We have

f(a) =
(a + 1)3

(
a
a/2

)3(n−a
a/2

)3

(
n
a

)2
.

If δ is small enough, then f(a) � f(a + 2) for 1 � a � δn. This follows from a straight-

forward calculation:

f(a + 2)

f(a)
=

(a + 3)3(a + 1)5(a + 2)5(n − 3
2
a)3(n − 3

2
a − 1)3(n − 3

2
a − 2)3

(a + 1)3(a/2 + 1)9(n − a)5(n − a − 1)5

� 29(1 +
1

a
)4(a + 3)

(n − 3
2
a)9

(n − a − 1)10

� 213 a + 3

n − a − 1

� 213 δ + 3/n

1 − δ − 1/n
� 1.

Finally, f(2) = O(1/n) and f(4) = O(1/n2) so
∑δn

1 B(a) = O(1/n).

The case l = 2 is done in the same manner. The difference is that C(a, a/2) is not

decreasing in this case, but C(a, 3a/4) is. Since we just assumed ξ < 1 for l = 2, then

indeed λ > 3/4 and b0 � 3a/4 − 1/2 and we proceed as before.

We close this section with some remarks concerning other base graphs. Let G = (V , E)

be a connected graph. Trying to obtain tighter lower bounds on the edge expansion of

lifts of G (tighter than the one obtained from the proof of Theorem 2.1), we can use a

similar method as the one we used for Bl .

To do this, we need a bound on the probability that a set in the lift has many internal

edges (i.e., small expansion). It is easy to write such a bound, similar to equation (3.1),

using variables av to parametrize the size of the set in each fibre G̃v (instead of the single

a in (3.1)) and buv for counting the edges connecting vertices in the fibre G̃u to vertices in

G̃v . It is then necessary to find the critical value ξ0 of ξ for which the bound tends to 0.

Natural candidates for ξ0 are obtained by setting av = n/2 and buv = b0 on the one

hand, or else taking av = 0 for all v ∈ V0 and av = 1 for v ∈ V \ V0.

We have been able to carry out this program for the complete graphs Kr and the results

are, once again, the same as those obtained for random regular graphs. It should be noted

that a random lift of Kr is different from a random (r − 1)-regular graph – for example,

a random regular graph is not expected to cover a complete graph.

4. An improved bound through ε-nets

We now digress from the subject of random lifts to show how the method of ε-nets can

be applied to improve the lower bound on the edge expansion of regular graphs. We
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demonstrate the method in the standard model for random regular graphs, although the

same can be done for random lifts. To prepare the ground, we recall briefly the proof of

a lower bound on the edge expansion of random regular graphs from [5].

4.1. Random regular graphs

The standard probability space used to randomly generate regular graphs is the collection

of perfect matchings among nd vertices, grouped into n clusters of size d. By shrinking

each cluster into a single vertex, we get (with probability bounded away from zero for

fixed d and growing n) a random d-regular graph G on n vertices.

Let X be the set of nd vertices. For 0 � α � 1/2 let Sα be the collection of subsets

A ⊂ X of size αnd that are unions of clusters. These are the ones that yield sets of size αn

in G. The probability that A ∈ Sα contains exactly βnd vertices that are paired to each

other in the perfect matching is

p(α, β) =

(
αnd

βnd

)(
(1 − α)nd

(α − β)nd

)
((α − β)nd)!

N(βnd)N((1 − 2α + β)nd)

N(nd)
,

where N(2v) = (2v)!
2vv!

is the number of perfect matchings of 2v vertices. If β is so large so

that the union bound |Sα|p(α, β) = o(1), then sets of size αn with small expansion will not

emerge in G. The relation between β and the edge expansion ξ is

ξ = d

(
1 − β

α

)
. (4.1)

To calculate the union bound U = |Sα|p(α, β) we note that |Sα| =
(
n
αn

)
, and rewriting

p(α, β) we obtain2

U =

(
n
αn

)
(
nd
αnd

)2(α−β)nd

(
nd/2

βnd/2, 2(α − β)nd/2

)

and

1

n
logU =

(
H(α)(1 − d) + (α − β)d +

d

2
H(β, 2(α − β))

)
(1 − o(1)).

It turns out that α = 1/2 is the extremal case (we will prove this in the next section),

and so the critical β is determined by

H(2β) =
d − 2

d
,

which yields H(ξ/d) = d−2
d

since ξ/d = 1 − 2β by (4.1). This is the same expression we

obtained in Theorem 1.2.

4.2. ε-nets

At the heart of the above proof lies the union bound |Sα|p(α, β). This argument fails,

however, to take into account that if a certain set A has high expansion (low β), then

2 We denote x!
y!z!(x− y − z)! as

(
x
y,z

)
. Correspondingly, we define H(x, y) = −x log x − y log y − (1 − x − y) log(1 −

x − y).
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other sets that have large intersection with A tend to expand, too. We wish somehow to

exploit this fact. Let us first outline the method, in a general probability space.

The general idea. In the usual setting of the union bound approach, we are given a family

{Ai}i∈I of events and we wish to estimate Pr(∪Ai). Suppose that ρ is some metric on I

such that it is possible to estimate Pr(Ai�Aj) in terms of ρ(i, j). It is then natural to define

an ε-net in I , namely a set J ⊂ I with the property that, for every i ∈ I , there is some

j ∈ J such that ρ(i, j) � ε.

Applying a union bound to the events {Aj}j∈J may yield better results, since there are

fewer events in the ε-net J than in the whole of I . It is then possible to apply these results

to all events in I using the information on Pr(Ai�Aj).

In our case, let us fix an ε > 0 and say that two sets A1, A2 ∈ Sα are ε-close if

|A1 ∩ A2| � (1 − ε)αnd = (1 − ε)|A1|. (4.2)

Now let Nα = Nα(ε) be a subcollection of Sα with the property that, for every A ∈ Sα,

there is some N ∈ Nα such that N is close to A. This is the ε-net. Since Nα is smaller

than Sα, the union bound implies that the condition |Nα|p(α, β′) = o(1) already holds for

some β′ < β. That is, every N ∈ Nα contains at most β′nd vertices that are paired among

themselves. This means that sets in the net have edge expansion ξ = d(1 − β′/α).

By the large intersection property (4.2), every A ∈ Sα has fewer than β′′nd self-paired

vertices, for some β′′ which is slightly larger than β′ but still smaller than β. We are left

with calculating β′ and β′′, and then optimizing ε to get the best lower bound possible in

this context.

We estimate β′ as before, using the same formula for p(α, β). We only need to estimate

the size of Nα(ε). For this we note that for every A ∈ Sα, the number of sets B that are

ε-close to A is at least

D =

(
αn

εαn

)(
n(1 − α)

εαn

)
.

By a standard probabilistic argument (see, for example, [3, Theorem 2.2, Chapter 1]), we

can find an ε-net with size

|Nα| = |Sα|1 + log(D + 1)

D + 1

so

1

n
log |Nα| �

(
H(α) −

(
αH(ε) + (1 − α)H

(
ε

α

1 − α

)))
(1 − o(1)).

A noticeable feature of this formula is that at ε = 0, the derivative of log |Nα| with

respect to ε is infinitely negative, so that the ‘immediate gain’ from introducing the ε-net

is infinite.

Given the bound β′ on self-paired vertices in members of Nα, we need to bound from

above the number of such vertices in a set A ∈ Sα. Given A, let N ∈ Nα be a set ε-close

to A. Obviously, the worst case is when A contains all the self-paired vertices of N, and

in addition all the vertices in A \ N are paired to ones in N (see Figure 2). This gives

β′′ � β′ + 2αε.
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N A

εαnd

βnd

Figure 2. The worst case when moving from N to A.

It is convenient to change variables and replace β by µ = β/α. To summarize, we have

the following result.

Proposition 4.1. Let d � 3 and ε > 0. Define, for 0 < α � 1/2 and 0 < µ � 1,

g1(α) = H(α) − αH(ε) − (1 − α)H

(
εα

1 − α

)
,

g2(α, µ) = −dH(α) + α(1 − µ)d +
d

2
H(αµ, 2α(1 − µ)),

g(α, µ) = g1(α) + g2(α, µ),

and let µ0 be such that g(α, µ) < 0 for every µ0 < µ � 1 and 0 < α � 1/2. Then the

edge expansion of a random d-regular graph is, almost surely, at least ξ for any ξ <

d(1 − µ0 − 2ε).

Proof. For a given ε, g1 bounds the (logarithm of the) size of the ε-net, and g2 bounds the

probability that poorly expanding sets exist in the net. If their sum is negative, a random

regular graph contains a net in which each set has edge expansion at least d(1 − µ) by

(4.1), and so every set in the graph has edge expansion at least d(1 − µ − 2ε).

We now determine µ0 explicitly.

Theorem 4.2. For every d � 3 there is an ε0 = ε0(d) such that if 0 � ε � ε0 then the

following holds. Let µ0 be the larger solution of

2

d
(1 − H(ε)) = 1 − H(µ0) (4.3)

then the edge expansion of a d-regular graph is almost surely at least ξ whenever ξ <

d(1 − µ0 − 2ε).
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Notice that for ε = 0, this gives the same edge expansion as Theorem 1.2. Also note

that taking the larger solution implies µ0 � 1/2.

Proof. Define g1, g2 and g as in Proposition 4.1. Equation (4.3) is just the requirement

that g( 1
2
, µ0) = 0. The point of the theorem is that, indeed, α = 1

2
is the critical case. We

need to show that if µ0 is defined by (4.3) then for any 0 < α � 1/2 and µ0 < µ � 1 we

have g(α, µ) < 0. First, for any fixed α, the function g(α, µ) has a unique maximum at

µ = α. This follows from

∂g

∂µ
=

∂g2

∂µ
= −αd +

1

2
αd log

(2α(1 − µ))2

αµ(1 − 2α + αµ)
,

which is easily seen to be strictly negative for µ > α and positive otherwise. It therefore

suffices to show that f(α) = g(α, µ0) � 0. We have f(0+) = 0 and f(1/2) = 0 by definition.

Also, f′(0+) = −∞ and

f′(1/2) = −2ε log
1 − ε

ε
+ d(1 − µ0) log

µ0

1 − µ0
,

which is positive for ε small enough. Therefore, if f is not negative throughout the interval

0 � α � 1/2, it must have at least three extremal points, so f′′ must have at least two

zeros. We have

f′′(α) = log2(e)
Aα2 + Bα + C

2α(1 − α)(1 − α − αε)(1 − α(2 − µ))
,

where

A = (d − 2)(2 − µ0)(1 + ε),

B = 6 − 2(d + µ0) − ε((d − 2)µ0 + 2),

C = dµ0 − 2 + 2ε.

The key point is that for ε = 0, the numerator vanishes at α = 1 which is also a root of

the denominator. Therefore the numerator becomes a linear function of α for ε = 0, and

in particular can only have a single zero. It follows that f′′ has a single root for ε small

enough. We note that, when applying this result, one needs to check that the negativity

of f holds for the desired ε.

To find the best ε we optimize 2ε + µ0 under the constraint (4.3). Using Mathematica,

we find that for d = 3 the optimum is ε ≈ 0.00029082, which gives ξ ≈ 0.184682, compared

with 0.184471 obtained without ε-nets (as in [5]), an improvement of about 0.1%. It is not

hard to verify numerically that this ε is small enough to satisfy the negativity requirement

for f in the above proof.
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