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Plan of this talk

I A brief introduction to the probabilistic
method.

I A quick review of expander graphs and their
spectrum.

I Lifts, random lifts and their properties.

I Spectra of random lifts.
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What is the probabilistic method?
Introduction by example.

Theorem
In every party of 6 people there are either 3 who
know each other or 3 who are strangers to each
other.

In other words: If you color the edges of K6 (the
complete graph on 6 vertices) blue and red, you
necessarily find a monochromatic (either red or blue
triangle.
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The result is tight. There is a red-blue coloring of
the edges of K5 with no monochromatic triangle.
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More generally,

Theorem (Ramsey; Erdős-Szekeres)
Let N =

(
r+s−2
r−1

)
. If you color the edges of KN red

and blue, then you necessarily get a red Kr or a blue
Ks .
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Diagonal Ramsey Numbers

Theorem
In every red-blue coloring of the edges of KN there
is a monochromatic complete subgraph on at least

1

2
log2 N vertices.

Theorem
Every N-vertex graph contains either a clique or an
anti-clique on at least

1

2
log2 N vertices.
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Diagonal Ramsey Numbers (contd.)

Theorem (Erdős ’49)
There are red-blue colorings of KN where no
monochromatic subgraph has more than

2 log2 N vertices.

Theorem
There are N-vertex graphs where no clique or
anti-clique has more than

2 log2 N vertices.
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How can you prove such a statement?

One may expect that (like the coloring of K5 we saw
before) I would show you now a method of coloring
that has no large monochromatic subgraphs.

We do not know how to do this. In fact it is a
major challenge to find such explicit colorings.

Instead, we use the probabilistic method.
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Introducing the probabilistic method

There are 2(N
2) ways to color the edges of KN by red

and blue. We think of them as a probability space Ω
with the uniform distribution.

In other words, we give the following recipe for
sampling from Ω: For each edge of KN , flip a coin
(independently from the rest). If it comes out heads
color the edge red if you get tails, color it blue.
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Let us consider an integer r (to be determined
later) and a random variable B defined on Ω. for a
given coloring C of KN , we define B(C) to be the
number of sets of r vertices in C all of whose edges
are blue. The expectation of X is:(

N

r

)
1

2(r
2)
.

We likewise define a random variable R that counts
red subgraphs.
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Note that if B(C) = R(C) = 0, there is no
monochromatic set of r vertices in C, which is just
what we need.

If the sum of the expectations

E(R) + E(B) < 1.

Then a coloring C exists with no monochromatic set
of r vertices. An easy calculation yields that this
holds for

r = 2 log2 N .
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What has happened here?

Why does the probabilistic method work so well?

In every mathematical field intuition is created from
examples that we know.
But it is hard to analyze large specific examples and
the probabilistic method allows us to bypass this
difficulty. It serves us as an observational tool,
much like the astronomer’s telescope or a biologist’s
microscope.
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Models of random graphs

What we saw is a close relative of the most basic
model of random graphs, Erdős-Rényi’s G (n, p)
model. In this model we start with n vertices. For
each pair of vertices x , y we decide, independently
and with probability p, to put an edge between x
and y .

There are other important and interesting models of
graphs. For example, we have known for 30 years
now how to sample random d-regular graphs.
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What’s there, what’s still needed?

Random graphs come up a lot in (mathematical)
statistical mechanics. A major example is
Percolation Theory.

Start e.g., from the graph of the d-dimensional
lattice. Maintain every edge with probability p, and
discard it with probability 1− p. (Independently
over edges).

A typical basic question in this area: What is the
probability that an infinite connected component
remains.
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You could also seek models to describe natural or
artificial phenomena such as the Internet graph or
biological control networks.
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In particular, one shortcoming of the G (n, p) model
is the lack of control we have over the graph’s
structure.

We want ”more structured” models of random
graphs.

Random lifts of graphs, our subject today, are such
a model.
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A very quick review on expansion in graphs

There are three main perspectives of expansion:

I Combinatorial - isoperimetric inequalities

I Linear Algebraic - spectral gap

I Probabilistic - Rapid convergence of the
random walk (which we do not discuss today)

For (much) more on this: see our survey article with
Hoory and Wigderson.
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The combinatorial definition

A graph G = (V ,E ) is said to be ε-edge-expanding
if for every partition of the vertex set V into X and
X c = V \ X , where X contains at most a half of
the vertices, the number of cross edges

e(X ,X c) ≥ ε|X |.

In words: in every cut in G , the number of cut
edges is at least proportionate to the size of the
smaller side.

Nati Linial Random Lifts of Graphs



The combinatorial definition

A graph G = (V ,E ) is said to be ε-edge-expanding
if for every partition of the vertex set V into X and
X c = V \ X , where X contains at most a half of
the vertices, the number of cross edges

e(X ,X c) ≥ ε|X |.

In words: in every cut in G , the number of cut
edges is at least proportionate to the size of the
smaller side.

Nati Linial Random Lifts of Graphs



The combinatorial definition (contd.)

The edge expansion ratio of a graph G = (V ,E ), is

h(G ) = min
S⊆V , |S |≤|V |/2

|E (S , S)|
|S |

.
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The linear-algebraic perspective

The Adjacency Matrix of an n-vertex graph G ,
denoted A = A(G ), is an n × n matrix whose (u, v)
entry is the number of edges in G between vertex u
and vertex v . Being real and symmetric, the matrix
A has n real eigenvalues which we denote by
λ1 ≥ λ2 ≥ · · · ≥ λn.
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Simple things that the spectrum of A(G )
tells about G

I If G is d-regular, then λ1 = d . In the
corresponding eigenvector all coordinates are
equal.

I The graph is connected iff λ1 > λ2. We call
λ1 − λ2 the spectral gap.

I The graph is bipartite iff λ1 = −λn.

I χ(G ) ≥ −λ1

λn
+ 1.

I A substantial spectral gap implies logarithmic
diameter.
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Spectrum vs. expansion

Theorem
Let G be a d-regular graph with spectrum
λ1 ≥ · · · ≥ λn. Then

d − λ2

2
≤ h(G ) ≤

√
(d + λ2)(d − λ2).

The bounds are tight.
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What’s a ”large” spectral gap?

If expansion is “good” and if a large spectral gap
yields large expansion, then it’s natural to ask:

Question
How small can λ2 be in a d-regular graph? (i.e.,
how large can the spectral gap get)?

Theorem (Alon, Boppana)

λ2 ≥ 2
√

d − 1− o(1)
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The meaning of the number 2
√

d − 1

A good approach to extremal problems is to come
up with a candidate for an ideal example, and show
that there are no better instances.

What, then, is the ideal expander? A good
candidate is the infinite d-regular tree. Using (a
little) spectral theory it is possible to define a
spectrum for infinite graphs. It turns out that the
spectrum of the d-regular infinite tree spans the
interval

(−2
√

d − 1, 2
√

d − 1)
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Some questions

How tight is this bound?

Problem
Are there d-regular graphs with second eigenvalue

λ2 ≤ 2
√

d − 1 ?

When such graphs exist, they are called Ramanujan
Graphs.
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What is the typical behavior?

Problem
How likely is a (large) random d-regular graph to be
Ramanujan?
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What is currently known about
Ramanujan Graphs?

Margulis; Lubotzky-Phillips-Sarnak; Morgenstern:
d-regular Ramanujan Graphs exist when
d − 1 is a prime power. The construction
is easy, but the proof uses a lot of heavy
mathematical machinery.

Friedman: If you are willing to settle for
λ2 ≤ 2

√
d − 1+ε, they exist. Moreover,

almost every d-regular graph satisfies
this condition.
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The distribution of the second eigenvalue

3.46 3.465

n=400000

n=100000

n=40000
n=10000

2*sqrt(3)
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Some open problems on Ramanujan
Graphs

I Are there arbitrarily large d-regular Ramanujan
Graphs (i.e. λ2 ≤ 2

√
d − 1) for every d ≥ 3?

The first unknown case is d = 7.

I Can we find combinatorial/probabilistic
methods to construct graphs with large spectral
gap (or even Ramanujan)? As we’ll see random
lifts of graphs (Bilu-L.) yield graphs with

λ2 ≤ O(
√

d log3/2 d).
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Covers and lifts - the abstract approach

Definition
A map ϕ : V (H)→ V (G ) where G ,H are graphs is
a covering map if for every x ∈ V (H), the neighbor
set ΓH(x) is mapped 1 : 1 onto ΓG (ϕ(x)).

This is a special case of a fundamental concept
from topology. Recall that a graph is a
one-dimensional simplicial complex, so covering
maps can be defined and studied for graphs.
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A little terminology

When there is a covering map from H to G , we say
that H is a lift of G .

We also call G the base graph

Convention: We will always assume that the base
graph is connected. This creates no loss in
generality.
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An example - The 3-cube is a 2-lift of K4
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Figure: The 3-dimensional cube is a 2-lift of K4
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The icosahedron is a 2-lift of K6

���� ����

����

����

��		 

�
�

� �� �
 

 


� �� ���

����

����

����

� �� ���

����

� �� ��� ����

����

  !!

" "" "##

Figure: The icosahedron graph is a 2-lift of
K6
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Making this definition more concrete

We see in the previous examples that the covering
map ϕ is 2 : 1.

I The 3-cube is a 2-lift of K4.

I The graph of the icosahedron is a 2-lift of K6.

In general, if G is a connected graph, then every
covering map ϕ : V (H)→ V (G ) is n : 1 for some
integer n (easy).
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Fold numbers etc.

I We call n the fold number of ϕ.

I We say that H is an n-lift of G , or an n-cover
of G .

I The set of those graphs that are n-lifts of G is
denoted by Ln(G ).
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A direct, constructive perspective

I Every H ∈ Ln(G ), has vertex set
V (H) = V (G )× [n].

I We call the set Fx = {x} × [n] the fiber over x .

I For every edge e = xy ∈ E (G ) we have to
select some perfect matching between the
fibers Fx and Fy , i.e., a permutation
π = πe ∈ Sn and connect (x , i) with (y , π(i))
for i = 1, . . . , n.

I This set of edges is denoted by Fe , the fiber
over e.
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Figure 1: Lifting an edge
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Random lifts of graphs

I When the permutations πe are selected at
random, we call the resulting graph a random
n-lift of G.

I They can be used in essentially every way that
traditional random graphs are employed:

I To construct graphs with certain desirable
properties. In our case, to achieve large spectral
gaps.

I To model various phenomena.
I To study their typical properties.
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A few more general properties of lifts

I Vertex degrees are maintained. If x has d
neighbors, then so do all the vertices in the
fiber of x . In particular, a lift of a d-regular
graph is d-regular.

I The cycle Cn is a lift of Cm iff m|n.

I The d-regular tree covers every d-regular
graph. This is the universal cover of a
d-regular graph. Every connected base graph
has a universal cover which is an infinite tree.
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Old vs. New Eigenvalues

Here is an easy observation:

The lifted graph inherits every eigenvalue of the
base graph.

Namely, if H is a lift of G , then every eigenvalue of
G is also an eigenvalue of H

(Pf: Pullback, i.e., take
any eigenfunction f of G , and assign the value f (x)
to every vertex in the fiber of x . It is easily verified
that this is an eigenfunction of H with the same
eigenvalue as f in G ).
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Old vs. New Eigenvalues (contd.)

These are called the old eigenvalues of H . If G is
given, the old eigenvalues appear in every lift, and
we can only hope to control the values of the new
eigenvalues.

This suggests the following approach to the
construction of d-regular Ramanujan Graphs by
repeated lifts:

I Start from a small d-regular Ramanujan Graph
(e.g. Kd+1).

I In every step apply a lift to the previous graph
while keeping all new eigenvalues in the interval
[−2
√

d − 1, 2
√

d − 1]
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How to think about 2-lifts

In an n-lift of a graph G we associate with every
edge e = xy of G a permutation πe ∈ Sn which tells
us how to connect the n vertices in the fiber Fx with
the n vertices of Fy .

But in S2 the only permutations are the identity id
and the switch σ = (12). So a 2-lift of G is
specified by deciding, for every edge e whether πe

equals id or σ.

Alternatively, we sign the edges of G where +1
stands for id and −1 for σ.
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Signing and spectra

A signing is a symmetric matrix in which some of
the entries in the adjacency matrix of G are
changed from +1 to −1.

We think of a signing in two equivalent ways: A way
of specifying a 2-lift of G ,and a real symmetric
matrix with entries 0, 1,−1.

An easy but useful observation:

Proposition
The new eigenvalues of a 2-lift of G are the
eigenvalues of the corresponding signing matrix.
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Recall: The spectral radius of a matrix is the largest
absolute value of an eigenvalue.

The above approach to the construction of
Ramanujan Graphs can be stated as follows:

Conjecture
Every d-regular Ramanujan Graph has a signing
with spectral radius ≤ 2

√
d − 1.
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The signing conjecture

But it seems that something much stronger is true

Conjecture
Every d-regular graph G has a signing with spectral
radius ≤ 2

√
d − 1.

This conjecture, if true, is tight.
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What is known

Theorem (Yonatan Bilu + L.)
By repeated application of 2-lifts it is possible to
explicitly construct d-regular graphs (d ≥ 3) whose
second eigenvalue

λ2 ≤ O(
√

d log3/2 d)
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A highlight of the proof

The most unexpected part of the proof is a converse
of the so-called Expander Mixing Lemma.

Our new lemma says that λ2 is controlled by the
extent to which G is pseudo-random.

What’s involved is the graph’s discrepancy, i.e. the
maximum of

e(A,B)− d
n |A||B |√

|A||B |
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A few more things about random lifts

A matching M in a graph G is a collection of
disjoint edges. If the edges in M meet every vertex
in G , we say that M is a perfect matching=PM.
The defect of G is the number of vertices missed by
the largest matching in G . (So the existence of a
PM is the same as zero defect).

Question: Given a base graph G and a large even
integer n, how likely is an n-lift of G to contain a
perfect matching?
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Theorem (L. + Rozenman)
Let G be a base graph and let H be a random 2n
lift of G . For every base graph exactly one of the
following four situations occurs:

I Every 2n-lift H of G contains a PM.

I Every H must have defect ≥ αn for some
constant α > 0.

I The probability that H has a PM is 1− o(1)
(but not 1).

I Almost surely H has defect Θ(log n).
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What else?

There are theorems about the typical behavior

I The typical degree of connectivity of a lift of G .

I The chromatic numbers of typical lifts.

I The typical distribution of new eigenvalues.

I ... and more ....
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... and much more that we do not know...

Open Problem

I Is there a zero-one law for Hamiltonian cycles?

I What is the typical chromatic number of an
n-lift of K5? Is it 3 or 4, perhaps each with
positive probability?
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