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Abstract: A graph with a trivial automorphism group is said to be rigid.
Wright proved (Acta Math 126(1) (1971), 1–9) that for log n

n + ω( 1
n ) ≤ p ≤ 1

2
a random graph G ∈ G(n, p) is rigid whp (with high probability). It is not
hard to see that this lower bound is sharp and for p < (1−ε) log n

n with pos-
itive probability aut(G) is nontrivial. We show that in the sparser case
ω( 1

n ) ≤ p ≤ log n
n + ω( 1

n ), it holds whp that G’s 2-core is rigid. We conclude
that for all p, a graph in G(n, p) is reconstructible whp. In addition this yields
for ω( 1

n ) ≤ p ≤ 1
2 a canonical labeling algorithm that almost surely runs in

polynomial time with o(1) error rate. This extends the range for which
such an algorithm is currently known (T. Czajka and G. Pandurangan,
J Discrete Algorithms 6(1) (2008), 85–92). C© 2016 Wiley Periodicals, Inc. J. Graph Theory
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1. INTRODUCTION

It is a truth universally acknowledged that random objects are asymmetric. It was shown
by Wright [12] that for 1

2 ≥ p ≥ log n
n + ω( 1

n ) a random G(n, p) graph has, whp, a trivial
automorphism group. He actually worked with the G(n,M) model, but the reduction to
G(n, p) follows easily by applying the Chernoff bound to show that the number of edges
in G(n, p) is highly concentrated. Also, a graph and its complement clearly have the same
automorphism group, so we can restrict ourselves to the range 1

2 ≥ p. Wright’s bound is
tight, since a graph G of slightly smaller density is likely to have isolated vertices, which
can be swapped by a G-automorphism. This article concerns the range of smaller p by
showing that for ω( 1

n ) ≤ p ≤ n− 1
2 −ε whp all of G’s automorphisms are essentially trivial.

Here is our main result.

Theorem 1. Let G = (V,E ) be a G(n, p) graph with ω( 1
n ) ≤ p ≤ n− 1

2 −ε . Then whp
its 2-core has a trivial automorphism group.

This shows that for this range of p, whp aut(G) is generated by:

� Automorphisms of rooted trees that are attached to the 2-core.
� Automorphisms of the tree components and swaps of such components.

The most interesting range of this statement is p ≤ log n+(1+ε) log log n
n . For larger p the

2-core is the whole graph, in which range ours is just a new proof for the rigidity of
sufficiently dense random graphs.

General strategy of the proof: We denote the vertex set of G’s 2-core by R(G). It is
easy to see that aut(G) fixes R(G) setwise and our proof shows first that aut(G) actually
fixes R(G) pointwise. In order to prove the theorem in full we show that this rigidity does
not result from boundary effects of vertices near V \ R(G). The neighbor set of v ∈ V
and its degree are denoted by N(v) and d(v). If x1, . . . , xk are the neighbors of v, we
denote by ∇(v) the multiset {d(xi)}k

1. Clearly ∇ is preserved by automorphisms. We fix
some k ≤ log n and consider two directed rooted cycles v1, . . . , vk and u1, . . . , uk in G.
We show that whp every two such cycles have many incompatible pairs (vi, ui) for which
∇(vi) �= ∇(ui). This already implies that R(G) is fixed pointwise. In the full proof of the
theorem we find, for every two such cycles, an incompatible pair (vi, ui), where both vi

and ui are at distance ≥ 3 from V \ R(G). Such a pair is not only incompatible in G, but
also in R(G), proving the theorem.

It turns out that Theorem 1 yields some interesting insights on the well-known graph
reconstruction conjecture that we now recall. Let G be an n-vertex graph. When we
delete a vertex of G we obtain an (n − 1)-vertex graph. By doing this separately for each
vertex in G we obtain the n graphs that make up G’s deck. The graph reconstruction
conjecture ([7], [11]) posits that every two graphs of three or more vertices that have
identical decks must be isomorphic. A graph G is said to be reconstructible if every graph
with the same deck is isomorphic to G. Bollobás proved [2] that whp G(n, p) graphs are
reconstructible for all (5/2+ε) log n

n ≤ p ≤ 1 − (5/2+ε) log n
n . We show that this is in fact true

for every 0 ≤ p ≤ 1. One reason why this extension of range is of interest has to do with
the edge reconstruction conjecture [6], which states that every graph can be reconstructed
from its deck of edge-deleted subgraphs. This leads to the notion of edge-reconstructible
graphs. We recall two facts from this theory: (i) every reconstructible graph with no
isolated vertices is edge-reconstructible (e.g., [3]). (ii) Every n-vertex graph with at least
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log2(n!)+ 1 = n log2 n + O(n) edges is edge reconstructible. Our result applies to the
range |E| ≤ O(n log n) where the edge reconstruction problem is still open.

We turn to discuss the canonical labeling problem [1]. Let L be a class of graphs.
A canonical labeling of G ∈ L assigns distinct labels to the vertices of G, where the
labeling is uniquely determined by G’s isomorphism class. In the probabilistic version
of this problem, L is a probability space of graphs and we seek to efficiently find a
canonical labeling for almost all graphs in L. Such a canonical labeling algorithm clearly
solves in particular the random graph isomorphism problem for L. Specifically we ask
for which values of p there is a polynomial time canonical labeling in G(n, p). By
considering the complementary graph it suffices to consider the range p ≤ 1/2. Such an
algorithm is known [5] for p ∈ [�( ln n

n ), 1/2]. Our proof of Theorem 1 yields a polynomial
time algorithm for ω( 1

n ) ≤ p ≤ n−(0.5+ε), whence a polynomial time solution exists for
p ∈ [ω( 1

n ),
1
2 ]. See [8] for related work on random regular graphs.

2. TECHNICAL PRELIMINARIES

Graph theory: Graphs are denoted G = (V,E ) and usually n := |V |. The neighbor set
of u ∈ V is denoted by N(u). For U ⊆ V , we denote N(U ) := (

⋃
u∈U N(u)) \ U and

Ñ(U ) := U ∪ N(U ).
The set of cross edges between two subsets U,W ⊆ V is denoted E(U,W ) := {uv ∈

E | u ∈ U, v ∈ V }, and d(U,W ) = |E(U,W )| (to wit: even if U ∩ W �= ∅, we con-
sider every relevant edge exactly once). For a singleton U = {u}, we use the shorthand
d(u,W ) = d(U,W ). Also, E(U ) = E(U,U ).

For U ⊆ V we denote σ (U ) := {v ∈ V \ U | d(v,U ) = 1}, the set of those vertices
not in U that have exactly one neighbor in U .

We denote by GU the subgraph of G induced by U ⊆ V .
Let ∇(u) denote the multiset of integers {d(v) | v ∈ N(u)}.
We denote the vertex set of G’s 2-core by R(G).
The diameter of G is denoted diam(G). If G is disconnected, diam(G) is taken to be

the diameter of G’s largest component.
Asymptotics: A property of G(n, p) graphs is said to hold whp (with high probability)

if its probability tends to 1 as n → ∞.
The asymptotic notations O,�, etc. have their standard meaning with variables tending

to ∞ unless explicitly stated otherwise.
Random Graphs: In our work with a random graph G = (V,E ), we sometimes say

that we reveal the edges in a set F ⊆ (V
2

)
. Technically this means that we condition on

this subgraph of G.
Probability: For a discrete random variable X , let

�(X ) = sup
x∈range(X )

(Pr(X = x)).

If X is multinomial with parameters (m, (p1, . . . , pk)), we denote �(X ) by
�(m, (p1, . . . , pk)). The following lemmas provide a description of�(m, (p1, . . . , pk)).

Lemma 2. Let X be a multinomial random variable with parameters (m, (p1, . . . , pk))

and suppose that �(X ) = Pr(X = (a1, . . . , ak)). Then, at > mpt − 1 for every t, or, in
other words at ≥ �mpt�.
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Proof. Without loss of generality, assume by contradiction that a1 ≤ m · p1 − 1.
Then, since

∑
i ai = m = ∑

i m · pi, there exists some index s, say s = 2 such that as >

m · ps.

Pr(X = (a1 + 1, a2 − 1, a3, . . . , ak))

Pr(X = (a1, . . . , ak))
= a2

a1 + 1
· p1

p2
>

m · p2

m · p1
· p1

p2
= 1

contrary to the assumed maximality of Pr(X = (a1, . . . , ak)). �
Lemma 3. For an integer m, a constant c > 0, and a probability vector p =
(p1, . . . , pk), such that pi ≤ c√

m
for each i, it holds that

�(m, p) ≤ m−�(
√

m
c ).

Proof. We first show how to reduce the proof to the case where pi ≥ c
3
√

m
for each

i. Assume that the lemma holds in this case. For a real vector u and two coordinate
indices i �= j, let ui, j be the vector obtained by eliminating the coordinates ui, u j and
introducing a new coordinate of ui + u j. Let X and Xi, j be multinomial random variables
with parameters (m, p), (m, pi, j), respectively. Note that for every a ∈ range(X ) there
holds

Pr(X = a) ≤ Pr(Xi, j = ai, j).

Thus, �(m, p) ≤ �(pi, j).
We generate a sequence of probability vectors that start from p and proceed as fol-

lows. At each step we replace, as described, the two smallest coordinates in the present
probability vector by one coordinate that is their sum. We continue with this process until
the first time at which this vector q has at most one coordinate that is smaller than c

2
√

m
.

If the smallest coordinate in q is ≥ c
3
√

m
, then, since each of the above steps can only

increase �, the reduction is complete. Otherwise, q has exactly one coordinate, say q1,
that is,< c

2
√

m
. But then in q1,2 all coordinates vary between c

2
√

m
and 3c

2
√

m
. The reduction

is again complete.
We now turn to proving the lemma for the case where c√

m
≥ pi ≥ c

3
√

m
for i = 1, . . . , k.

Clearly k ≥
√

m
c . Set μi = pi · m and suppose that �(X ) = Pr(X = (a1, . . . , ak)). By

Lemma 2, ai
μi

≥ 1 − 1
μi

≥ 1 − 3
c
√

m
for all i. Now

�(X ) = Pr(X = (a1, . . . , ak)) =
(

m

a1, . . . , ak

)
·
∏

i

pai
i .

By Stirling’s bound, n!
( n

e )
n
√

2πn
= 1 + O( 1

n ). Thus,

�(X ) ≤ O

⎛
⎝ (

m
e

)m √
2πm∏

i

(
ai

e·pi

)ai · √
2πai

⎞
⎠ ,

which can be stated as

�(X ) ≤ O

⎛
⎝ (

m
e

)m √
2πm∏

i

(
μi

e·pi

)ai · √
2πai

·
∏

i

(
μi

ai

)ai

⎞
⎠ = O

( √
2πm∏

i

√
2πai

·
∏

i

(
μi

ai

)ai
)
.
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But ∏
i

(
μi

ai

)ai

≤
(

1 + 4

c
√

m

)m

≤ e
4
√

m
c

and

1∏
i
√

ai
≤
(

c

3

√
m − 1

)− k
2

≤
(

c

3

√
m − 1

)−
√

m
2c

≤ O

⎛
⎝(c2m

9

)−
√

m
4c

⎞
⎠ .

Therefore,

�(X ) ≤ O

⎛
⎝(2π)−k/2√m · e

4
√

m
c ·

(
c2m

9

)− 4
√

m
c

⎞
⎠ ≤ m−�(

√
m

c ). �

Lemma 4. Let k be an integer, 1
2 ≥ p > 0, and let pi = (k

i

)
piqk−i(i = 0, 1 . . . , k),

where q = 1 − p. Then, for every m ≤ O(kp) there holds

�(m, (p0, . . . , pk)) ≤ m−�(√m).

Proof. It is well known that

�(k, (p, q)) ≤ O

((
1

pk − 1

)1/2
)

≤ O

(
1√
m

)
.

Therefore, by Lemma 3,

�(m, (p0, . . . , pk)) ≤ m−�(√m). �

3. THE MAIN THEOREM

We recall that R(G) stands for G’s 2-core. We also denote R̃ := V \ R(G).

Lemma 5. Let G be a G(n, p) graph where p > ω( 1
n ). For every n

10 > x > n
enp there

holds

Pr(|R̃| ≥ x) < e−�(npx).

Proof. Let S ⊆ V be the set of those vertices in G with degree at most 3. We claim

that |S| ≥ |R̃|
4 . Clearly |E(R̃)| < |R̃|, since R̃ is acyclic. Also, d(R̃,R) ≤ |R̃| since a vertex

in R̃ can have at most one neighbor in R. Hence,

4|R̃| − 4|S| ≤ 4|R̃ \ S| ≤
∑
v∈R̃

d(v) = 2|E(R̃)| + d(R̃,R) < 3|R̃|,

as claimed. Thus, it is enough to bound the probability that |S| ≥ 1
4 x. We fix a set A of x

4
vertices and note that a vertex v ∈ A has d(v) < 4 only if d(v,V \ A) < 4, which holds
with probability ≤ e−�(np). Thus, the probability that all vertices in A have degree ≤ 4 is
at most e−�(npx). Therefore, the probability that such a set A exists is at most
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(
n
1
4 x

)
e−�(npx) = e−�(npx)

finishing the proof. �

Definition 6. Let G = (V,E ) be an n-vertex graph, and k ≥ 3 an integer. An order k
configuration of G is a pair of functions (φ, ψ) : [k] → V . If φ(i) = ψ(i) we say that i
is a confluence of (φ, ψ).

� A confluence-free configuration (φ, ψ) is said to have type I when k ≤ log n and
(φ(1), . . . , φ(k), φ(1)) and (ψ(1), . . . , ψ(k), ψ(1)) are simple cycles (in this
order).

� We say that (φ, ψ) is a type II configuration when (φ(1), . . . , φ(k)) and
(ψ(1), . . . , ψ(k)) are each a simple path or a simple cycle. Also, k ≤ log n,
and 1, k are the only confluences (it is required that 1, k be confluences).

Lemma 7. Let G = (V,E ) be a random G(n, p) graph and let k ≤ log n. Pick the
functions φ,ψ : [k] → V uniformly at random. Consider the events

� C1 that (φ, ψ) is a type I configuration.
� C2 that (φ, ψ) is a type II configuration.

Then:

1. Pr(C1) ≤ pk · ( 2
n + p)k

2. Pr(C2) ≤ pk · ( 2
n + p)k−2 · n−2

Proof. We only prove the first claim. The same argument applies as well to the
second case.

Denote φ(k + 1) = φ(1) and ψ(k + 1) = ψ(1). For i = 0, . . . , k, we estimate
the probability of the events Ai that ψ( j)ψ( j + 1) ∈ E for every 1 ≤ j ≤ i and
(φ(1), . . . , φ(k + 1)) is a simple cycle in G. Clearly, Pr(A0) = Pr(φ(1), . . . , φ(k +
1) is a simple cycle) ≤ pk.

We complete the proof by showing that Pr(Ai+1|Ai) ≤ 2
n + p. Indeed, suppose that

ψ(i) = φ( j) for some j. In this case it is possible that ψ(i), ψ(i + 1) are neighbors
since ψ(i + 1) coincides with either φ( j − 1) or with φ( j + 1), but that happens with
probability ≤ 2

n . Otherwise, they are neighbors with probability p. �

Lemma 8. Letω( 1
n ) ≤ p = p(n) ≤ O(n−0.5−ε ) for some ε > 0. Pick a random G(n, p)

graph G = (V,E ) and two random maps φ,ψ : [k] → V where k ≤ log n. Let s denote
the number of indices i ∈ {1, . . . , k} such that ∇(φ(i)) = ∇(ψ(i)). Then:

Pr

(
s >

1

4
k | C1

)
≤ (np)−�(

√
np·k)

Pr

(
s >

1

4
(k − 2) | C2

)
≤ (np)−�(

√
np·k).

Proof. We only prove the type I case. The same argument applies to type II configu-
rations as well. The argument below and all relevant calculations take place in the space
conditioned on C1. �
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Let T = Image(φ) ∪ Image(ψ) and t = |T |. For each index i let Ui be the set of those
neighbors of φ(i) that have no other neighbor in Ñ(T ). We expose the subgraph induced
on Ñ(T ), thus revealing the sets Ui. The following proposition comes in handy.

Proposition 9. With probability 1 − e−�(npt) there holds:

� |Ñ(T )| < 2npt
� There are at least 7k

8 indices k ≥ i ≥ 1 for which np
4 ≤ |Ui| ≤ 4np.

We proceed under the conditioning that the conclusion of this Proposition holds. We
next reveal the edges connecting Ñ(T ) \⋃i Ui and V \ Ñ(T ). This determines ∇(ψ( j))
for all j. On the other hand, ∇(φ(i)) is completely determined by the neighbor sets
of vertices from Ui in V \ Ñ(T ). Consequently the family of multisets {∇(φ(i))}i is
independent.

We are concerned with the event that ∇(φ(i)) = ∇(ψ(i)). At this stage this may
already be impossible, and if possible, this uniquely determines the multiset of degrees
d(x,V \ Ñ(T )) over x ∈ Ui. The elements of this multiset are drawn from a binomial
distribution, so by Lemma 4, if np

4 ≤ |Ui| ≤ 4np, then

Pr(∇(φ(i)) = ∇(ψ(i))) ≤ (np)−�(
√

np).

Note that for s > 1
4 k to hold, the equality ∇(φ(i)) = ∇(ψ(i)) must hold for at least k

8
of the indices i for which |Ui| ≥ np

4 . Hence,

Pr(s >
1

4
k) ≤

( 7
8 k
1
8 k

)
(np)−�(k

√
np) ≤ (np)−�(k

√
np),

as stated.

Proof of Proposition 9. The first claim follows from Chernoff’s bound, as we observe
that

|Ñ(T )| ∼ t + Bin(n − t, 1 − qt ), where q = 1 − p,

so that

E(|Ñ(T )|) ≤ npt(1 + o(1)).

For the second claim

|σ (T )| ∼ Bin(n − t, t pqt−1)

and so

E(|σ (T )|) ≥ npt(1 − o(1)).

Let A denote the event that |Ñ(T )| ≤ 2npt and |σ (T )| ≥ npt
2 . By Chernoff’s bound,

Pr(A) ≥ 1 − e−�(npt).

Now,

d(σ (T ),N(T )) ∼ Bin

(
|σ (T )| ·

(
|Ñ(T )| − t − |σ (T )| + 1

2

)
, p

)
.

Journal of Graph Theory DOI 10.1002/jgt
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Let B denote the event that A holds, and, in addition, d(σ (T ),N(T )) < npt
16 . Note that

A implies

|σ (T )| ·
(

|Ñ(T )| − t − |σ (T )| + 1

2

)
≤ |Ñ(T )|2 ≤ (2npt)2.

Hence,

Pr(B|A) ≥ 1 −
(
(2npt)2

npt
16

)
p

npt
16 ≥ 1 − e−�(npt)

and so

Pr(B) = Pr(B|A) · Pr(A) ≥ 1 − e−�(npt).

Let U = ⋃
i Ui. Note that B implies that at least 3npt

8 vertices in σ (T ) have no neighbor

in N(T ), and thus, |U | ≥ 3npt
8 . Clearly, |Ui| ∼ Bin(|U |, 1

t ). Let Di denote the event that

|Ui| < np
4 . For x ≥ 3npt

8 , Chernoff’s bound implies

Pr(Di | |U | = x) ≤ e−�(np).

Note that given |U | = x, the event Di is negatively correlated with every event of the
form

⋂
j∈J Dj where ∅ �= J ⊆ [k] \ i. Thus, for every I ⊆ [k],

Pr

(⋂
i∈I

Di | |U | = x

)
≤
∏
i∈I

Pr(Di | |U | = x) ≤ e−�(np|I|).

In particular, the event D̃ that at most k
16 of the Di hold satisfies

Pr(D̃ | |U | = x) ≥ 1 −
(

k

k/16

)
· e−�(npt) ≥ 1 − e−�(npt),

which implies

Pr(B ∩ D̃) ≥ 1 − e−�(npt).

Let F̃ be the event that at most k
16 of the Ui’s satisfy |Ui| > 4npt. A similar argument

shows that

Pr(B ∩ F̃ ) ≥ 1 − e−�(npt)

and we conclude that

Pr(B ∩ D̃ ∩ F̃ ) ≥ 1 − e−�(npt). �
At this stage, arguments that will appear at the end of this section can already establish

the following whp: For ω( 1
n ) ≤ p(n) ≤ O(n−0.5−ε ) every automorphism of a G(n, p)

graph pointwise fixes its 2-core. However, we seek to prove the stronger statement
that the 2-core has no nontrivial symmetries. As before consider two random maps
φ,ψ : [k] → V where 3 ≤ k ≤ log n. Let T = Image(φ) ∪ Image(ψ) and define the
events C1,C2 as above. Clearly T ⊆ R, since T is a union of cycles, and now we need
to control the effect of non-2-core vertices on aut(G). This effect is mediated by the set
P ⊆ T of T ’s peripheral vertices, namely those within distance 2 of R̃ = V \ R. As we
show, the above-mentioned effect is not large, since |P| tends to be small. We prove the
following Lemma.

Journal of Graph Theory DOI 10.1002/jgt
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Lemma 10.

Pr

(
|P| > k

8
| C1

)
≤ (np)−ωn(k)

Pr

(
|P| > k

8
| C2

)
≤ (np)−ωn(k).

Proof. We only prove case I. The same argument applies as well to case II. We first

note that in the range p ≥ �(
log2 n

n ) the core is very likely to include all vertices. Namely,

Pr(R = V | C1) ≥ Pr(R = V ) = 1 − Pr(|R̃| ≥ 1) ≥ 1 − e−�(np) ≥ 1 − (np)−ωn(k).

The first inequality holds, since both events R = V and C1 are monotone increasing. The
second inequality follows from Lemma 5. This proves the claim since R = V implies
that there are no peripheral vertices.

We next deal with the range p ≤ o( log2 n
n ), and we always condition on C1. Let q =

1 − p and t = |T |. Clearly, k ≤ t ≤ 2k. Reveal the subgraph H of G, induced by V \ T .
Denote W = V (H) \ R(H). Let x = n

(np)log(np) . By Lemma 5,

Pr(|W | ≤ x) ≥ 1 − e−�(npx) ≥ 1 − (np)−ω(k).

We henceforth condition on this event. Note that R̃ ⊆ W , and thus, it is enough to bound
the number of vertices in T at distance ≤ 2 from W . We denote NH (W ) by Q. We claim
that |Q| ≤ |W |, since every vertex in Q has a neighbor in W , whereas every vertex in W
has at most one neighbor in Q. (Note that Q ⊆ R(H) and a vertex with more than one
neighbor in Q is in R(H) as well.)

To understand the set P of peripheral vertices, we define three sets P1,P2,P3 with
P ⊆ P1 ∪ P2 ∪ P3 and show that whp all |Pi| are small. Let P1 be the set of those vertices
in T with a neighbor in W . Let P2 be the set of those vertices in T with a neighbor in P1.
Finally, P3 is the set of those vertices in T with a neighbor in Q.

Now reveal the set of cross edges E(T,V \ T ). For v ∈ T , the probability that v has a
neighbor in W is at most xp. Thus,

Pr

(
|P1| ≥ k

400

)
≤
(

t
k

400

)
(xp)

k
400 ≤ (np)−�(k log(np))

and similarly, Pr(|P3| ≥ k
400 ) ≤ (np)−�(k log(np)). In what follows we condition on the

event that |P1|, |P3| ≤ k
400 .

We finish by bounding |P2|. Reveal the edge set E(P1, T ). By assumption, T is the
image of a type I configuration, namely two simple cycles, possibly with some overlaps.
This implies the existence of certain edges in E(P1, T ), at most 4|P1| in number, since a
subgraph consisting of two simple cycles has maximal degree at most 4. In addition, the
random variable d(P1,T ) is a sum of at most |P1||T | independent Bernoulli-p random
variables. By assumption 4|P1| ≤ k

100 , so that d(P1, T ) > k
50 only if at least k

100 of these
Bernoulli trials succeed. Therefore

Pr

(
d(P1, T ) >

k

50

)
≤
( kt

400
k

100

)
· p

k
100 ≤ (kp)�(k) ≤ (np)−ωn(k).

Clearly, |P2| ≤ d(P1,T ), and so, |P2| ≤ k
50 with probability at least 1 − (np)−ωn(k). �
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Definition 11. A configuration (φ, ψ) of G is said to be compatible if there exists an
automorphism π of R(G) such that π(φ(i)) = ψ(i) for each i.

Lemma 12. Let G be a random G(n, p) graph with ω( 1
n ) ≤ p ≤ O(n−0.5−ε ). Then

whp G contains no compatible configuration of type I or II.

Proof. We prove the claim for type I configurations. The proof for type II follows
the same argument.

In the coming paragraph we denote ∇(v) byY (v). We also consider the 2-neighborhood
of v ∈ R(G) in the subgraph induced by R(G) and denote ∇(v) in that graph by Z(v).
Clearly, a configuration φ,ψ : [k] → V can be compatible only if Z(φ(i)) = Z(ψ(i))
for each 1 ≤ i ≤ k.

Let 3 ≤ k ≤ log n and pick two functions φ,ψ : [k] → V uniformly at random. By
Lemma 7, the probability that (φ, ψ) is a configuration is at most p2k+on(1). Conditioned
on this event, let

A = {i ∈ [k] | Y (φ(i)) �= Y (ψ(i))}.
By Lemma 8, Pr(|A| < 3

4 k) ≤ (np)−ωn(k). Let

B = {i ∈ [k] | Y (φ(i)) = Z(φ(i)) andY (ψ(i)) = Z(ψ(i))}.
Note that i ∈ B when both φ(i) and ψ(i) are nonperipheral. Hence, by Lemma 10,
Pr(|B| < 3

4 k) ≤ (np)−ωn(k). But |A|, |B| ≥ 3
4 k, so they must intersect, say i ∈ A ∩ B.

Then Z(φ(i)) �= Z(ψ(i)), which makes (φ, ψ) incompatible. Clearly this holds with
probability 1 − (np)−ωn(k).

If ak is the number of compatible type I configurations we can now estimate its
expectation:

E(ak) = n2k · p2k+on(1) · (np)−ωn(k) ≤ (np)−ωn(k)

and so
log n∑
k=3

E(ak) ≤ (np)−ωn(1),

which completes the proof. �
We can now finish up the proof of our main theorem.

Theorem 1. Let G = (V,E ) be a G(n, p) graph with ω( 1
n ) ≤ p ≤ n− 1

2 −ε . Then whp
its 2-core has a trivial automorphism group.

Proof. Let H denote the 2-core of G. It is known ([4]) that whp diam(G) < log n
2 ,

which we henceforth assume.
Suppose that π(v) �= v for some π ∈ aut(H), and a vertex v ∈ R(G). By Lemma 12,

it is enough to show that this assumption implies that G has a compatible configuration.
It is easy to see that if π fixes all vertices of H contained in cycles, then π is trivial, so
let C be a cycle that contains v. The bound on G’s diameter implies that such a C exists
of length at most log n.

The argument splits now according to whether π fixes some vertex in C. If it does
not, then φ and ψ that map [k] to C and to π(C), respectively, form a compatible type I
configuration, and we are done. Otherwise, consider an arc � = u� u′ (possibly u′ = u)
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of C so that v ∈ �, and the only π-fixed points in � are u, u′. We obtain a compatible
type II configuration by letting φ map [k] to � and ψ map [k] to π(�). �

4. CONNECTIONS WITH THE RECONSTRUCTION PROBLEM

The purpose of this section is to prove the following Theorem.

Theorem 13. For every 0 ≤ p ≤ 1 whp a G(n, p) graph is reconstructible.

We may clearly restrict ourselves to the range 0 ≤ p ≤ 1
2 , since a graph is recon-

structible iff its complement is reconstructible. We may further restrict our attention to
the range (1−ε) log n

n ≤ p ≤ (5/2+ε) log n
n since the theorem is known for the two comple-

mentary ranges. For p ≥ (5/2+ε) log n
n this was done by Bollobás [2]. Also, disconnected

graphs are reconstructible [3], which takes care of the range p ≤ (1−ε) log n
n . One further

simplification is that for p in the above range, G almost surely has no K3,2 subgraph. So
we can and will be assuming this below. Our line of argument resembles the first part of
the proof of Theorem 1. However, we need to adapt Lemma 8, a key step in that proof.
This lemma gives an upper bound on Pr(∇(φ(i)) = ∇(ψ(i))), while here this equality
gets replaced by an approximate equality as we now define.

For two multisets of integers we say that A ≈ B if they can be made equal by applying
some of the following operations to each of them. (Here X refers to either A or B.)

� Decrease some elements of X by 1 or 2. The total subtracted sum must be ≤ 4.
� Delete one or two elements of X .

Definition 14. A configuration (φ, ψ) is acceptable if there exist vertex sets U,W ⊆ V
of size n − 2 such that im(φ) ⊆ U, im(ψ) ⊆ W, and GU and GW are isomorphic through
a graph isomorphism π that maps φ(i) to ψ(i) for every i.

Lemma 15. Whp, G contains no acceptable configurations of type I or II.

Proof. We first claim that ∇G(u) ≈ ∇G(π(u)), for every u ∈ U for U , W , and π
as above. This is so, since the property of π implies ∇GU (u) = ∇GW (π(u)). These are
subgraphs of n − 2 vertices and the effect of the two missing vertices is limited due to
K2,3-freeness. Since G is K3,2 free, |N(u) ∩ N(v)| ≤ 2 for every v ∈ V \ U . Hence, by
removing v from G the possible changes in ∇(u) are: (i) decreasing one or two elements
of ∇(u) by 1: each vertex in N(u) ∩ N(v) (of which there are at most two) may lose one
neighbor, (ii) removal of a single element from ∇(u) (the element corresponding to v
itself, if uv ∈ E).

To prove the Lemma, we first strengthen Lemma 8, and replace the condition
∇(φ(i)) = ∇(ψ(i)) by ∇(φ(i)) ≈ ∇(ψ(i)). The proof is essentially the same, with
one change: Clearly the multiset {d(x,V \ Ñ(T )) | x ∈ Ui} is uniquely determined
by the condition ∇(φ(i)) = ∇(ψ(i)). Now we operate under the weaker condition
∇(φ(i)) ≈ ∇(ψ(i)). Rather than the above multiset, we consider a multiset where at
most two of the entries are “∗,” which stand for the possibly deleted vertices. This mul-
tiset can take on only poly(np) possible values. Lemma 4 and a union bound argument
yield:

Pr(∇(φ(i)) ≈ ∇(ψ(i))) ≤ (np)−�(
√

np) · (np)O(1) = (np)−�(
√

np).
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By Lemma 7 and the stronger version of Lemma 8 proved here, the expected number
of acceptable type I or type II configurations in G is at most

log n∑
k=3

(np)−ωn(k) ≤ (np)−ωn(1). �

Definition 16. We say that a vertex pair u, v ∈ R(G) is interior if R(G \ {u, v}) =
R(G) \ {u, v}.
Lemma 17. Whp, for every interior vertex pair {u, v} it holds that (i) every automor-
phism of GV\{u,v} fixes R(G) \ {u, v} and (ii) for every interior vertex pair {x, y} �= {u, v},
the graphs GV\{u,v} and GV\{x,y} are nonisomorphic.

Proof. We may assume that diam(G) < log n
8 , as this holds whp [4]. Also,

diam(GV\{u,v}) <
log n

2 (likewise for {x, y}) since the removal of a vertex at most doubles
the diameter. By Lemma 15, we may also assume that G has no acceptable type I or II
configurations.

We prove both parts of the Lemma together by considering as well the case {x, y} =
{u, v}. Assume that there exists an isomorphism π between GV\{u,v} and GV\{x,y} that does
not pointwise fix the 2-core. To prove the Lemma, it is enough to show that there exists
an acceptable type I or II configuration in G. We consider two cases, first where π moves
some vertex in R(GV\{u,v}) that resides in a cycle. Since diam(GV\{u,v}) <

log n
2 , we may

assume that this cycle has length < log n. The existence of an acceptable type I or II
configuration follows from the same argument as that in Theorem 1. In the second case,
π fixes pointwise every cycle of R(GV\{u,v}). Thus, it must map some path between two
vertices in cycles, fixed by π , to a different path between these two vertices. Note that
this path must be unique in GV\{u,v} since it is not part of a cycle. Due to the bound on
the diameter of GV\{u,v}, the length of such a path must be < log n

2 , which yields a type II
acceptable configuration. �

Proof of Theorem 13. We may and will assume that G satisfies the conclusion of
Lemma 17. For u ∈ U , we denote G̃u := GV\{u}.

We claim that the cardinality |R(G)| is reconstructible. Indeed, it is known [3] that the
degree sequence of G is reconstructible, and thus, the property R(G) = V is recognizable.
Now, assume that R(G) �= V . It is clearly possible to determine d(u) from G̃u. Also
R(G) = R(G̃u) when d(u) = 1. Since u ∈ R(G) iff |R(G̃u)| < |R(G)|, we can determine
whether u ∈ R(G) by observing G̃u.

We also note that the degree sequence of G’s 2-core is reconstructible. Indeed, if
V = R(G) this follows from the reconstructibility of G’s degree sequence. Otherwise,
the 2-core itself is reconstructible, as above.

Let A = {u ∈ R(G) | d(v,R(G)) ≥ 4 for all v ∈ N(u)}. Note that every vertex pair in
A is interior. It is not hard to determine whether u ∈ A given G̃u, based on the recon-
structibility of the 2-core’s degree sequence. We claim that A contains almost all vertices.
By Lemma 5, there holds whp |R(G)| ≥ n − o(n). For v ∈ V

Pr(d(v,R(G)) ≤ 3) ≤ O((np)3e−np)

and by the union bound

Pr(∃v v ∈ N(u) ∧ d(v,R(G)) ≤ 3) ≤ O((np)4e−np) ≤ o(1).
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So, let v′ ∈ V \ {u} and u′ ∈ V \ {v} be such that {u, v′} and {v, u′} are interior pairs, and
there exists an isomorphism π between GV\{u,v′} and GV\{u′,v}. By Lemma 17, this holds
only when u = u′, v = v′, and π fixes the 2-core pointwise. Using this property, we can
identify the vertices v and u, respectively, in the graphs G̃u and G̃v and identify each
vertex in the 2-core of one graph with its counterpart in the other. This allows us to
reconstruct G up to the question of whether uv ∈ E. Since |E| is reconstructible, this last
question can be answered as well. �

5. CONNECTIONS WITH THE CANONICAL GRAPH LABELING

PROBLEM

In this section we describe a polynomial time canonical labeling algorithm for graphs in
G(n, p) where ω( 1

n ) ≤ p ≤ n−(0.5+ε).
Let P be the collection of all rooted oriented paths in an n-vertex graph G = (V,E ).

Paths here are not necessarily simple and thus P includes, in particular, all cycles in
G. Let C ⊆ P be the collection of all rooted, oriented cycles of length 3 ≤ k ≤ log n.
Path concatenation is denoted by ∗. We use A ≤ B to denote the lexicographic ordering
between multisets of integers, where the elements in A and in B appear in increasing
order. We equip P with the semiorder ≺ where short paths precede longer ones. For
two paths X = (x1, . . . , xk),Y = (y1, . . . , yk) ∈ P we say that X ≺ Y if for some i there
holds ∇(xi) < ∇(yi) and ∇(x j) = ∇(y j) for every 1 ≤ j < i.

We claim that for the relevant range of p, a G(n, p) graph satisfies the following
conditions whp:

1. Each connected component of GV\R(G) is a tree of size ≤ log n.
2. diam(G) < log n

2 .
3. C(G) is totally ordered by ≺.

To prove property (1), we denote by a|U | the probability that a given set U ⊆ V is a
connected component of GV\R(G). It is not hard to see that

a|U | ≤ |U ||U | · p|U |−1 · e−�(np|U |).

By the union bound, we conclude that property (1) fails to hold with probability at most

n∑
s=log n

(
n

s

)
as ≤

n∑
s=log n

ns

s!
as ≤

n∑
s=log n

en
(
np · e−�(np)

)s−1 ≤ o(1).

For property (2), see [4]. A proof of property (3) follows from property (2) by a simple
variation of the proof of Theorem 1.

We now explain how to canonically label a graph G = (V,E ) with these three
properties. To a vertex v that is contained in a cycle we assign the ≺-minimal label
X = (x1, . . . , xk) ∈ C over all cycles for which v = x1. As we now show, this label can
be found in polynomial time. For each neighbor u of v, we compute the ≺-minimal cycle
Xu such that v = x1 and u = x2 and take the minimal among these. To compute Xu, let
Gu = (V,E \ {uv}). For w ∈ V \ {v}, denote by Yu,w ∈ P the ≺-minimal path from u to
w in Gu. Note that Xu = v ∗ Yu,v. Thus, it is enough to compute Yu,w for every w ∈ V . We
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do so in linear time by a BFS (Breadth-first search) scan using the relation

Yu,w = min{Yu,x ∗ w | w ∈ N(x) and dist(u,w) = dist(u, x)+ 1}.
We deal next with vertices v ∈ R(G) that are not contained in a cycle. Such a vertex

resides on the unique path between two vertices u,w ∈ V , each contained in a cycle.
Therefore v is uniquely defined by its distances from u and from w. This, and the labels
of u and w, yield a unique label for v.

Finally we find labels for vertices v ∈ V \ (R(G)). By property (1), such a vertex
belongs either to (i) a tree T of size ≤ log n rooted at some vertex u ∈ R(G) or (ii) an
acyclic connected component of size ≤ log n. For case (i), recall that the number of
rooted unlabeled trees on k vertices is exp(O(k)) [9] so for k ≤ log n this is only poly(n).
Therefore we can list all such trees T and give a unique short label to each vertex of
each such class. We label v by a pair of labels: That of the vertex corresponding to v in
T ’s isomorphism class in the list, and that of u. Type (ii) vertices are likewise handled,
using a list of all isomorphism classes of nonrooted trees. To deal with vertices on acyclic
connected components, collect all connected components of the same isomorphism class
and give each of them a unique number. The label of v consists of the type of tree that
contains it, that tree’s ordinal number in its isomorphism class, and v’s location in that
tree.

6. DISCUSSION AND OPEN PROBLEMS

For smaller values of p the structure of aut(G)may become somewhat more complicated.
For p = �( 1

n ), a G(n, p) graph has, with probability bounded away from zero and one,
some small symmetric components, for example, an isolated triangle. Moreover, with
probability ∈ (0, 1) even the 2-core of the graph’s giant component has a nontrivial
symmetry. This may result, for example, from a triangle that “hangs off” the 2-core.
However, as shown in [10], whp this 2-core has a unique biconnected component of
�(n) vertices. We suspect that this giant biconnected component is rigid whp.

For (5/2+ε) log n
n ≤ p ≤ 1

2 it was shown by Bollobás [2] that not only is G reconstructible
whp, such graphs have reconstruction number 3. We do not know whether this holds as
well for smaller and substantially smaller values of p.
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