

On regular hypergraphs of high girth

David Ellis*

School of Mathematical Sciences
Queen Mary, University of London
UK

d.ellis@qmul.ac.uk

Nathan Linial

School of Computer Science and Engineering
Hebrew University of Jerusalem
Israel

nati@cs.huji.ac.il

Submitted: Nov 1, 2013; Accepted: ; Published: XX

Mathematics Subject Classifications: 05C65

Abstract

We give lower bounds on the maximum possible girth of an r -uniform, d -regular hypergraph with at most n vertices, using the definition of a hypergraph cycle due to Berge. These differ from the trivial upper bound by an absolute constant factor (viz., by a factor of between $3/2 + o(1)$ and $2 + o(1)$). We also define a random r -uniform ‘Cayley’ hypergraph on the symmetric group S_n which has girth $\Omega(\sqrt{\log |S_n|})$ with high probability, in contrast to random regular r -uniform hypergraphs, which have constant girth with positive probability.

1 Introduction

The *girth* of a finite graph G is the shortest length of a cycle in G . (If G is acyclic, we define its girth to be ∞ .) The *girth problem* asks for the minimum possible number of vertices $n(g, d)$ in a d -regular graph of girth at least g , for each pair of integers $d, g \geq 3$. Equivalently, for each pair of integers $n, d \geq 3$ with nd even, it asks for a determination of the largest possible girth $g_d(n)$ of a d -regular graph on at most n vertices.

The girth problem has received much attention for more than half a century, starting with Erdős and Sachs [11]. A fairly easy probabilistic argument shows that for any integers $d, g \geq 3$, there exist d -regular graphs with girth at least g . An extremal argument due to Erdős and Sachs [11] then shows that there exists such a graph with at most

$$2 \frac{(d-1)^{g-1} - 1}{d-2}$$

vertices. This implies that

$$g_d(n) \geq (1 - o(1)) \log_{d-1} n. \quad (1)$$

*Research supported in part by a Feinberg Visiting Fellowship from the Weizmann Institute of Science.

(Here, and below, $o(1)$ stands for a function of n that tends to zero as $n \rightarrow \infty$.)

On the other hand, if G is a d -regular graph of girth at least g , then counting the number of vertices of G of distance less than $g/2$ from a fixed vertex of G (when g is odd), or from a fixed edge of G (when G is even), immediately shows that

$$|G| \geq n_0(g, d) := \begin{cases} 1 + d \sum_{i=0}^{k-1} (d-1)^i &= 1 + d \frac{(d-1)^k - 1}{d-2} & \text{if } g = 2k+1; \\ 2 \sum_{i=0}^{k-1} (d-1)^i &= 2 \frac{(d-1)^k - 1}{d-2} & \text{if } g = 2k. \end{cases}$$

This is known as the *Moore bound*. Graphs for which the Moore bound holds with equality are known as *Moore graphs* (for odd g), or *generalized polygons* (for even g). It is known that Moore graphs only exist when $g = 3$ or 5 , and generalized polygons only exist when $g = 4, 6, 8$ or 12 . It was proved in [1, 5, 17] that if $d \geq 3$, then

$$n(g, d) \geq n_0(g, d) + 2 \quad \text{for all } g \notin \{3, 4, 5, 6, 8, 12\};$$

even for large values of g and d , no improvement on this is known.

A related problem is to give an explicit construction of a d -regular graph of girth g , with as few vertices as possible. The celebrated Ramanujan graphs constructed by Lubotzsky, Phillips and Sarnak [22], Margulis [26] and Morgenstern [27] constituted a breakthrough on both problems, implying that

$$g_d(n) \geq (4/3 - o(1)) \log_{d-1} n \tag{2}$$

via an explicit (algebraic) construction, whenever $d = q + 1$ for some odd prime power q .

One can obtain from this a lower bound on $g_d(n)$ for arbitrary $d \geq 3$, by choosing the minimum $d' \geq d$ such that $d' - 1$ is an odd prime power, taking a d' -regular Ramanujan graph with girth achieving (2), and removing $d' - d$ perfect matchings in succession. This yields

$$g_d(n) \geq (4/3 - o(1)) \frac{\log(d-1)}{\log(d'-1)} \log_{d-1} n. \tag{3}$$

In [19] and [20], Lazebik, Ustimenko and Woldar give different explicit constructions (also algebraic), which imply that

$$g_d(n) \geq (4/3 - o(1)) \log_d n$$

whenever d is an odd prime power, implying (3) whenever $d - 1$ is not an odd prime power. (In fact, their constructions provide the best known upper bound on $n(g, d)$ for many pairs of values (g, d) .) Combining (3) with the Moore bound gives

$$(4/3 - o(1)) \frac{\log(d-1)}{\log(d'-1)} \log_{d-1} n \leq g_d(n) \leq (2 + o(1)) \log_{d-1} n. \tag{4}$$

Improving the constants in (4) seems to be a very hard problem.

In this paper, we investigate an analogue of the girth problem for r -uniform hypergraphs, where $r \geq 3$. There are several natural notions of a cycle in a hypergraph. We

refer the reader to Section 4 for a brief discussion of some other interesting notions of girth in hypergraphs, and to [9] for a detailed treatise. Here, we consider the least restrictive notion, originally due to Berge (see for example [3] and [4]).

A *hypergraph* H is a pair of finite sets $(V(H), E(H))$, where $E(H)$ is a family of subsets of $V(H)$. The elements of $V(H)$ are called the *vertices* of H , and the elements of $E(H)$ are called the *edges* of H . A hypergraph is said to be *r-uniform* if all its edges have size r . It is said to be *d-regular* if each of its vertices is contained in exactly d edges. It is said to be *linear* if any two of its edges share at most one vertex.

Let u and v be distinct vertices in a hypergraph H . A u - v *path* of *length* l in H is a sequence of distinct edges (e_1, \dots, e_l) of H , such that $u \in e_1$, $v \in e_l$, $e_i \cap e_{i+1} \neq \emptyset$ for all $i \in \{1, 2, \dots, l-1\}$, and $e_i \cap e_j = \emptyset$ whenever $j > i+1$ (Note that some authors call this a *geodesic path*, and use the term *path* when non-consecutive edges are allowed to intersect.) The *distance* from u to v in H , denoted $\text{dist}(u, v)$, is the shortest length of a u - v path in H . (We define $\text{dist}(v, v) = 0$.) The *ball of radius R and centre u* in H is the set of vertices of H with distance at most R from u . The *diameter* of a hypergraph H is defined by

$$\text{diam}(H) = \max_{u, v \in V(H)} \text{dist}(u, v).$$

A hypergraph is said to be a *cycle* if it has at least two edges, and there is a cyclic ordering of its edges, (e_1, \dots, e_l) say, such that there exist distinct vertices v_1, \dots, v_l with $v_i \in e_i \cap e_{i+1}$ for all i (where we define $e_{l+1} := e_1$). This notion of a hypergraph cycle is originally due to Berge, and is sometimes called a *Berge-cycle*. The *length* of a cycle is the number of edges in it. The *girth* of a hypergraph is the length of the shortest cycle it contains.

Observe that two distinct edges e, f with $|e \cap f| \geq 2$ form a cycle of length 2 under this definition, so when considering hypergraphs of high girth, we may restrict our attention to linear hypergraphs.

We use the Landau notation for functions: if $F, G : \mathbb{N} \rightarrow \mathbb{R}^+$, we write $F = o(G)$ if $F(n)/G(n) \rightarrow 0$ as $n \rightarrow \infty$. We write $F = O(G)$ if there exists $C > 0$ such that $F(n) \leq CG(n)$ for all n . We write $F = \Omega(G)$ if there exists $c > 0$ such that $F(n) \geq cG(n)$ for all n . Finally, we write $F = \Theta(G)$ if $F = O(G)$ and $F = \Omega(G)$.

Extremal questions concerning Berge-cycles in hypergraphs have been studied by several authors. For example, in [7], Bollobás and Győri prove that an n -vertex, 3-uniform hypergraph with no 5-cycle has at most $\sqrt{2}n^{3/2} + \frac{9}{2}n$ edges, and they give a construction showing that this is best possible up to a constant factor. In [18], Lazebnik and Verstraëte prove that a 3-uniform, n -vertex hypergraph of girth at least 5 has at most

$$\frac{1}{6}n\sqrt{n - \frac{3}{4}} + \frac{1}{12}n$$

edges, and give a beautiful construction (based on the so-called ‘polarity graph’ of the projective plane $\text{PG}(2, q)$) showing that this is sharp whenever $n = q^2$ for an odd prime power $q \geq 27$. Interestingly, neither of these two constructions are regular.

In [14] and [21], Győri and Lemons consider the problem of excluding a cycle of length exactly k , for general $k \in \mathbb{N}$. In [14], they prove that an n -vertex, 3-uniform hypergraph

with no $(2k + 1)$ -cycle has at most $4k^2n^{1+1/k} + O(n)$ edges. In [21], they prove that an n -vertex, r -uniform hypergraph with no $(2k + 1)$ -cycle has at most $C_{k,r}(n^{1+1/k})$ edges, and furthermore that an n -vertex, r -uniform hypergraph with no $(2k)$ -cycle has at most $C'_{k,r}(n^{1+1/k})$ edges, where $C_{k,r}, C'_{k,r}$ depend upon k and r alone.

In this paper, we will investigate the maximum possible girth of an r -uniform, d -regular hypergraph on n vertices, for r and d fixed and n large. If $r \geq 3$ and $d \geq 2$, we let $g_{r,d}(n)$ denote the maximum possible girth of an r -uniform, d -regular hypergraph on at most n vertices. Similarly, if $d \geq 2$ and $r, g \geq 3$, we let $n_r(g, d)$ denote the minimum possible number of vertices in an r -uniform, d -regular hypergraph with girth at least g . Since a non-linear hypergraph has girth 2, we may replace ‘hypergraph’ with ‘linear hypergraph’ in these two definitions.

In section 2, we will state upper and lower bounds on the function $g_{r,d}(n)$, which differ by an absolute constant factor. The upper bound is a simple analogue of the Moore bound for graphs, and follows immediately from known results. The lower bound is a hypergraph extension of a similar argument for graphs, due to Erdős and Sachs [11] — not a particularly difficult extension, but still, in our opinion, worth recording.

In section 3, we consider the girth of certain kinds of random r -uniform hypergraph. We define a random r -uniform ‘Cayley’ hypergraph on S_n which has girth $\Omega(\sqrt{\log |S_n|})$ with high probability, in contrast to random regular r -uniform hypergraphs, which have constant girth with positive probability. We conjecture that, in fact, our ‘Cayley’ hypergraph has girth $\Omega(\log |S_n|)$ with high probability. We believe it may find other applications.

2 Upper and lower bounds

In this section, we state upper and lower bounds on the function $g_{r,d}(n)$, which differ by an absolute constant factor.

We first state a very simple analogue of the Moore bound for linear hypergraphs. For completeness, we give the proof, although the result follows immediately from known results, e.g. from Theorem 1 of Hoory [16].

Lemma 1. *Let r, d and g be integers with $d \geq 2$ and $r, g \geq 3$. Let H be an r -uniform, d -regular, n -vertex hypergraph with girth g . If $g = 2k + 1$ is odd, then*

$$n \geq 1 + d(r-1) \sum_{i=0}^{k-1} ((d-1)(r-1))^i = 1 + d(r-1) \frac{(d-1)^k(r-1)^k - 1}{(d-1)(r-1) - 1}, \quad (5)$$

and if $g = 2k$ is even, then

$$n \geq r \sum_{i=0}^{k-1} ((d-1)(r-1))^i = r \frac{(d-1)^k(r-1)^k - 1}{(d-1)(r-1) - 1}. \quad (6)$$

Proof. The right-hand side of (5) is the number of vertices in any ball of radius k . The right-hand side of (6) is the number of vertices of distance at most $k - 1$ from any fixed edge $e \in H$. \square

The following corollary is immediate.

Corollary 2. *Let r, d and g be integers with $d \geq 2$ and $r, g \geq 3$. Let H be an r -uniform, d -regular hypergraph with n vertices and girth g . Then*

$$g \leq \frac{2 \log n}{\log(r-1) + \log(d-1)} + 2.$$

Hence,

$$g_{r,d}(n) \leq \frac{2 \log n}{\log(r-1) + \log(d-1)} + 2.$$

Our aim is now to obtain a hypergraph analogue of the non-constructive lower bound (1). We first prove the following existence lemma.

Lemma 3. *For all integers $d \geq 2$ and $r, g \geq 3$, there exists a finite, r -uniform, d -regular hypergraph with girth at least g .*

Proof. We prove this by induction on g , for fixed r, d . When $g = 3$, all we need is a linear, r -uniform, d -regular hypergraph. Let H be the hypergraph on vertex-set \mathbb{Z}_r^d , whose edges are all the axis-parallel lines, i.e.

$$E(H) = \{\{\mathbf{x}, \mathbf{x} + \mathbf{e}_i, \mathbf{x} + 2\mathbf{e}_i, \dots, \mathbf{x} + (r-1)\mathbf{e}_i\} : \mathbf{x} \in \mathbb{Z}_r^d, i \in [d]\}.$$

(Here, \mathbf{e}_i denotes the i th standard basis vector in \mathbb{Z}_r^d , i.e. the vector with 1 in the i th coordinate and zero elsewhere. As usual, \mathbb{Z}_r denotes the ring of integers modulo r .) Clearly, H is linear and d -regular.

For $g \geq 4$ we do the induction step. We start from a finite, linear, r -uniform, d -regular hypergraph H of girth at least $g-1$. Of all such hypergraphs we consider one with the least possible number of $(g-1)$ -cycles. Let M be the number of $(g-1)$ -cycles in H . We shall prove that $M = 0$. If $M > 0$, we consider a random 2-lift H' of H , defined as follows. Its vertex set is $V(H') = V(H) \times \{0, 1\}$, and its edges are defined as follows. For each edge $e \in E(H)$, choose an arbitrary ordering (v_1, \dots, v_r) of the vertices in e , flip $r-1$ independent fair coins $c_e^{(1)}, \dots, c_e^{(r-1)} \in \{0, 1\}$, and include in H' the two edges

$$\{(v_1, j), (v_2, j \oplus c_e^{(1)}), \dots, (v_r, j \oplus c_e^{(r-1)})\} \text{ for } j = 0, 1.$$

(Here, \oplus denotes modulo 2 addition.) Do this independently for each edge. Note that H' is linear and d -regular, since H is.

Let $\pi : V(H') \rightarrow V(H)$ be the cover map, defined by $\pi((v, j)) = v$ for all $v \in V(H)$ and $j \in \{0, 1\}$. Since any cycle in H' is projected to a cycle in H of the same length, H' has girth at least $g-1$, and each $(g-1)$ -cycle in H' projects to a $(g-1)$ -cycle in H . Let C be a $(g-1)$ -cycle in H . We claim that $\pi^{-1}(C)$ either consists of two vertex-disjoint $(g-1)$ -cycles in H' , or a single $2(g-1)$ -cycle in H' , and that the probability of each is $1/2$. To see this, let (e_1, \dots, e_{g-1}) be any cyclic ordering of C ; then $|e_i \cap e_{i+1}| = 1$ for all i (since H is linear). Let $e_i \cap e_{i+1} = \{w_i\}$ for all $i \in [g-1]$. For each i , consider the two

edges in $\pi^{-1}(e_i)$. Either one of the two edges contains $(w_{i-1}, 0)$ and $(w_i, 0)$ and the other contains $(w_{i-1}, 1)$ and $(w_i, 1)$, or one edge contains $(w_{i-1}, 0)$ and $(w_i, 1)$ and the other edge contains $(w_{i-1}, 1)$ and $(w_i, 0)$. Call these two events $S(e_i)$ and $D(e_i)$, for ‘same’ and ‘different’. Observe that $S(e_i)$ and $D(e_i)$ each occur with probability $1/2$, independently for each edge e_i in the cycle. Notice that $\pi^{-1}(C)$ consists of two disjoint $(g-1)$ -cycles if and only if $D(e_i)$ occurs an even number of times, and the probability of this is $1/2$, proving the claim.

It follows that the expected number of $(g-1)$ -cycles in H' is M . Note that the trivial lift H_0 of H , which has $c_e^{(k)} = 0$ for all k and e , consists of two vertex-disjoint copies of H , and therefore has $2M$ $(g-1)$ -cycles. It follows that there is at least one 2-lift of H with fewer than M $(g-1)$ -cycles, contradicting the minimality of M . Therefore, $M = 0$, so in fact, H has girth at least g . This completes the proof of the induction step, proving the theorem. \square

Remark. Lemma 3 can also be proved by considering a random r -uniform, d -regular hypergraph on n vertices, for n large. In [8], Cooper, Frieze, Molloy and Reed analyse these using a generalisation of Bollobás’ configuration model for d -regular graphs. It follows from Lemma 2 in [8] that if H is chosen uniformly at random from the set of all r -uniform, d -regular, n -vertex, linear hypergraphs (where $r|n$), then

$$\text{Prob}\{\text{girth}(H) \geq g\} = (1 + o(1)) \frac{\exp(-\sum_{l=1}^{g-1} \lambda_l)}{1 - \exp(-(\lambda_1 + \lambda_2))}, \quad (7)$$

where

$$\lambda_i = \frac{(r-1)^i(d-1)^i}{2i} \quad (i \in \mathbb{N}),$$

so this event occurs with positive probability for sufficiently large n , giving an alternative proof of Lemma 3. (We note that the argument of [8] can easily be adapted to prove the same statement in the case where $r|dn$.)

By itself, the proof of Lemma 3 implies only that

$$n_r(g, d) \leq \underbrace{2^{2^{\dots^{2^{2^{g-3} \text{2's}}}}}}_{2^{rCd}},$$

where C is an absolute constant — i.e., tower-type dependence upon g . We now proceed to obtain an upper bound which is exponential in g .

Consider a d -regular graph with girth at least g , with the smallest possible number of vertices subject to these conditions. Erdős and Sachs [11] proved that the diameter of such a graph is at most g . But a d -regular graph with diameter D has at most

$$1 + d \sum_{i=0}^{D-1} (d-1)^i$$

vertices (since this is an upper bound on the number of vertices in a ball of radius D). This yielded the upper bound (1) on the number of vertices in a d -regular graph of girth at least g and minimal order.

We need an analogue of the Erdős-Sachs argument for hypergraphs.

Lemma 4. *Let r, d and g be integers with $d \geq 2$ and $r, g \geq 3$. Let H be an r -uniform, d -regular hypergraph with girth at least g , with the smallest possible number of vertices subject to these conditions. Then H cannot contain r vertices every two of which are at distance greater than g from one another.*

Proof. Let H be an r -uniform, d -regular hypergraph with girth at least g . Suppose that H contains r distinct vertices v_1, v_2, \dots, v_r such that $\text{dist}(v_i, v_j) > g$ for all $i \neq j$. We will show that it is then possible to construct an r -uniform, d -regular hypergraph with girth at least g , that has fewer vertices than H ; this will prove the lemma.

Note that H is linear, since $g \geq 3$. For each $i \in [r]$, let $e_i^{(1)}, e_i^{(2)}, \dots, e_i^{(d)}$ be the edges of H which contain v_i . Let

$$W_i = \bigcup_{k=1}^d (e_i^{(k)} \setminus \{v_i\})$$

for each $i \in [r]$. Notice that $|W_i| = d(r-1)$ for each i , since the edges $e_i^{(k)}$ ($k \in [d]$) are disjoint apart from the vertex v_i . Moreover, $W_i \cap W_j = \emptyset$ for all $i \neq j$, since $d(v_i, v_j) > 2$.

Define a new hypergraph H' by taking H , deleting v_1, v_2, \dots, v_r and all the edges containing them, and adding $d(r-1)$ pairwise disjoint edges, each of which contains exactly one vertex from W_i for each $i \in [r]$. (Note that none of these ‘new’ edges were in the original hypergraph H , otherwise some v_i and v_j would have been at distance at most 3 in H , a contradiction.) Clearly, H' is d -regular. We claim that it is linear. Indeed, if one of the ‘new’ edges shared two vertices with some edge $f \in H$ (say it shares $a \in W_i$ and $b \in W_j$, where $i \neq j$), then there would be a path of length 3 in H from v_i to v_j , a contradiction.

We now claim that H' has girth at least g . Suppose for a contradiction that H' has girth at most $g-1$. Let C be a cycle in H' of length $l \leq g-1$. Since H' is linear, we have $l \geq 3$. Let (f_1, \dots, f_l) be a cyclic ordering of C . We split into two cases.

Case 1. Suppose that C contains exactly one of the ‘new’ edges (say f_i is a ‘new’ edge). Deleting f_i from C produces a path P of length at most $g-2$ in H . We have $|f_{i-1} \cap f_i| = |f_i \cap f_{i+1}| = 1$ (since H' is linear); let $f_{i-1} \cap f_i = \{a\}$, and let $f_i \cap f_{i+1} = \{b\}$. Note that $a \neq b$. Suppose that $a \in W_p$ and $b \in W_q$. Since $a \neq b$ and $a, b \in f_i$, we must have $p \neq q$, as each ‘new’ edge contains exactly one vertex from each W_k . Let e be the edge of H containing both v_p and a , and let e' be the edge of H containing both v_q and b ; adding e and e' to the appropriate ends of the path P produces a path in H of length at most g from v_p to v_q , contradicting the assumption that $\text{dist}(v_p, v_q) > g$.

Case 2. Suppose instead that C contains more than one of the ‘new’ edges. Choose a minimal sub-path P of C which connects two ‘new’ edges. Suppose P connects the new edges f_i and f_j , so that $P = (f_i, f_{i+1}, \dots, f_{j-1}, f_j)$. Note that $|i-j| \leq (g-1)/2$, so P has length at most $(g+1)/2 \leq g-1$. Let $f_i \cap f_{i+1} = \{a\}$, and suppose $a \in W_p$;

let $f_{j-1} \cap f_j = \{b\}$, and suppose $b \in W_q$. Let e be the unique edge of H which contains both v_p and a , and let e' be the unique edge of H which contains both v_q and b . If $p \neq q$, then we can produce a path in H from v_p to v_q by taking P , and replacing f_i with e and f_j with e' ; this path has length at most $g - 1$, contradicting our assumption that $d(v_p, v_q) > g$. If $p = q$, then we can produce a cycle in H by taking P , removing f_i and f_j , and adding the edges e and e' (which share the vertex v_p); this cycle has length at most $g - 1$, contradicting our assumption that H has girth at least g .

We may conclude that H' has girth at least g , as claimed. Clearly, H' has fewer vertices than H ; this completes the proof. \square

This lemma quickly implies an upper bound on the minimal number of vertices in an r -uniform, d -regular hypergraph of girth at least g .

Theorem 5. *Let r, d and g be integers with $d \geq 2$ and $r, g \geq 3$. There exists an r -uniform, d -regular hypergraph with girth at least g , and at most*

$$(r-1) \left(1 + d(r-1) \frac{(d-1)^g(r-1)^g - 1}{(d-1)(r-1) - 1} \right) < 4((d-1)(r-1))^{g+1}$$

vertices. Hence,

$$n_r(g, d) < 4((d-1)(r-1))^{g+1}.$$

Proof. Let H be an r -uniform, d -regular hypergraph with girth at least g , with the smallest possible number of vertices subject to these conditions. Let $\{v_1, v_2, \dots, v_k\}$ be a set of vertices of H whose pairwise distances are all greater than g , with k maximal subject to this condition. By the previous lemma, we have $k < r$. Any vertex of H must have distance at most g from one of the v_i 's. For each i , the number of vertices of H of distance at most g from v_i is at most

$$1 + d(r-1) \sum_{i=0}^{g-1} ((d-1)(r-1))^i = 1 + d(r-1) \frac{(d-1)^g(r-1)^g - 1}{(d-1)(r-1) - 1},$$

and therefore the number of vertices of H is at most

$$k \left(1 + d(r-1) \frac{(d-1)^g(r-1)^g - 1}{(d-1)(r-1) - 1} \right) \leq (r-1) \left(1 + d(r-1) \frac{(d-1)^g(r-1)^g - 1}{(d-1)(r-1) - 1} \right).$$

Crudely, we have

$$(r-1) \left(1 + d(r-1) \frac{(d-1)^g(r-1)^g - 1}{(d-1)(r-1) - 1} \right) < 4((d-1)(r-1))^{g+1}$$

for all integers r, d and g with $d \geq 2$ and $r, g \geq 3$, proving the theorem. \square

The following corollary is immediate.

Corollary 6. *Let r, d and n be positive integers with $d \geq 2$ and $r \geq 3$. There exists an r -uniform, d -regular hypergraph on at most n vertices, with girth greater than*

$$\frac{\log n - \log 4}{\log(d-1) + \log(r-1)} - 1.$$

Hence,

$$g_{r,d}(n) > \frac{\log n - \log 4}{\log(d-1) + \log(r-1)} - 1.$$

Observe that the lower bound in Corollary 6 differs from the upper bound in Corollary 2 by a factor of (approximately) 2.

For $r, d \geq 3$, we have not been able to improve upon the lower bound in Corollary 6 for large n . As mentioned in the Introduction, in the case of graphs, the bipartite Ramanujan graphs of Lubotzsky, Phillips and Sarnak [22], Margulis [26] and Morgenstern [27] provide d -regular, n -vertex graphs of girth at least

$$(1 - o(1)) \frac{4}{3} \frac{\log n}{\log(d-1)},$$

for infinitely many n , whenever $d-1$ is a prime power. Recall that a finite, connected, d -regular graph is said to be *Ramanujan* if every eigenvalue λ of its adjacency matrix is either ‘trivial’ (i.e. $\lambda = \pm d$), or has $|\lambda| \leq 2\sqrt{d-1}$.

Theorem 7 (Lubotzsky-Phillips-Sarnak, Margulis, Morgenstern). *For any odd prime power p , there exist infinitely many (bipartite) $(p+1)$ -regular Ramanujan graphs $X^{p,q}$. The graph $X^{p,q}$ is a Cayley graph on the group $PGL(2, q)$, so has order $q(q^2-1)$. Moreover, its girth satisfies*

$$g(X^{p,q}) \geq \frac{4 \log q}{\log p} - \frac{\log 4}{\log p}.$$

It is in place to remark that recently, Marcus, Spielman and Srivastava [24] proved the existence of infinitely many d -regular Ramanujan graphs for *every* $d \geq 3$. They did this by proving a weakening of a conjecture of Bilu and Linial [6] on 2-lifts of Ramanujan graphs, namely, that every d -regular Ramanujan graph has a 2-lift whose second-largest eigenvalue is at most $2\sqrt{d-1}$. Their proof uses a beautiful new technique for demonstrating the existence of combinatorial objects, which they call the ‘method of interlacing polynomials’. (Even more spectacularly, they use this method to prove the Kadison-Singer conjecture, in [25].) Being non-constructive, however, their proof does not imply good bounds for the girth problem.

We are able to improve upon the lower bound in Corollary 6 when $r = 3$ and $d = 2$, using the following explicit construction, based upon the Ramanujan graphs of Theorem 7. Let G be an n -vertex, 3-regular graph of girth g . Take any drawing of G in the plane with straight-line edges, and for each edge $e \in E(G)$, let $m(e)$ be its midpoint. Let H be the 3-uniform hypergraph with

$$V(H) = \{m(e) : e \in E(G)\},$$

$$E(H) = \{\{m(e_1), m(e_2), m(e_3)\} : e_1, e_2, e_3 \text{ are incident to a common vertex of } G\}.$$

Then the hypergraph H is 2-regular, and also has girth g . Taking $G = X^{2,q}$ (the Ramanujan graph of Theorem 7) yields a 3-uniform, 2-regular hypergraph H with

$$\begin{aligned} g(H) &= g(X^{2,q}) \\ &\geq \frac{4 \log q}{\log 2} - 2 \\ &\geq \frac{4 \log n}{3 \log 2} - 2 \end{aligned}$$

improving upon the bound in Corollary 6 by a factor of $\frac{4}{3} - o(1)$.

The following explicit construction, also based on the Ramanujan graphs of Theorem 7, provides r -uniform, d -regular hypergraphs of girth approximately $2/3$ of the bound in Corollary 6, whenever d is a multiple of r . (We thank an anonymous referee of an earlier version of this paper, for pointing out this construction.)

Suppose $d = rs$ for some $s \in \mathbb{N}$. Let G be a $2(r-1)s$ -regular, n by n bipartite graph, with vertex-classes X and Y , and girth g . Then the edge-set of G may be partitioned into $(r-1)$ -edge stars in such a way that each vertex of G is in exactly rs of the stars. (Indeed, by Hall's theorem, we may partition the edge-set of G into $2(r-1)s$ perfect matchings. First, choose $r-1$ of these matchings, and group the edges of these matchings into n $(r-1)$ -edge stars with centres in X . Now choose $r-1$ of the remaining matchings, and group their edges into n $(r-1)$ -edge stars with centres in Y . Repeat this process s times to produce the desired partition of $E(G)$ into stars.)

Let H be the r -uniform hypergraph whose vertex-set is $X \cup Y$, and whose edge-set is the collection of vertex-sets of these stars; then H is (rs) -regular, and has girth at least $g/2$.

If $2(r-1)s-1$ is a prime power, the bipartite Ramanujan graph $X^{p,q}$ (with $p = 2(r-1)s-1$) can be used to supply the graph G . This yields a linear, r -uniform, (rs) -regular hypergraph with girth $g(H)$ satisfying

$$\begin{aligned} g(H) &\geq \frac{1}{2} \left(\frac{4 \log q}{\log(2rs-2s-1)} - \frac{\log 4}{\log(2rs-2s-1)} \right) \\ &\geq \frac{1}{2} \left(\frac{4}{3} \frac{\log n}{\log(2rs-2s-1)} - \frac{\log 4}{\log(2rs-2s-1)} \right) \\ &= \frac{2}{3} \frac{\log n}{\log(2d-2d/r-1)} - \frac{\log 2}{\log(2d-2d/r-1)}, \end{aligned}$$

where $d = rs$.

Unfortunately, this lower bound is asymptotically worse than that given by Corollary 6, for all values of r and d .

3 Random ‘Cayley’ hypergraphs

In this section, we give a construction of random ‘Cayley’ hypergraphs on the symmetric group S_n , which have girth $\Omega(\sqrt{\log |S_n|})$ with high probability. This is much higher than

the girth of a random regular hypergraph on the same number of vertices (which, by (7), has girth at most $C(\epsilon)$ with probability at least $1 - \epsilon$ for any $\epsilon > 0$, where $C(\epsilon)$ is a constant depending on ϵ alone), though it is still short of the optimal $\Theta(\log |V(H)|)$ in Corollary 6. The situation is analogous to the graph case, where random d -regular Cayley graphs on appropriate groups have much higher girth than random d -regular graphs of the same order (due to the dependency between cycles at different vertices of a Cayley graph).

First, we need some more definitions. If S is a set of symbols, a *word in S* is a string of the form

$$s_1^{a_1} s_2^{a_2} \dots s_l^{a_l}$$

where $s_1, \dots, s_l \in S$ and $a_1, \dots, a_l \in \mathbb{Z} \setminus \{0\}$. Such a word is said to be *cyclically irreducible* if $s_i \neq s_{i+1}$ for all $i \in [l]$, where we define $s_{l+1} := s_1$. Its *length* is $\sum_{i=1}^l |a_i|$.

Theorem 8. *Let r and n be positive integers with $r \geq 3$ and $r|n$. Let $X(n, r)$ be the set of permutations in S_n that consist of $\frac{n}{r}$ disjoint r -cycles. Choose d permutations $\tau_1, \tau_2, \dots, \tau_d$ uniformly at random and independently (with replacement) from $X(n, r)$, and let H be the random hypergraph with vertex-set S_n and edge-set*

$$\{\{\sigma, \sigma\tau_i, \sigma\tau_i^2, \dots, \sigma\tau_i^{r-1}\} : \sigma \in S_n, i \in [d]\}.$$

Then with high probability, H is a linear, r -uniform, d -regular hypergraph with girth at least

$$c_0 \sqrt{\frac{n \log n}{r(r-1)(\log(d-1) + \log(r-1))}},$$

for any absolute constant c_0 such that $0 < c_0 < 1/2$.

Remark. Here, ‘with high probability’ means ‘with probability tending to 1 as $n \rightarrow \infty$ ’.

Proof. Note that the edges of the form

$$\{\sigma, \sigma\tau_i, \sigma\tau_i^2, \dots, \sigma\tau_i^{r-1}\} \quad (\sigma \in S_n)$$

are simply the left cosets of the cyclic group $\{\text{Id}, \tau_i, \tau_i^2, \dots, \tau_i^{r-1}\}$ in S_n , so they form a partition of S_n . We need two straightforward claims.

Claim 1. *With high probability, the following condition holds.*

$$\tau_1, \dots, \tau_d \text{ satisfy } \tau_i^k \neq \tau_j^l \text{ for all distinct } i, j \in [d] \text{ and all } k, l \in [r-1]. \quad (8)$$

Proof of claim: Let us fix $i, j \in [d]$ with $i < j$, and fix $k, l \in [r-1]$. We shall bound the probability that $\tau_j^l = \tau_i^k$. We regard τ_i as fixed, and allow τ_j to vary. Since τ_i is a product of n/r disjoint r -cycles, τ_i^k is a product of n/s disjoint s -cycles, for some integer $s \geq 2$ that is a divisor of r . The set $X(n, s)$ of permutations which consist of n/s disjoint s -cycles has cardinality

$$\frac{n!}{(n/s)!s^{n/s}} \geq \frac{n!}{(n/2)!2^{n/2}}$$

(provided $n \geq 4$). Notice that τ_j^l is uniformly distributed over $X(n, s')$, for some s' that depends only on r and l . Therefore,

$$\text{Prob}\{\tau_i^k = \tau_j^l\} \leq \frac{(n/2)!2^{n/2}}{n!}.$$

By the union bound,

$$\begin{aligned} \text{Prob}\{\tau_i^k = \tau_j^l \text{ for some } i \neq j \text{ and some } k, l \in [r-1]\} &\leq (r-1)^2 \binom{d}{2} \frac{(n/2)!2^{n/2}}{n!} \\ &\rightarrow 0 \quad \text{as } n \rightarrow \infty, \end{aligned}$$

proving the claim. \square

Claim 2. *If condition (8) holds, then for all $i \neq j$ and all $\sigma, \pi \in S_n$, the two cosets*

$$\{\sigma, \sigma\tau_i, \sigma\tau_i^2, \dots, \sigma\tau_i^{r-1}\} \text{ and } \{\pi, \pi\tau_j, \pi\tau_j^2, \dots, \pi\tau_j^{r-1}\}$$

have at most one element in common.

Proof of claim: Suppose for a contradiction that there are two distinct vertices v_1, v_2 with

$$v_1, v_2 \in \{\sigma, \sigma\tau_i, \sigma\tau_i^2, \dots, \sigma\tau_i^{r-1}\} \cap \{\pi, \pi\tau_j, \pi\tau_j^2, \dots, \pi\tau_j^{r-1}\}.$$

Then $v_1 = \sigma\tau_i^l = \pi\tau_j^m$ and $v_2 = \sigma\tau_i^{l'} = \pi\tau_j^{m'}$, where $l, m, l', m' \in \{0, 1, \dots, r-1\}$ with $l' \neq l$ and $m' \neq m$. Therefore,

$$v_1^{-1}v_2 = \tau_i^{l'-l} = \tau_j^{m'-m},$$

contradicting condition (8). \square

Claim 2 implies that H is a linear hypergraph, provided condition (8) is satisfied. Moreover, H is d -regular: every $\sigma \in S_n$ is contained in the edges (cosets)

$$(\{\sigma, \sigma\tau_i, \sigma\tau_i^2, \dots, \sigma\tau_i^{r-1}\} : i \in [d]),$$

and these d edges are distinct provided condition (8) is satisfied.

Finally, we make the following.

Claim 3. *With high probability, H has girth at least*

$$c_0 \sqrt{\frac{n \log n}{r(r-1)(\log(d-1) + \log(r-1))}},$$

where c_0 is any absolute constant such that $0 < c_0 < 1/2$.

Proof of claim: We may assume that condition (8) holds, so that H is a linear, d -regular hypergraph. Let C be a cycle in H of minimum length, and let (e_1, \dots, e_l) be any cyclic ordering of its edges. Then we have $|e_i \cap e_{i+1}| = 1$ for all $i \in [l]$ (where we define $e_{l+1} := e_1$), and by minimality, we have $e_i \cap e_j = \emptyset$ whenever $|i - j| > 1$. Let $e_i \cap e_{i+1} = \{w_i\}$ for each $i \in [l]$. Suppose that e_i is an edge of the form

$$\{\sigma, \sigma\tau_{j_i}, \sigma\tau_{j_i}^2, \dots, \sigma\tau_{j_i}^{r-1}\}$$

for each $i \in [l]$. Since $e_i \cap e_{i+1} \neq \emptyset$ for each $i \in [l]$, we must have $j_i \neq j_{i+1}$ for all $i \in [l]$ (where we define $j_{l+1} := j_1$). For each $i \in [l]$, we have $w_i, w_{i+1} \in e_{i+1}$, so $w_i^{-1}w_{i+1} = \tau_{j_{i+1}}^{m_i}$ for some $m_i \in [r-1]$. Therefore,

$$\text{Id} = (w_1^{-1}w_2)(w_2^{-1}w_3) \dots (w_{l-1}^{-1}w_l)(w_l^{-1}w_1) = \tau_{j_2}^{m_1} \tau_{j_3}^{m_2} \dots \tau_{j_l}^{m_{l-1}} \tau_{j_1}^{m_l}. \quad (9)$$

Since $j_i \neq j_{i+1}$ for all $i \in [l]$, the word on the right-hand side of (9) is cyclically irreducible. We therefore have a cyclically irreducible word in the symbols $\{\tau_j : j \in [d]\}$ with length $L := \sum_{j=1}^l m_i \leq (r-1)l$, which evaluates to the identity permutation. We must show that the probability of this tends to zero as $n \rightarrow \infty$, for an appropriate choice of l . We use an argument similar to that of [12], where it is proved that a random d -regular Cayley graph on S_n has girth at least $\Omega(\sqrt{\log_{d-1}(n!)})$.

Let W be a cyclically irreducible word in the τ_j 's, with length L . We must bound the probability that W fixes every element of $[n]$. Suppose

$$W = \tau_{j(1)} \tau_{j(2)} \dots \tau_{j(L)}.$$

Let $x_0 \in [n]$, and define $x_i = \tau_{j(i)}(x_{i-1})$ for each $i \in [L]$, producing a sequence of values $x_0, x_1, x_2, \dots, x_L \in [n]$; then $W(x_0) = x_L$. We shall bound the probability that $x_L = x_0$. Let us work our way along the sequence, exposing the r -cycles of the permutations τ_1, \dots, τ_d only as we need them, so that at stage i , the r -cycle of $\tau_{j(i)}$ containing the number x_{i-1} is exposed (if it has not already been exposed). If $x_L = x_0$, then (as $j(L) \neq j(1)$), there has to be a first time the sequence returns to x_0 via a permutation $\tau \neq \tau_{j(1)}$. Hence, at some stage, we must have exposed an r -cycle of τ containing x_0 . The probability that, at a stage i where $j(i) \neq j(1)$, we expose an r -cycle of $\tau_{j(i)}$ containing x_0 , is at most

$$\frac{r}{n - (i-2)r} \leq \frac{r}{n - (L-2)r},$$

since a total of at most $i-2$ r -cycles of τ have already been exposed, and the next r -cycle exposed is equally likely to be any r -element subset of the remaining $n - (i-2)r$ numbers. There are at most L choices for the stage i , and therefore

$$\text{Prob}\{W(x_0) = x_0\} \leq L \frac{r}{n - (L-2)r}.$$

Suppose we have already verified that W fixes y_1, y_2, \dots, y_{m-1} , by exposing the necessary r -cycles. Then we have exposed at most $(m-1)L$ r -cycles. As long as $(m-1)Lr < n$,

we can choose a number $y_m \in [n]$ such that none of the previously exposed r -cycles contains y_m . Repeating the above argument yields an upper bound of

$$\frac{Lr}{n - mLr}$$

on the probability that W fixes y_m , even when conditioning on the $(m - 1)L$ previously exposed r -cycles. Therefore,

$$\text{Prob}\{W = \text{Id}\} \leq \left(\frac{Lr}{n - mLr} \right)^m,$$

as long as $mLr < n$. Substituting $m = \lceil n/(2Lr) \rceil$ yields the bound

$$\text{Prob}\{W = \text{Id}\} \leq \left(\frac{2Lr}{n} \right)^{n/(2Lr)}.$$

The number of choices for the word on the right-hand side of (9) is at most $(d - 1)^l(r - 1)^l$. (By taking a cyclic shift if necessary, we may assume that $j_2 \neq d$, so there are at most $d - 1$ choices for j_2 , and at most $d - 1$ choices for all subsequent j_i ; there are clearly at most $r - 1$ choices for each m_i .) Hence, the probability that there exists such a word which evaluates to the identity permutation is at most

$$(d - 1)^l(r - 1)^l \left(\frac{2r(r - 1)l}{n} \right)^{n/(2r(r - 1)l)}.$$

To bound the probability that H has a cycle of length less than g , we need only sum the above expression over all $l < g$:

$$\begin{aligned} \text{Prob}\{\text{girth}(H) < g\} &\leq \sum_{l=3}^{g-1} (d - 1)^l(r - 1)^l \left(\frac{2r(r - 1)l}{n} \right)^{n/(2r(r - 1)l)} \\ &< (d - 1)^g(r - 1)^g \left(\frac{2r(r - 1)g}{n} \right)^{n/(2r(r - 1)g)}. \end{aligned}$$

In order for the right-hand side to tend to zero as $n \rightarrow \infty$, we must choose

$$g = c_0 \sqrt{\frac{n \log n}{r(r - 1)(\log(d - 1) + \log(r - 1))}}$$

for some constant $c_0 < 1/2$; we then have

$$\text{Prob}\{\text{girth}(H) < g\} \leq \exp \left(-\Omega \left(\frac{1}{r} \sqrt{(\log(d - 1) + \log(r - 1))(n \log n)} \right) \right).$$

This completes the proof of Claim 3, and thus proves Theorem 8. \square

\square

4 Conclusion and open problems

Our best (general) upper and lower bounds on the function $g_{r,d}(n)$ differ approximately by a factor of 2:

$$(1 + o(1)) \frac{\log n}{\log(d-1) + \log(r-1)} \leq g_{r,d}(n) \leq (2 + o(1)) \frac{\log n}{\log(r-1) + \log(d-1)}.$$

It would be of interest to narrow the gap, possibly by means of an explicit algebraic construction *à la* Ramanujan graphs.

In [12], Gamburd, Hoory, Shahshahani, Shalev and Virág conjecture that with high probability, a random d -regular Cayley graph on S_n has girth at least $\Omega(\log |S_n|)$, as opposed to the $\Omega(\sqrt{\log |S_n|})$ which they prove. We believe that the random hypergraph of Theorem 8 also has girth $\Omega(\log |S_n|)$.

In this paper, we considered a very simple and purely combinatorial notion of girth in hypergraphs, but other notions appear in the literature, for example using the language of simplicial topology, such as in [23, 13]. A different combinatorial definition was introduced by Erdős in [10]. Define the (-2) -girth of a 3-uniform hypergraph as the smallest integer $g \geq 4$ such that there is a set of g vertices spanning at least $g-2$ edges. Erdős conjectured in [10] that there exist Steiner Triple Systems with arbitrarily high (-2) -girth; this question remains wide open (see for example [2]), and seems very hard. In view of this, we raise the following.

Question 9. *Is there a constant $c > 0$ such that there exist n -vertex 3-uniform hypergraphs with cn^2 edges and arbitrarily high (-2) -girth?*

Note that Erdős' conjecture on Steiner Triple Systems, if true, would imply a positive answer for every $c < \frac{1}{6}$. This is clearly tight, since an n -vertex, 3-uniform hypergraph with at least $n^2/6$ edges cannot be linear,¹ and therefore has (-2) -girth 4.

We turn briefly to some variants of Erdős' definition. The celebrated $(6, 3)$ -theorem of Ruzsa and Szemerédi [28] states that if H is an n -vertex, 3-uniform hypergraph in which no 6 vertices span 3 or more edges, then H has $o(n^2)$ edges. Therefore, if we define the (-3) -girth of a 3-uniform hypergraph to be the smallest integer $g \geq 6$ such that there exists a set of g vertices spanning at least $g-3$ edges,² then an n -vertex, 3-uniform hypergraph with (-3) -girth at least 7 has $o(n^2)$ edges. Hence, the analogue of Question 9 for (-3) -girth has a negative answer. On the other hand, if we define the (-1) -girth of a 3-uniform hypergraph to be the smallest integer g such that there exists a set of g vertices spanning at least $g-1$ edges, it can be shown that the maximum number of edges in an n -vertex, 3-uniform hypergraph with (-1) -girth at least g , is $n^{2+\Theta(1/g)}$.

¹If H is a linear, n -vertex, 3-uniform hypergraph, then any pair of vertices is contained in at most one edge of H , so double-counting the number of times a pair of vertices is contained in an edge of H , we obtain $3e(H) \leq \binom{n}{2}$.

²The condition $g \geq 6$ is necessary to avoid triviality: if we replaced it with $g \geq 5$, then a 3-uniform hypergraph would have (-3) -girth 5 unless it consisted of isolated edges.

5 Acknowledgment

N. L. wishes to thank Shlomo Hoory for many years of joint pursuit of the girth problem [15]. Quite a few of the ideas of this present paper can be traced back to that joint research effort.

References

- [1] E. Bannai, T. Ito, Regular graphs with excess one, *Discrete Mathematics* 37 (1981), 147–158.
- [2] R. A. Beezer, The girth of a design, *Journal of Combinatorial Mathematics and Combinatorial Computing* 40 (2002), 97–113.
- [3] C. Berge, Hypergraphs, Combinatorics of Finite Sets. North-Holland, Amsterdam, 1989.
- [4] C. Berge, Hypergraphs, in Selected Topics in Graph Theory 3, eds. L. W. Beineke and R. J. Wilson, Academic Press, 1998, 189–207.
- [5] N. Biggs, T. Ito, Graphs with even girth and small excess, *Mathematical Proceedings of the Cambridge Philosophical Society* 88 (1980), 1–10.
- [6] Y. Bilu and N. Linial, Lifts, discrepancy and nearly optimal spectral gap, *Combinatorica* 26 (2006), 495–519.
- [7] B. Bollobás, E. Győri, Pentagons versus Triangles, *Discrete Mathematics* 308 (2008) 4332–4336.
- [8] C. Cooper, A. Frieze, M. Molloy, B. Reed, Perfect matchings in random r -regular s -uniform hypergraphs, *Combinatorics, Probability and Computing* 5 (1996), 1–14.
- [9] R. Duke, Types of cycles in hypergraphs. *Cycles in graphs*, 399–417, North-Holland Mathematical Studies, 115, North-Holland, Amsterdam, 1985.
- [10] P. Erdős, Problems and results in combinatorial analysis, Colloquio Internazionale sulle Teorie Combinatorie (Rome, 1973), Tomo II, Atti dei Convegni Lincei, No. 17, pp. 3–17, Accad. Naz. Lincei, Rome, 1976.
- [11] P. Erdős, H. Sachs, Reguläre Graphen gegebener Taillenweite mit minimaler Knotenzahl. (Regular graphs with given girth and minimal number of knots.) *Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg, Math.-Naturwiss.* 12 (1963), 251–258.
- [12] A. Gamburd, S. Hoory, M. Shahshahani, A. Shalev, B. Virág, On the girth of random Cayley graphs, *Random Structures and Algorithms* 35 (2009), 100–117.
- [13] M. Goff, Higher dimensional Moore bounds, *Graphs and Combinatorics* 27 (2011), 505–530.
- [14] E. Győri, N. Lemons, 3-uniform hypergraphs avoiding a given odd cycle. Preprint, available at <http://www.renyi.hu/~nathan/>.
- [15] S. Hoory, On graphs of high girth, PhD thesis, Hebrew University of Jerusalem, 2002.

- [16] S. Hoory, The size of bipartite graphs with a given girth, *Journal of Combinatorial Theory, Series B* 86 (2002), 215–220.
- [17] P. Kovács, The non-existence of certain regular graphs of girth 5, *Journal of Combinatorial Theory, Series B*, 30 (1981), 282–284.
- [18] F. Lazebnik, J. Verstraëte, On hypergraphs of girth five, *Electronic Journal of Combinatorics* 10 (2003), R25.
- [19] F. Lazebnik, V. A. Ustimenko, A. J. Woldar, A New Series of Dense Graphs of High Girth, *Bulletin of the American Mathematical Society* 32 (1995), 73–79.
- [20] F. Lazebnik, V. A. Ustimenko, A. J. Woldar, New upper bounds on the order of cages, *Electronic Journal of Combinatorics* 14 (1997), R13.
- [21] N. Lemons, Turán problems for hypergraphs. PhD dissertation, Central European University, 2008.
Available at <http://www.renyi.hu/~nathan/nathan-thesis.pdf>.
- [22] A. Lubotzsky, R. Phillips, P. Sarnak, Ramanujan graphs, *Combinatorica* 8 (1988), 261–277.
- [23] A. Lubotzky, R. Meshulam, A Moore bound for simplicial complexes, *Bulletin of the London Mathematical Society* 39 (2007), 353–358.
- [24] A. Marcus, D. A. Spielman and N. Srivastava, Interlacing Families I: Bipartite Ramanujan Graphs of All Degrees. To appear in *FOCS* 2013.
- [25] A. Marcus, D. A. Spielman and N. Srivastava, Interlacing Families II: Mixed Characteristic Polynomials and the Kadison-Singer Problem. Preprint available at <http://arxiv.org/abs/1306.3969>.
- [26] G. A. Margulis, Explicit group-theoretic constructions of combinatorial schemes and their applications in the construction of expanders and concentrators, *Problems of Information Transmission* 24 (1988), 39–46.
- [27] M. Morgenstern, Existence and explicit constructions of $(q + 1)$ -regular Ramanujan graphs for every prime power q , *Journal of Combinatorial Theory, Series B*, 62 (1994), 44–62.
- [28] I. Z. Ruzsa, E. Szemerédi, Triple systems with no six points carrying three triangles, *Combinatorics* (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. II, pp. 939–945; also appears in *Colloq. Math. Soc. János Bolyai* 18, North-Holland, Amsterdam / New York, 1978.