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Abstract 

Karchmer, M., N. Linial, I. Newman, M. Saks and A. Wigderson, Combinatorial characterization of 

read-once formulae, Discrete Mathematics 114 (1993) 275-282. 

We give an alternative proof to a characterization theorem of Gurvich for Boolean functions whose 

formula size is exactly the number of variables. These functions are called read-once functions. We 

use methods of combinatorial optimization and give, as a corollary, an alternative proof for some 

results of Seymour (1976, 1977). 

1. Introduction 

Let X be a finite set (interpreted as Boolean variables). A monotone formula is 

a rooted tree whose leaves are labeled with members of X, and whose internal nodes 

are labeled with the Boolean operations AND, OR. The root of the tree computes 

a monotone Boolean function f: {0, 1}x~(O, l} in the natural way. 
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Let f be a monotone Boolean function. A minimal set S c X is a minterm (maxterm) 

if setting all variables in S to 1 (0), forces the value off to 1 (0). Let MIN(f) (MAX(f)) 

denote the set of all minterms (maxterms). 

The monotone formula complexity of a monotone Boolean function f; denoted by 

L,(f), is the minimum number of leaves in any formula computing f: Read-once 

formulae are formulae in which every variable of X appears exactly once. These are, of 

course, the smallest possible for functions that depend on all their variables. 

A Boolean function f is read-once if it has a read-once formula. A monotone Boolean 

function f: {O, l)‘++{O, l} depends on all its variables if USEMINCSI~= X. We give the 

following simple characterization of monotone read-once functions, originally proved 

by Gurvich in 1977 [2,3]. 

Theorem 1.1. A monotone Boolean function f that depends on all its variables is 
read-once if and only if 

TeMAX(f), SsMIN(f) * ISnTI= 1 (*) 

We get Theorem 1.1 as a corollary of Theorem 2.6, in which we state some 

connections between certain clutters, their blockers and antiblockers and their 

‘graphs’. 

We have recently been informed that the characterization theorem was proved by 

Gurvich [2] back in 1977 and more recently by Beynon and Paterson as well [l]. 

(Both cases use somewhat different proofs that does not go through the equivalence of 

(2) and (3) in Theorem 2.6). We also note here that the results on the blocker 

antiblocker relation (in Theorem 2.6) can be deduced from the work of Seymour 

[6,7], studying binary clutters, cuts and paths of series-parallel graphs, with different 

methods. 

We will need some definitions and notations. 

2. Definitions and main theorem 

Let f: {0, l}‘~{0, l} b e a Boolean function, 1x1 =n. We identify the arguments of 

,f with subsets of X in the natural way (f (S)=f(xI, . . ..x.), where Xi= 1 if Xi~S and 

Xi = 0 otherwise, 1 < i < n). 

Let %‘c 2’ be an antichain of sets; %? is called a clutter. Note that, by the definition of 

MAX( f ), MZN( f ), both these families are clutters. 

Let 55’ be a clutter; we will denote by V(V) = USE% S the set of elements of X that 

actually appear in %‘. 

Let G = ( V, E) be a graph, CC will denote the graph which is the complement of G, 

i.e. V(G’)= V, E(GC)={(u,v)l(u,v)#E}. 

A P4 is the simple path with 4 vertices and 3 edges. We say that a graph G = (V, E) is 

P,-free if it has no induced subgraph isomorphic to P4. 
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Definition 2.1. For a clutter q on a set of points X, define: 

(1) The blocker of %?, VZ’, is a clutter defined by 

‘?ZB={S~XIVT~%Z ISnTI31, and S is minimal}, 

(2) The antiblocker of %, %‘*, is a clutter defined by 

%*={SC V(%)~VTE%?~SS~TI~~, and S is maximal}. 

Definition 2.2. For a clutter 59 on a set of points X, define a Boolean function 

&: (0, ljX~{O, l} by f(S)= 1 if for some TsS, TE%?. 

In fact, fi6 is a monotone Boolean function, (write f(xl, . . . , x,) = VsGx /jxLES xi), 

and %’ is MIN(,f;,). (Unless V(g)=@). 

Lemma 2.3 (Edmonds and Fulkerson [4]). Let 9?~2’ be a clutter; then (%ZB)‘=%7. 

Proof. Easy and appears in [4]. 0 

Claim 2.4. 1f.f is a monotone Boolean function with MZN(f)=% then wB = MAX(f). 

Proof. Follows directly from the definitions. 

Definition 2.5. For a clutter %? L 2’, define the graph G(g) =( V’(V), E), where (u, U)EE 

if there is some TE%‘, with u, 116 T. 

We can state now our main theorem. 

Theorem 2.6. Let f: {0, l}” ~(0, l} be a monotone Booleanfunction with %= MZN(f) 

and X = V( %) # 8, then the following conditions are equivalent: 

(C 1) f is read-once. 

(C2) qB E %7*. 

(C3) gB = %7*. 

(C4) %? is the set of maximal cliques of G(g) and, for any induced subgraph G’ G G(v), 

every maximal clique intersects every maximal independent set. 

(C5) +J? is the set of maximal cliques of G(V), and G(g) is P4-free. 

We will need the following two definitions. 

Definition 2.7. For a clutter % on a set of points X and WcX, 

(1) The deletion of W from +Z is the clutter 
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(2) The contraction of V by W is the clutter V/W, obtained by taking all minimal 

sets of%?(W), where%?(W)={S- WISE%‘}. 

3. Proof of the main theorem 

Lemma 3.1 (Cl+C2). Let f be a monotone read-once Boolean function on a variable 

set X, with MIN( f) = w; then Vn G VA. 

Proof. We prove that f satisfies condition C2 by induction on the size of the variable 

set 1 XI. By Claim 2.4, an equivalent reformulation of condition C2 is property (*) 

stated in Theorem 1.1. 

If 1 X I= 1 then, clearly, ,f has property (*). Assume first that f has a read-once 

formula in which the output gate is an OR gate, i.e.f= g v h. Clearly, g and h are both 

monotone read-once on some disjoint sets X, and Xh, respectively. We have 

MZN(f)= MIN(g)uMZN(h) and 

MAX(f)={ S 1 S= TuQ, TEhilAX(g), QEMAX(h)}. 

It is easily verified that f has property (e) by the fact that X,, X,, are disjoint. In the 

other case where the output gate of the read-once formula off is an AND gate, 

a similar argument holds. 0 

Lemma 3.2 (C2+C3). For a clutter %‘, ifVB SW*, then +ZB =V*. 

Proof. First we observe that if $? meets the assumptions of the lemma, so does G$\ W 

for any WC X, and that the lemma is trivial for /Xl = 1. 

Assume then, for contradiction, that %? is a counterexample with IX I minimal. Let 

T&Z* - gB. 

We may assume that ITI# 1. Otherwise, T=(x). Take some BMB, XEB (it is 

always possible to find such a B); thus, by condition C2, BE%?*. But Tc B, T#B, 

which contradicts the fact that %‘* is a clutter. 

Define,foreveryt~T,Ce,=(SE~,SnT=It}},anddefine~=~-(U,,,~~).Bythe 

definition of +Z*, we get that the families 9 and gt, tE T, are pairwise disjoint, and, by 

assumption, 9 #8. Define, for TV T, W,= (V(9) - us,, V(Vs))n V(%Tt), that is, W, is the 

set of all the points from X that appear in 9 and in Vt but not in any other qs, s# t. 

Note that W,n W,=(b for sft. 

Claim 3.3. For any tET and any DEB), W,nD #@. 

Proof. Assume to the contrary that W,nD=@ for some DES; look at 

V’=V?\( Wtu{t)). Note the following: 

. DE%?‘. 



that (T- { t})u{x} has the same property then, clearly, x$U,+~ IJ’(%?~). Thus, XE V(9), 

but Tu{x}#F?*; so, XEV(%~). It follows that XEW,, which contradicts the fact that 

XE V(V). 

0 (T-{t})nD=8; so, T-{t}$W”. 
We get that %” is a counterexample on X -( W,u It }) (a smaller counter- 

example). 0 
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. T- { tj&‘* since I( T- {t})nSl d 1 for any SE%?. If there exists XE V(V) such 

Thus, by the claim we have that W,u Tintersects every set in %‘, that is, there is some 

S,&?‘, S, c W,u T. Clearly, T- {t} G S, since W, does not intersect the sets of +J?~, s # t. 

So, we have S,=(T-{t})uV,, where V,s W,, and V, intersects every set of %J+?~. 

Since S,&YB and, therefore, S,E%?* by condition C2, it implies that V, is a minimal set 

of points that intersect every set in %Yt. Thus, V= Uter V, is a member of sqB, with 

/ VI 3 1 TI 3 2. But, since every V, intersects every set of 2, V intersects any set of 9 in 

more than one point, contradicting the fact that VE%?* (by condition C2). This 

completes the proof of the lemma. 0 

Remark 3.4. If%? satisfies condition C2, so does %“=V\{x}, (‘Z’=%‘/{x}) for any XEX 

such that V(?Z’)#@ Thus, by the lemma, these clutters satisfy conditions C3 too. 

Lemma 3.5 (C3+C4). Let 5~2 be a clutter for which wB= CA; then $7 is the set of 

maximal cliques of G(q) and, for any induced subgraph G’ c G(g), every maximal clique 

intersects every maximal independent set. 

Proof. We begin by making the following claims. 

Claim 3.6. Zf +ZB=%* then %=(%?*)*. 

Proof of the Claim 3.6. We have VB=wA. But, since %?=(V?B)B, $?‘, as a clutter, also 

satisfies condition C2; thus, (V’“)” = (%‘a)* (Lemma 3.2). Substituting (%‘B)B with %, and 

VZB with VA, gives the required claim. 0 

Claim 3.7 (Fulkerson [S]). Let ‘?? be a clutter. Zf (%7*)“=$7 then %? is the maximal 

cliques of G(g), and, in that case, VA is the set of maximal independent sets of G. 

Proof of Claim 3.7. By the definition of G(V), every TE?? induces a clique of G(E) and 

every SE%‘* is a maximal independent set. Moreover, every maximal independent set 

is in %?*; thus, VA is the set of maximal independent set of G(%‘). It follows that every 

maximal clique of G(V) is in (%*)*, but (WA)*=%‘, which completes the proof of the 

claim. 

Claim 3.8. Let %? be a clutter satisfying condition C3, let G= G(%?)=(X, E); then 

G-(x} is the graph of @‘/ix} or the graph of 9?\(x). 
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Proof of Claim 3.8. Observe that the following properties are true for any clutter [4]: 

(1) (~/{X>)B=~B\(X), 

(2) (~\{X))B=qX). 
Assume V(‘%?\{x})=X-{x}. Then G-(x} is the graph of g\(x) since, for every 

(u, ~)EP(G-{x}), if (u, a)#G(V\{x}) th en (u, u)~G~(~\{x))=G((%‘\{x})~)= 

G(VB/{x}), that is, u, u are in some T&? B. But (u, u)EE(G-{x}) implies that there is 

a set SE%’ such that U, OES; thus, (u, u} s TnS, contradicting condition C3. 

We will show that if V(%\{x})#X-{x> then V(%‘B\{x})=X-{x}; thus, by the 

above argument CC - (x} is the graph of U”\ { x} and, thus, G - {x} is the graph of 

(~B\{x>)B=~//cx>. 
Note. If for some ZEX - {x}, z$ V(%‘\{x}), then VS& ZES*XES. Similarly, if for 

some WEX-{x}, w$V(CeB\{x}), then VT&YB WET=>XET. 

Assume then that ZEX-{x}, z$ V(%\{x}). Clearly, z~V(%‘~\{x}) since 

z$I’(?Z\{x})~3S& (x,z~S)=>l(3T~V~ (x,z~T))*z~V(g~\{x}). 

Now, for every WEX- Ix}, if (w, z)EE(G), it implies that 3S& such that x, WES (by 

the assumption on z and the note above). Thus, we must have WE V(%“\(X}); 

otherwise, for any T of the remark, w, xESnT, which contradicts condition C3. The 

argument for the case (w, z)$E(G) is similar. 0 

Proof of Lemma 3.5 (conclusion). The lemma is easily verified for 1 X I= 2. We proceed 

by induction on 1 XI. We have, by assumption, %‘*=+ZB; thus, by Claims 3.6 and 3.7, 

the lemma is true for G’ = G(V). Clearly, every proper induced subgraph of G(V) is an 

induced subgraph of G(g)-{x}, f or some XEX. By Claim 3.8, G’=G(%)-{x} is 

G(%‘) for %?‘=U\{x} or ~‘=‘??/{x}. By Remark 3.4, %?’ satisfies condition C3. Thus, 

by induction, we are done. 0 

Lemma 3.9 (C4-+C5). Let %? be a clutter on X= V(g) such that G(g) satisjes 

condition C4; then G(%‘) is P4-free. 

Proof. Clearly, the graph P4 does not satisfy condition C4; thus, G(q) cannot have 

a P4 as an induced subgraph. 

Lemma 3.10 (CS-tCl). Let %? be a clutter on X = F’(V) such that V? is the set of maximal 

cliques of G(V) and G(g) is P,-free; then fw is read-once. 

Claim 3.11. If G is a P4-free graph on more than one vertex, then one of G, CC is 
disconnected. 

Proof. Clearly, the claim is true for a graph on two vertices. Let G be the minimal 

counter example, that is, G is P,-free and both G, CC are connected. Consider any 

vertex x; x cannot be connected (in G) to all the vertices because, in that case, CC is not 

connected. By the minimality assumption, one of G - {x}, (G - {x}” is not connected. 
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Assume that G - {x} is not connected, that is, G - {x} has at least two components. 

Therefore, there is a vertex u and a vertex t in one of the components of G - {x) such 

that (x, t), (t, u) are edges of E(G) but (x, U) is not an edge. Take some other vertex 

y such that y is not in the same component with u, t, and (y, x) is an edge of G. The 

induced graph on the four vertices u, t, x, y is a P,. 

If (G-{x))~ is not connected, observe that (G-{x))~=G~--(x} and apply the 

above argument to get a P4 as an induced subgraph of GC. Since P4 is self- 

complementary, it is an induced subgraph of G too. 0 

Let .d be the clutter of maximal independent sets of G = G(V). 

Claim 3.12. %* =d, undf;, is read-once. 

Proof. We prove the claim by induction on the size of n = 1 XI. The claim can be easily 

checked for nd3. 

By Claim 3.11, one of G, GC is disconnected. If G is disconnected then VZ = %?‘r uV1, 

where Vi is the set of maximal cliques of one of the components of G, and 9ZZ is the set 

of all other maximal cliques. Clearly, V1, g2 are clutters on disjoint sets of points, say 

Xi, X2 respectively. Define g to be the monotone Boolean function defined by %i as 

its set of minterms, and define h in similar way with respect to gZ. Clearly,f, = g v h. 

Moreover, G(V,), G(V?,) are P,-free (as induced subgraphs). Thus, by induction, g, h 

are read-once and then so is f% (by the fact that X1 and XZ are disjoint). Moreover, 

%?“=MAX($6)={Z1u12 IZ,EMAX(~), Z,~hilAX(h)}. But MAX(g)=%?: and, by in- 

duction on Vi, that is the set of maximal independent sets of G(X,). Similarly, 

MAX(k) is the set of maximal independent sets of G(X,) and then MAX(f) is 

indeed .d. 

In the case where GC is disconnected, the above, argument applied to the compon- 

ents of GC, shows that ,dR = % (note that GC is P,-free too). By Lemma 2.3, this gives 

%“R =&‘. Define g to be the function whose maxterms are the maximal cliques of 

a component of GC and 11 is the function whose maxterms are all other maximal 

cliques of GC. It is easy to see thatf= g A h. h, g are read-once (by induction) on disjoint 

variable sets; so, f is read-once too. 0 

4. The nonmonotone case 

Theorem 1.1 may be generalized for the nonmonotone case using the following 

definition: Let f be a Boolean function on a set of variables X. A l-witness of f is 

a pair (S, T), S, TC X, Sn T= 8, such that setting the variables in S equal to 1, and the 

variables in T equal to 0, forces the value of f to 1. 

We say that a l-witness (S, T) is a minterm off if it is ‘minimal’, that is, there is no 

other l-witness (S’, T’) for which S’ E S and T’ E T. 
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Maxterms of f are defined similarly as the ‘minimal’ pairs that force the value of 

f to 0. Denote by n/rZN(f) (MAX(f)) the set of all minterms (maxterms) of J We get 

the following theorem. 

Theorem 4.1. A Boolean function f that depends on all its variables is read-once ifand 

only if 

(S, TkMAX(f), (P, Q)~MzN(f)~l(suT)n(PuQ)l= 1 (**) 

Proof. The ‘only if’ part follows directly along the lines of the proof of 

Lemma 3.1. To prove the ‘if’ part, define X1 = ucS, TIEMIN(SjS, X2= ucS, TjEMIN(Ij T, 

y, =U(S, T)EMAX& Y2=U(S,T)~MAX(f) T. Condition (**) implies that XlnX2 =8 

and X1 = Y1, X2 = Y,. Complement the variables in X2; Xi ~1 Xi. This gives a new 

monotone function f’ that has property (*); therefore, f’ and, hence, f are read- 

once. 0 
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