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ABSTRACT: We study here the spectra of random lifts of graphs. Let G be a finite connected graph,
and let the infinite tree T be its universal cover space. If λ1 and ρ are the spectral radii of G and T
respectively, then, as shown by Friedman (Graphs Duke Math J 118 (2003), 19–35), in almost every n-
lift H of G, all “new” eigenvalues of H are ≤ O(λ

1/2
1 ρ1/2). Here we improve this bound to O(λ

1/3
1 ρ2/3).

It is conjectured in (Friedman, Graphs Duke Math J 118 (2003) 19–35) that the statement holds with
the bound ρ +o(1) which, if true, is tight by (Greenberg, PhD thesis, 1995). For G a bouquet with d/2
loops, our arguments yield a simple proof that almost every d-regular graph has second eigenvalue
O(d2/3). For the bouquet, Friedman (2008). has famously proved the (nearly?) optimal bound of
2
√

d − 1 + o(1).
Central to our work is a new analysis of formal words. Let w be a formal word in letters g±1

1 , . . . , g±1
k .

The word map associated with w maps the permutations σ1, . . . , σk ∈ Sn to the permutation obtained
by replacing for each i, every occurrence of gi in w by σi. We investigate the random variable X (n)

w

that counts the fixed points in this permutation when the σi are selected uniformly at random. The
analysis of the expectation E(X (n)

w ) suggests a categorization of formal words which considerably
extends the dichotomy of primitive vs. imprimitive words. A major ingredient of a our work is a
second categorization of formal words with the same property. We establish some results and make
a few conjectures about the relation between the two categorizations. These conjectures suggest a
possible approach to (a slightly weaker version of) Friedman’s conjecture.

As an aside, we obtain a new conceptual and relatively simple proof of a theorem of A. Nica
(Nica, Random Struct Algorithms 5 (1994), 703–730), which determines, for every fixed w, the limit
distribution (as n → ∞) of X (n)

w . A surprising aspect of this theorem is that the answer depends only
on the largest integer d so that w = ud for some word u. © 2010 Wiley Periodicals, Inc. Random Struct.
Alg., 37, 100–135, 2010
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1. INTRODUCTION

Let G = (V , E) be some fixed finite connected graph with E = {g1, . . . , gk}, and let
λ1 ≥ λ2 . . . ≥ λ|V | be the eigenvalues of its adjacency matrix. We think of the edges as
being oriented, though the results do not depend on the orientation chosen. We recall that
Ln(G) denotes the probability space of n-lifts of G (i.e., graphs that have an n-fold cover
map onto G). A graph H ∈ Ln(G), has vertex set V × {1, . . . , n}. For every (oriented) edge
gi = (u, v), we choose independently and uniformly a random permutation, σi ∈ Sn, and
introduce an edge between (u, j) to (v, σi(j)) for all j. For background on lifts and random
lifts, see [1–4]. In particular [21] shows how to construct regular graph lifts with a nearly
optimal spectral gap.

The projection π : H → G given by π(u, j) = u is the cover map associated with H ∈
Ln(G). Every eigenfunction f of (the adjacency matrix of) G is pulled back by π to an
eigenfunction f ◦ π of H. Therefore, every eigenvalue of G is also an eigenvalue of H.
Such an eigenvalue of H is considered “old” while all other ones are “new” (including,
possibly, duplicates of the old eigenvalues corresponding to “new” eigenfunctions). Let
T be the (infinite) universal cover of G (and H). We consider l2(V(T)), the Hilbert space
of square-summable real functions on T ’s vertices, i.e., the functions f : V(T) → R with∑

v∈V(T) f 2(v) < ∞. If AT is the (infinite) adjacency matrix of T , we consider the linear
operator corresponding to AT . Namely, f → g where g(v) = ∑

u∼v f (u). This is a bounded
linear operator on l2(V(T)), and we denote its spectral radius by ρ = ρ(T) = ρ(G).
(Recall that, by definition, ρ = sup{|ν| : ν is in the spectrum of AT }). Our main result is a
new bound on H’s new eigenvalues in terms of λ1 (the largest eigenvalue of G), and ρ.

Let µmax := max{|µ| : µ is a new eigenvalue of H}. In [5], Friedman showed that µmax ≤
λ

1/2
1 ρ1/2 + on(1) for almost every H. We improve this bound as follows:

Theorem 1. Almost every random n-lift H of G satisfies:

µmax ≤ O
(
λ

1/3
1 ρ2/3

)
More specifically,

µmax < max

(
1, 3

(
ρ

λ1

)2/3
)

· λ
1/3
1 ρ2/3 + ε (1)

almost surely for every ε > 0.

Remark 2. Let � be a (not necessarily finite) connected graph, and let v be a vertex in
�. We denote by ts(v) the number of closed paths of length s that start and end at v. It is
well known that the spectral radius of � equals lim sups→∞ ts(v)1/s. In particular, this value
is independent of the choice of v. (These facts may be proven by an easy variation on the
proof of Proposition 3.1 in [6].) Returning to our notation, observe that a path that starts
and ends at a vertex v ∈ V(T) is projected to a path of the same length that starts and ends
at the corresponding vertex of G. Consequently, ρ ≤ λ1 always holds.

Our proof of Theorem 1 suggests an approach that may lead to an even better (nearly
optimal) bound µmax ≤ O(ρ). This plan depends on an unresolved conjecture that we
present shortly. It follows from Lubotzky and Greenberg [7] that this statement cannot hold
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102 LINIAL AND PUDER

with any bound smaller than ρ −o(1). It is shown in [7] that for every infinite tree T and for
every ε > 0, there exists a constant c = c(ε, T) > 0, such that if T is the universal covering
space of a finite graph �, then at least c|V(�)| of �’s eigenvalues exceed ρ(T)−ε. Thus for
G fixed, and for ε > 0 there exists an nε such that µmax(H) > ρ(G)−ε for every n ≥ nε and
every H ∈ Ln(G). (Since the infinite d-regular tree Td has spectral radius ρ(Td) = 2

√
d − 1

([8]), this extends the Alon-Boppana bound [9] that λ2 ≥ 2
√

d − 1 − on(1) for every
n-vertex d-regular graph).

The “permutation model” of random d-regular graphs (for d even) is a special case of
random lifts of graphs. In the permutation model, n-vertex d-regular graphs are generated
through a random n-lift of a bouquet of d/2 loops. Thus, our result, as well as Friedman’s,
extend earlier work on random d-regular graphs. Namely, Friedman’s result states that
λ(G) ≤

√
2d

√
d − 1+o(1) for almost every d-regular graph, which is a slight improvement

of an old result of Broder and Shamir [10]. In this special case, Theorem 1 states that
λ(G) = O(d2/3) holds almost surely, and the tentative proof strategy mentioned above
would yield λ(G) = O(d1/2) almost surely. In particular, we obtain the following corollary
(which is, of course, substantially weaker than the one proven in [11]):

Corollary 3. If G is d-regular and d ≥ 107, then

µmax < λ
1/3
1 ρ2/3 + ε = [4d(d − 1)]1/3 + ε.

almost surely for every ε > 0.

A major tool in this area is the Trace Method which goes back to Wigner [12]. It is based
on a natural connection between graph spectra and word-maps. This approach underlies the
work of Broder-Shamir [10] and of Friedman [5].

Let w be a (not necessarily reduced) formal word in the letters g±1
1 , . . . , g±1

k . For every
k-tuple (σ1, . . . , σk) of permutations in Sn, we form the permutation w(σ1, . . . , σk) ∈ Sn, by
replacing g1, . . . , gk with σ1, . . . , σk in the expression of w. For instance, if w = g2g2

1g−1
2 g3,

then w(σ1, σ2, σ3) = σ2σ
2
1 σ−1

2 σ3. The correspondence between w and the permutation
w(σ1, . . . , σk) ∈ Sn is called a word map. Such maps can be evaluated in groups other
than Sn as well (we refer to this briefly in Section 2). The study of word maps has a long
history in group theory (see [13] and the references therein). Our perspective is mostly
combinatorial and probabilistic.

For fixed formal word w we denote by X (n)
w a random variable on Sk

n which is defined by:

X (n)
w (σ1, . . . , σk) = # of fixed points of w(σ1, . . . , σk). (2)

Now let H be an n-lift of G and let AG, AH be the adjacency matrices of G, H resp. We
denote by µ a running index for the “new” eigenvalues of H. For every t ≥ 1, the trace of
AH

t equals the number of closed paths of length t in H. This number can also be expressed
as

( ∑
µ µt

) + ( ∑|V(G)|
i=1 λi

t
)
. Therefore, for t even we obtain:

µmax
t ≤

∑
µ

µt =
(∑

µ

µt +
|V(G)|∑

i=1

λi
t

)
−

|V(G)|∑
i=1

λi
t = tr

(
AH

t
) − tr

(
AG

t
)

Every closed path in H is a lift of a closed path in G. Since the edges of G are labeled
g1, . . . , gk , every (closed) path in G corresponds to some formal word w in g±1

1 , . . . , g±1
k . The
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closed lifts of this path are in 1 : 1 correspondence with the fixed points of w(σ1, . . . , σk),
so that their number is X (n)

w (σ1, . . . , σk). Let CPt(G) denote the set of all closed paths of
length t in G (i.e., |CPt(G)| = tr(AG

t)). The above inequality now becomes:

µmax
t ≤ tr

(
AH

t
) − tr

(
AG

t
) =

∑
w∈CPt (G)

[
X (n)

w (σ1, . . . , σk) − 1
]

Taking expectations, we obtain:

E
(
µmax

t
) ≤

∑
w∈CPt (G)

[
E

(
X (n)

w

) − 1
]

(3)

Equation (3) shows the significance of E(X (n)
w ) − 1 in the study of spectra in random

lifts. If we let �w(n) equal E(X(n)
w )−1
n , it turns out that for every w, �w can be expressed as a

power series in 1
n . Namely,

�w(n) = E
(
X (n)

w

) − 1

n
=

∞∑
i=0

ai(w)
1

ni
, (4)

where the ai(w) are integers. (This fact appears in [14], but we present (Lemma 4) a new and
simpler proof). This induces a categorization of words in Fk , the free group with generators
g1, . . . , gk . Namely, φ(w) is the smallest index i for which ai(w) 	= 0, or ∞ if E(X (n)

w ) ≡ 1.
We consider next (Section 2.2) another categorization of the words in Fk , which does not

depend on a word-map to specific groups such as Sn. To every w ∈ Fk we associate β(w)

which is a non-negative integer or ∞. The categorizations induced by both φ(w) and β(w)

extend the dichotomy between primitive and imprimitive words (Recall that w is called
imprimitive if w = ud for some u ∈ Fk and d ≥ 2). Without going into the (somewhat
lengthy) definition, let us say that the main step in both [10] and [5] can be viewed as the
observation that for i = 0, 1, φ(w) = i iff β(w) = i. Our aforementioned conjecture states in
this language that φ(w) = β(w) for every word w (Conjecture 15). These relations between
φ and β allow us to bound the sum in the r.h.s of (3): We can bound the contribution of
w to this sum in terms of φ(w). This is complemented by bounding the number of words
w ∈ CPt(G) with a given value of β(w) which bound is stated in terms of ρ. Indeed, a key
step in the present paper (Lemma 20) can be interpreted as a partial proof of the claim that
β(w) = 2 iff φ(w) = 2.

As an aside to our work we obtain a new conceptual and relatively simple proof of a
theorem of A. Nica [14], which determines for every fixed w the limit distribution of X (n)

w as
n → ∞ (see Theorem 25). We carry out a similar analysis for all higher moments of X (n)

w ,
and use the method of moments to derive Nica’s result. A surprising aspect of this theorem
is that the limit distribution depends only on the largest integer d such that w = ud for some
u ∈ Fk . Nica’s full result (which we derive by the same argument) concerns not only fixed
points but applies just as well to the number of L-cycles for any fixed L ≥ 1.

The paper is arranged as follows. We begin (Section 2) with our analysis of word maps
and introduce the two new categorizations of formal words. Based on this analysis, we
prove Theorem 1 in Section 3. In Section 4 we deal with the distribution of the number
of L-cycles in w(σ1, . . . , σk) and present our new proof for Nica’s Theorem. For the reader
interested only in this new proof, this section is mostly self-contained with only occasional
references to earlier parts of the article. There are numerous open problems and conjectures
raised in this article, some of which we collect in Section 5.

Random Structures and Algorithms DOI 10.1002/rsa



104 LINIAL AND PUDER

2. WORD MAPS AND THE LEVEL OF PRIMITIVITY OF A WORD

We begin with some notation. We denote by �k the set of all finite words in letters
g±1

1 , . . . , g±1
k (though we occasionally use the letters a, b, c, . . . instead). The quotient of

�k modulo reduction of words is Fk , the set of elements of the free group on k generators.
For instance, the set CP t(G) introduced before Eq. (3) is a subset of �k , so it may contain
different words which are equivalent as members of Fk .

For every group P and every word w ∈ �k , the word map w : Pk → P is defined by
substitutions and composition. For p1, . . . , pk ∈ P, the element w(p1, . . . , pk) is obtained by
substituting pi for each occurrence of gi in w and this for every 1 ≤ i ≤ k. Clearly, the word
map of w is invariant under reductions, so we can regard w as an element in Fk .

Most research on word maps concerns the range of certain fixed words w in a group P.
More specifically, for P finite, it is of interest to understand the distribution induced on P
by the word map w : Pk → P and the uniform distribution on Pk . This perspective makes
it natural to consider an equivalence relation on words (beyond that of reduction).

To introduce this equivalence relation, we now recall some simple terminology from
combinatorial group theory. There are three elementary Nielsen transformations defined on
the free group Fk: (i) Exchanging any two generators gi and gj for some i 	= j, (ii) Replacing
some gi with g−1

i , (iii) Replacing any gi by gigj, for some i 	= j. We recall (e.g. [15], Theorem
3.2) that these transformations generate the automorphism group Ak of Fk . We say that two
words w1, w2 ∈ Fk are equivalent, and denote w1 ∼ w2, if they belong to the same orbit of
Ak . Obviously, “∼” is an equivalence relation. It is quite clear that for every finite group
P, every two equivalent words w1, w2 ∈ Fk induce the same distribution on P. We do not
know whether the converse is true as well, and we state a specific problem (Conjecture 17)
in this vein.

Given a word w and the distribution it induces on a group P, it is of interest to consider
how far this distribution is from the uniform distribution. The two gradings of words φ(·)
and β(·) can be viewed as our attempts to capture this intuition. Both parameters associate a
non-negative integer or ∞ with every w ∈ Fk , and they tend to grow as the aforementioned
distance decreases. Of course, the distribution furthest away from the uniform distribution
corresponds to the word w = 1. Indeed, β(w) = 0 iff φ(w) = 0 iff w = 1 (Lemma 12).
Also, β(w) = 1 iff φ(w) = 1 iff w is imprimitive (Lemma 13). In this case the range of
w contains only powers of certain exponent. (Recall that w ∈ Fk is called imprimitive if
w = ud for some word u and d ≥ 2.) At the other end of the scale, both β(w) and φ(w)

equal ∞ for words that are ∼-equivalent to a single-letter word. Clearly, such words always
induce the uniform distribution on P. Another important property is that both β and φ are
invariant under “∼”.

The definition of φ(w) depends on the word map for the symmetric group Sn (see Section
2.1). The definition of β(w) is more involved and is based on a certain analysis of w as a
formal word without reference to groups (see Section 2.2). In fact, we have arrived at our
definition of β(w) through our study of φ(w). Some proven results and extensive numerical
simulations suggest that φ(w) = β(w) for every w (Section 2.3). One advantage of the
parameter β over φ is that we can bound the number of words with fixed value of β - see
Section 3.1.

Since both φ(w) and β(w) offer an extension of the primitive-imprimitive dichotomy
for words, we tend to think of them as quantifying “the level of primitivity” of a word
(this level is 0 if w = 1, it is 1 if w is imprimitive, and ≥ 2 for primitive words - see
Section 2.3).

Random Structures and Algorithms DOI 10.1002/rsa
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2.1. The Word Map w : Sk
n → Sn and φ(·)

In this section we present a method to calculate the expectation of X (n)
w , the number of fixed

points in w(σ1, . . . , σk) (defined in (2)). We count the fixed points in w(σ1, . . . , σk) for all
k-tuples (σ1, . . . , σk) ∈ Sk

n and divide by (n!)k . This calculation is carried out through a
certain categorization of all fixed points. We note that similar considerations appear in [14].

We begin with some technicalities. Let w = gα1
i1

gα2
i2

. . . gαm
im ∈ �k , where i1, . . . , im ∈

{1, . . . , k} and α1, . . . , αm ∈ {−1, 1}, and let σ1, . . . , σk ∈ Sn. Assume that s0 ∈ {1, . . . , n} is
a fixed point of w(σ1, . . . , σk). Associated with s0 is the following closed trail:

s0

σ
α1
i1−→ s1

σ
α2
i2−→ s2

σ
α3
i3−→ · · ·

σ
αm−1
im−1−→ sm−1

σ
αm
im−→ s0

with s1, . . . , sm−1 ∈ {1, . . . , n}, and sb mod m = σ
αb
ib

(sb−1) (b = 1, . . . , m).
Note that for the sake of convenience, we compose permutations from left to right. This

is inconsequential for the analysis of the variables X (n)
w since w(σ1, . . . , σk) with left-to-right

composition is the inverse of w(σ−1
1 , . . . , σ−1

k ) with right-to-left composition, and thus both
have the same cycle structure.

We categorize fixed points according to their associated trails. Let s0 → · · · → sm−1 →
s0 and s′

0 → · · · → s′
m−1 → s′

0 be the trails of the fixed points s0 and s′
0 in w(σ1, . . . σk) and

w(σ ′
1, . . . , σ ′

k), respectively. These two trails are placed in the same category, if they have
the same coincidence pattern, that is, if for every i, j ∈ {0, . . . , m − 1}, si = sj ⇔ s′

i = s′
j.

Each closed trail consists of m integers, or points, possibly with repetitions, and each
category of trails uniquely corresponds to some partition of these m points. Consequently,
there are at most B(m) categories, where the m-th Bell Number, B(m), is the number of
partitions of an m element set. This bound is, however, not tight. For instance, if sa+1 = σj(sa)

and sb+1 = σ−1
j (sb), then sa = sb+1 ⇔ sa+1 = sb. Therefore, not every partition corresponds

to a realizable category of trails.
It is convenient to associate a directed edge-colored graph � with each category. Vertices

in � correspond to blocks in the partition that defines �’s category. In other words, � has
as many vertices as the number of distinct integers among the sb’s. There is a directed edge
labeled j from one vertex (=block) to another, whenever the trails include an arrow labeled
σj (resp. σ−1

j ) from a point in the first (second) block to a point in the second (first) one.
Of special importance is the graph associated with the finest possible partition which we

call the universal graph. Two points in the trail are merged in this partition if and only if they
are merged in every realizable partition. If w is cyclically reduced (i.e., no two consecutive
letters are inverses, nor are the first and last letter), this is the partition where all m points
in the trail are distinct. To illustrate, we draw in Fig. 1 the universal graph of three different
words.

All other graphs are now easily derived as quotients of the universal graph, or partitions
of its vertices. A quotient graph has one vertex per each block in the partition. It has a
j-labeled directed edge (j-edge for short) from block v1 to block v2, if the universal graph
contains a j-edge from a vertex in v1 to a vertex in v2. A quotient is not realizable if it contains
two distinct j-edges with common head and different tails or vice-versa. We denote by Qw

the set of all realizable quotients.
To illustrate, we draw (Fig. 2) all the realizable quotient graphs of the universal graph

of the commutator word (one of the graphs in Fig. 1). Note that a four element set has 15
partitions (the fourth Bell number, B(4) = 15), of which only 7 are realizable in this case.

Random Structures and Algorithms DOI 10.1002/rsa
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Fig. 1. From left to right: the universal graphs of w = g1g2g−1
1 g−1

2 (the commutator word), of
w = g1g2g2g−1

2 g3g2g−1
1 , and of w = g1g−1

1 g2g3g−1
3 g−1

2 .

These graphs suggest a simple formula for the number of fixed points in each category.
Let v� , (e�) be the number of vertices (edges) in the graph �, and e j

� be the number of
j-edges (and so e� = ∑k

j=1 e j
�). To count the number of fixed points in �’s category, or the

number of realizations of �, we first label �’s vertices by distinct numbers from {1, . . . , n}
(i.e., specify the values of s0, . . . , sm−1). This can be done in n(n − 1) . . . (n − v� + 1)

ways. For each j = 1, . . . , k there are
(
n − e j

�

)! permutations that are consistent with the e j
�

values in the permutation σj that are already determined. Thus, the number of realizations of
� is:

Fig. 2. The 7 different graphs in Qw, the set of graphs of categories of fixed points when w =
g1g2g−1

1 g−1
2 . Each graph is drawn together with the partition of the universal graph which yields it.

(We do not specify the block corresponding to each vertex).

Random Structures and Algorithms DOI 10.1002/rsa
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N�(n) = n(n − 1) . . . (n − v� + 1)

k∏
j=1

[
n − e j

�

]! (5)

A formula for the expectation of X (n)
w is now at hand:

E(X (n)
w ) = 1

(n!)k

∑
σ1,...,σk∈Sn

X (n)
w (σ1, . . . , σk) = 1

(n!)k

∑
�∈Qw

N�(n)

=
∑

�∈Qw

n(n − 1) . . . (n − v� + 1)∏k
j=1 n(n − 1) . . . (n − e j

� + 1)

=
∑

�∈Qw

(
1

n

)e�−v�
∏v�−1

l=1

(
1 − l

n

)
∏k

j=1

∏e
j
�

−1

l=1

(
1 − l

n

) (6)

(The third equality holds only for n that is ≥ e j
� for all j and �.)

We illustrate these calculations for w the commutator word g1g2g−1
1 g−1

2 . If we go over
the graphs in Fig. 2 in clockwise order starting at the upper-left graph, (6) becomes:

E
(
X (n)

w

) = n(n − 1)(n − 2)(n − 3)

[n(n − 1)][n(n − 1)] + n(n − 1)(n − 2)

[n(n − 1)][n(n − 1)]+

+ n(n − 1)

[n(n − 1)][n] + n(n − 1)

[n][n(n − 1)] + n

[n][n]+

+ n(n − 1)

[n(n − 1)][n(n − 1)] + n(n − 1)(n − 2)

[n(n − 1)][n(n − 1)] = n

n − 1

In (4) we defined �w(n) to be E(X(n)
w )−1
n . The following lemma states an important property

of �w:

Lemma 4. Associated with every w ∈ Fk is a power series
∑∞

i=0 ai(w)xi that has a
positive radius of convergence where the coefficients ai(w) are integers. In particular, for
every w and for every sufficiently large n, there holds �w(n) = ∑∞

i=0 ai(w) 1
ni .

Proof. As we saw in (6), for large enough n (e.g., n ≥ |w| suffices),

�w(n) = −1

n
+

∑
�∈Qw

(
1

n

)e�−v�+1 ∏v�−1
l=1

(
1 − l

n

)
∏k

j=1

∏e
j
�

−1

l=1

(
1 − l

n

) . (7)

Since every � is a connected graph, we have e� − v� + 1 ≥ 0. The lemma follows when
we individually consider the expression corresponding to each �. (See the proof of Lemma
19 for a thorough analysis of these expressions).

By Lemma 4, the contribution of every w ∈ CP t(G) in (3), is ai(w)+o(1)

ni−1 for some
nonnegative integer i. This induces the following useful grading of words:

φ(w) :=
{

the smallest integer i with ai(w) 	= 0 if E(X (n)
w ) 	≡ 1

∞ if E(X (n)
w ) ≡ 1

(8)

Random Structures and Algorithms DOI 10.1002/rsa
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Recall that although the construction of �w depends on the actual representation of w (a
reduction of w usually changes Qw), this function captures some features of the distribution
of the image of w on Sn. Thus, �w as well as φ(w), are invariant not only under reduction,
but also under “∼”.

With this new terminology we can reinterpret both [10] and [5] as follows: Both papers
rely on the fact that φ(w) = 0 iff w reduces to the empty word, and that φ(w) = 1 iff w
is imprimitive (see Lemmas 12 and 13). To study the new spectrum of random lifts, one
proceeds as follows: The number of words of these two kinds can be bounded in terms of
ρ (the spectral radius of the universal cover) alone (and does not depend on λ1, the spectral
radius of the base graph). Finally, the rest of the words (which are, in fact, the vast majority)
contribute to the summation in (3) only O( 1

n ) each.
Here we extend these ideas and seek (with partial success) a similar characterization

for all words with φ(w) = i for fixed i. Our analysis of the new spectrum extends these
arguments and refines them. We further split the above-mentioned third set and attain an
improved bound on the contributions of these subsets to the sum in Eq. (3).

2.2. More on the Level of Primitivity: β(·)
We now start our second attempt at capturing the “level of primitivity” of w by means of
the parameter β(w). We begin with some definitions.

Recall the notion of a trail from Section 2.1. Consider then the following trail through
w = gα1

i1
gα2

i2
. . . g

α|w|
i|w| (this time, the si’s should not be thought of as numbers but rather as

abstract symbols, and the trail deliberately ends with s|w| and not with s0):

s0

g
α1
i1−→ s1

g
α2
i2−→ s2

g
α3
i3−→ · · ·

g
αm−1
i|w|−1−→ s|w|−1

gαm
i|w|−→ s|w|

As in our former definition of a realizable category of trails, we say that a partition of
{s0, . . . , s|w|} is realizable if the following conditions hold: Whenever ih = il and αh =
αl, sh−1 is in the same block with sl−1 (we denote sh−1 ≡ sl−1) iff sh ≡ sl. Likewise,
whenever ih = il and αh = −αl, sh−1 ≡ sl ⇔ sh ≡ sl−1. (In other words, a partition is
realizable whenever it traces a trail of some point, fixed or not, through w(σ1, . . . , σk) for
some σ1, . . . , σk ∈ Sn and some n.)

As before, to each realizable partition of {s0, . . . , s|w|} corresponds a directed edge-
colored graph �, which is a quotient of the graph of the trail. According to our former
notation, � ∈ Qw whenever s0 ≡ s|w|. We now concentrate on the number of pairs of si’s
that should be merged in order to yield a specific �.

Definition 5. Let � be the quotient graph corresponding to some realizable partition of
{s0, . . . , s|w|}. We say that set of pairs {{sj1 , sk1}, . . . , {sjr , skr }} generates �, if � corresponds
to the finest realizable partition in which sji ≡ ski ∀i = 1, . . . , r.

Example 1. Let us return to the commutator word w = g1g2g−1
1 g−1

2 . The trail here is

s0
g1−→ s1

g2−→ s2

g−1
1−→ s3

g−1
2−→ s4.

In Fig. 3 we revisit the seven quotient graphs from Fig. 2 (the seven graphs in Qw), and
specify a smallest generating set for each of them.
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Fig. 3. A smallest generating set of each of the seven graphs in Qw, the set of graphs of categories
of fixed points when w = g1g2g−1

1 g−1
2 .

We denote by χ(�) = e� − v� + 1 the Euler characteristic of �. It turns out that there
is a tight connection between χ(�) and the smallest size of a generating set of �:

Lemma 6. Let � be the quotient graph corresponding to some realizable partition of
{s0, . . . , s|w|}. The smallest cardinality of a generating set for � is χ(�).

Proof. It is quite easy to construct a set Ŝ of χ(�) pairs that generates �. To this end, we
adopt the original terminology of [10]. As we follow the path of w through �, each move
has one of three types. In a free step we traverse a new edge and reach a new vertex, and so
one vertex and one edge are added to the partial graph. In a coincidence a new edge leads
us to an “old” vertex, so we gain one new edge and no new vertices. In a forced step we
traverse an old edge (necessarily to an old vertex), so the numbers of vertices and edges
remain unchanged. Consequently, χ(�) equals the number of coincidences in this walk.
We introduce into Ŝ one pair for each coincidence. If the j-th step is a coincidence in which
we reach a vertex in � representing the block si1 , . . . , sir (i1 ≤ · · · ≤ ir < j), we add {sj, si1}
to Ŝ. Clearly, the cardinality of Ŝ is χ(�) and it generates �.

To see that � has no generating set smaller than Ŝ, consider S, the collection of all gener-
ating sets of � of the smallest possible cardinality. We claim that Ŝ is the lexicographically
first member of S. Concretely, write each pair under consideration as {si, sj} with i > j.
Now sort the pairs in each S ∈ S in increasing lexicographic order and let T ∈ S be the
lexicographically first member of S. Our claim is that T = Ŝ. Observe that if {si, sj} ∈ T
then there is no index h < i with h 	= j with {si, sh} ∈ T . Otherwise we could replace the pair
{si, sj} with the pair {sh, sj} and generate the same quotient as does T with a lexicographically
smaller set of pairs.

It is helpful to consider for each 1 ≤ i ≤ |w| the graph �i that is the quotient of
s0 → · · · → si generated by the initial segments of T that includes only those pairs in T
where both indices are ≤ i. We claim that �i−1 is a subgraph of �i for all i. If there is no
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TABLE 1. The Number of Graphs in Qw in Any Specified Character and Type,
when w = g1g2g−1

1 g−1
2

χ 0 1 2 3 4

Type A 0 1 4 1 0
Type B 0 0 1 0 0

pair in T where si is the larger member, this is clear. If {si, sj} is in T then the index j is
uniquely defined by the above remark. In this case, we need to show that the identification
of si with sj does not entail any additional identification (which would violate the inclusion
�i−1 ⊆ �i). How can such an identification occur? Only if the label of the edge (si−1, si)

agrees with that of an edge e incident with the block that contains sj (and has the correct
orientation). Let sν be a member of the block at the other end of e. Clearly ν < i. But now
again we can generate the quotient generated by T by a lexicographically smaller set, i.e.,
replace the pair {si, sj} by {si−1, sν}.

We can again recognize the three types of steps by observing how the graphs �i grow
at each step. If �i stays unchanged, this is a forced move. If only an edge is added, this
is a coincidence and in a free step one vertex and one edge are added. It is exactly at
each coincidence step that vertices at T get merged. But this is precisely what we did in
constructing Ŝ, so that Ŝ = T , as claimed.

The following categorization of the quotient graphs in Qw turns out to be very useful:

Definition 7. Let w be a word in �k. We say that a quotient graph � ∈ Qw has type A,
if one of the smallest generating sets for � contains the pair {s0, s|w|}. Otherwise, we say �

has type B.

Given a word w, we classify the graphs in Qw according to their characteristics and type.
Note that χ(�) ≤ |w|, since every � has at most |w| edges. We illustrate this again with
the seven graphs of the commutator word: The figure-eight graph with one vertex and two
edges has type B. The other six graphs have type A (their generating sets specified in Fig.
3 purposely include {s0, s4}). Table 1 shows the whole census.

We are now ready for the second definition for a word’s “level of primitivity”. Let w be
a word in �k . We define β(w) to be the smallest characteristic of a type-B graph in Qw.
Namely,

β(w) := min({χ(�) : � ∈ Qw and � has type B} ∪ {∞}) (9)

Example 2. For the commutator word β(w) = 2.

In the next few lemmas we establish several properties of β(·) which are clearly desirable.
Among others, β(·) is proved to be invariant under reductions, and hence well defined as a
function on Fk .

Lemma 8. β(·) is invariant under cyclic shifts.

Proof. Let w ∈ �k , and let w′ be some cyclic shift of w. There is an obvious bijection
between Qw and Qw′ , obtained by applying the appropriate cyclic shift on the indices of
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the si’s in the blocks’ names. (E.g, if w′ is attained from w by a right cyclic shift of two
positions, replace each label si in w by s′

j in w′ where j ≡ i + 2 mod |w|.) We claim that
in addition, each � ∈ Qw has the same type in Qw as its matching quotient �′ in Qw′ . It
suffices to show that if � has type A in Qw, then �′ have type A in Qw′ (It then follows by
symmetry that � has type A in Qw iff �′ has type A in Qw′ ).

Let S be a smallest generating set of � with {s0, s|w|} ∈ S. Given S, we can generate �

gradually, through a series of quotients. To proceed from the quotient �i to the next quotient,
we add a pair {sj, sr} ∈ S. To determine �i+1 we carry out all necessary identifications and
only them. Formally, �i+1 is the finest realizable quotient of �i in which the pair {sj, sr}
is merged. It is easily verified that the final quotient is � regardless of the order at which
the pairs in S are introduced. But merging {s0, s|w|} in w, and merging {s′

0, s′
|w|} in w′, yield

equivalent quotient graphs (these are the universal graphs of w and of w′, as defined in
Section 2.1 around Fig. 1). We can now proceed by applying the same series of quotients
as described above on both universal graphs, to conclude that �′ is of type A with respect
to w′ as well.

Lemma 9. Let w ∈ �k, and let w′ be its reduced form. Then β(w) = β(w′).

Proof. We need to show that β does not change when a letter and its inverse are inserted
consecutively into a word. But Lemma 8 says that β is invariant under cyclic shifts, so it
suffices to show that β(w) = β(w′) for w = gα1

i1
gα2

i2
. . . gαm

im and w′ = gα1
i1

gα2
i2

. . . gαm
im gjg

−1
j . To

see this, we define below for every quotient � ∈ Qw the subset ε(�) ⊆ Qw′ of all consistent
extensions of �. The set ε(�) contains a certain member δ(�) which plays a special role.
The relevant properties of ε and δ are:

• The union of the images of ε is all of Qw′ .
• If �1 	= �2 ∈ Qw, then ε(�1) and ε(�2) are disjoint.
• If � ∈ Qw has type A, then all members in ε(�) have type A.
• For every � ∈ Qw, one graph δ(�) ∈ ε(�) has the same Euler characteristic and the

same type as �. All other members in ε(�) have Euler characteristic χ(�) + 1.

It should be clear that these properties prove the lemma.
If v ∈ V(�) is the vertex corresponding to sm, then ε(�) is the set of all extensions of

� ∈ Qw where there is a j-edge (an edge labeled j) starting at v. If � already has such an edge,
then we can attain a graph �′ ∈ Qw′ by adding sm+2 to the block containing sm, and adding
sm+1 to the block at the end of this j-edge. We then define ε(�) = {δ(�)} = {�′} ≈ {�}
(We use “≈” to denote equality as vertex-unlabeled-graphs.)

Otherwise, ε(�) includes all the (v� − e j
� + 1) different possible extensions of � with

such an edge. We only need to specify the other vertex of this new edge, that corresponds
to sm+1. In the graph δ(�) the vertex sm+1 is new and so is the j-edge (sm, sm+1). Clearly,
χ(δ(�)) = χ(�), as claimed. Otherwise this additional edge can go from sm to any of the
v� −e j

� vertices in � which are not tails of a j-edge. Such graphs clearly have characteristics
χ(�) + 1.

We prove the first two properties of ε by recovering, for every �′ ∈ Qw′ the (unique)
graph � ∈ Qw with �′ ∈ ε(�). We consider the (m + 1)-st step in the path of w′ through
�′ (the step from sm to sm+1), and use the notations of Lemma 6. If this step is free, then
� is obtained from �′ by deleting the vertex corresponding to sm+1 and the edge (sm, sm+1)

(as well as, of course, omitting sm+2 from its block). If it is a coincidence, then clearly
� ≈ �′ \ (sm, sm+1). Otherwise, it is forced and so � ≈ �′.
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We want to show next that if � ∈ Qw has type A, then all graphs in ε(�) have type A as
well. By assumption � is generated by a set S of cardinality |S| = χ(�) and {s0, sm} ∈ S.
Note that sm ≡ sm+2 in every quotient of w′. Therefore, when we consider generating sets
for graphs in Qw′ , the vertices sm and sm+2 play the exact same role. We therefore define
S′ to be the set of pairs that is attained by replacing each occurrence of sm in S with sm+2.
Clearly, S′ generates the graph δ(�) ∈ ε(�). For any other graph in ε(�), we add to S′ the
pair {sm+1, si} where si (i ≤ m) corresponds to the vertex which (sm, sm+1) goes to. In each
of these cases we found a smallest generating set S′ that includes the pair {s0, sm+2}, so all
members of ε(�) have type A.

Finally, we need to show that if � ∈ Qw has type B, then so does δ(�). So suppose
δ(�) has type A, with a smallest generating set S′ that contains the pair {s0, sm+2}. Let us
construct a set of pairs S by replacing each occurrence of sm+2 in S′ by sm. If S′ contains
some pair {sm+1, si}, then clearly sm+1 is not a new vertex in δ(�), and we are necessarily in
the case where � ≈ δ(�) (recall that � and δ(�) have the same characteristic). In this case
the edge (sm, sm+1) is not new, so it is merged with some (sr−1, sr) (or (sr+1, sr)) for some
r < m. Thus, we can replace each sm+1 in S′ with sr . This is a contradiction since S is a
smallest generating set of � which therefore has type A.

Note that from Lemmas 8 and 9 it follows that β is invariant under cyclic reduction
as well, or under conjugation. Similar arguments show that it is also invariant under the
equivalence relation “∼”, but we do not include the proof. In the following lemma we state
an important property of type-B quotient graphs. This property plays a crucial role in the
sequel, where we introduce a bound to the number of words with some fixed value of β(·).

Lemma 10. Let � ∈ Qw have type B. As we trace the path of w through �, every edge in
� is traversed at least twice.

Proof. We show that if some edge e is traversed only once, then � has type A. Lemma 8
allows us to assume that e is the last step in the path of w, i.e., the step from s|w|−1 to s|w|.
In the proof of Lemma 6, we constructed Ŝ, a generating set of � of smallest cardinality,
with one pair for each coincidence in the path of w through �. Here, the last coincidence
corresponds to the pair {s0, s|w|}. Therefore � has type A.

Remark 11. The converse is not true. There are quotients of type A where every edge
is traversed more than once. Consider the word w = ababa. One of the quotient graphs in
Qw is a figure-eight with one vertex and two loops. Each edge in this quotient is traversed
twice or thrice, but the quotient has type A. It is generated by the two pairs {s0, s2}, {s0, s5}.

2.3. Some Connections Between φ(w ) and β(w )

We now turn to examine the relation between φ and β. We first observe that ai(w) (the
coefficient of 1

ni in the power series form of �w(n)), is completely determined by quotients
in Qw with characteristic ≤ i. This is easily verified by considering the contribution of each
� ∈ Qw in (7). We are now able to use our new perspective and show that (as mentioned
earlier) for i = 0, 1, φ(w) = i ⇔ β(w) = i.

Lemma 12. For every w ∈ Fk, φ(w) = 0 ⇔ β(w) = 0 ⇔ w = 1.
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Proof. By Lemma 6, the only quotient graph of w with characteristic 0 is the graph � gen-
erated by the empty set. Now φ(w) = 0 ⇔ a0(w) > 0 ⇔ � ∈ Qw ⇔ s0 ≡ s|w| in � ⇔ w
reduces to 1. If � ∈ Qw then � has type B by definition. Thus β(w) = 0 ⇔ � ∈ Qw.

Lemma 13. For every w ∈ Fk, φ(w) = 1 ⇔ β(w) = 1 ⇔ w is imprimitive.

Proof. Let w ∈ Fk be in reduced form and assume w 	= 1. By Lemma 12, all � ∈ Qw

have a positive characteristic. The definition of �w(n) clearly yields that a1(w) = |{� ∈
Qw : χ(�) = 1}| − 1. In this case the single pair {s0, s|w|} is a smallest generating set
for the universal graph (defined in Section 2.1), so at least one quotient has characteristic
1. Obviously, any other quotient with χ = 1 is not generated by {s0, s|w|}, and thus (by
Lemma 6) has type B. Thus φ(w) = 1 ⇔ β(w) = 1 ⇔ such additional quotients exist. We
complete the proof by showing that the latter is true iff w is imprimitive.

Let w′ be the cyclic reduction of w. It is easy to verify that w ∼ w′ whence φ(w) = φ(w′)
and w is primitive iff so is w′. Lemmas 8 and 9 yield that β(w) = β(w′) as well. Thus we
can assume, for simplicity, that w is cyclically reduced.

In this case, merging s0 and s|w| implies no other identifications, and the universal graph
is a cycle of length |w|. If w is imprimitive, there is some u ∈ Fk and d ≥ 2 such that
w = ud . Clearly, u is cyclically reduced as well, and the universal graph of u is a cycle of
length |u| which is an additional quotient of characteristic 1 in Qw.

On the other hand, since w is cyclically reduced, every vertex in every � ∈ Qw has
degree ≥ 2. Thus, if χ(�) = 1, it is necessarily a cycle. As the path of w through � is
non-backtracking and w 	= 1, it consists of tracing this cycle some d ≥ 1 times. If d = 1,
� is the universal graph. Otherwise, if we let u denote the word corresponding to a single
traversal of the cycle, then w = ud .

The contents of Lemmas 12 and 13 appear in different language in [10], in [14] and in
[5]. But the relation between φ(·) and β(·) goes deeper. For instance, for the single-letter
word w = a both φ(w) = β(w) = ∞. The reason for φ(a) = ∞ is that the expected
number of fixed points in a random permutation equals 1. On the other hand, Lemma 10
implies that β(a) = ∞. Also, as already mentioned, both φ and β are invariant under “∼”,
so they are both infinite on the entire equivalence class of a under “∼”. (In particular, every
w in which some letter appears exactly once belongs to this class.)

The following lemma expands even further the relation between φ(·) and β(·). The next
natural step would be to prove that φ(w) = 2 ⇔ β(w) = 2. This, in other words, says that
for primitive words, β(w) ≥ 3 iff a2(w) = 0. This is, at present, still beyond our reach and
we content ourselves with a weaker statement.

Lemma 14. Let w ∈ Fk have β(w) ≥ 3. Then a2(w) ≤ 0.

Proof. For simplicity we assume that w is cyclically reduced. (Again, this assumption is
possible because both β(w) and �w(n) are invariant under cyclic reductions of w.) When
β(w) ≥ 3, there is only one graph �̂ ∈ Qw of characteristic 1 (the universal graph), and
all the quotient graphs of characteristic 2 have type A. To find the contribution of �̂ to

a2(w) expand the expression
∏v�−1

l=1 (1−lx)

∏k
j=1

∏e
j
�

−1
l=1 (1−lx)

to first order. It follows that this contribution is

−(v
�̂
2

)+∑k
j=1

(e
j
�̂
2

)
. We need to show that there are at most

(v
�̂
2

)−∑k
j=1

(e
j
�̂
2

)
graphs � ∈ Qw

with χ(�) = 2.
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Fig. 4. The graph ϒ (on the right) corresponding to the universal graph �̂ (on the left) for w =
g2

1g2g1g2g−1
1 g2. (�̂’s vertices are denoted here by v1, . . . , v7 while the si labels are omitted.)

Since �̂ is generated by {s0, s|w|}, and every quotient � ∈ Qw of characteristic 2 has type
A, � is generated from �̂ by a single pair of vertices of �̂. The total number of pairs is

(v
�̂
2

)
,

but clearly different pairs may generate the same �. For instance, for any two j-edges, the
pair of heads generates the same quotient as the pair of tails.

To understand the full picture, we introduce a graph ϒ , which captures this kind of
dependency between pairs. The graph ϒ has

(v
�̂
2

)
vertices labeled by the pairs of vertices

of �̂, and has
∑k

j=1

(e
j
�̂
2

)
edges, one for each pair of same-color edges in �̂. The edge

corresponding to the pair {ε1, ε2} of j-edges, is a j-edge from the vertex {head(ε1), head(ε2)}
to {tail(ε1), tail(ε2)}. We illustrate this in Fig. 4.

We claim that ϒ has no cycles. As w is assumed to be cyclically reduced, �̂

is simply a cycle and the path of w through it is a simple cycle. Now say that
{x1, y1}, {x2, y2}, . . . , {xr , yr}, {x1, y1} is a simple cycle in ϒ , whose edges compose some
word u. This u corresponds to two nonbacktracking paths in �̂ in one of the two following
ways. Either u is a path from x1 to itself and a path from y1 to itself (whence it is some
cyclic shift of w or of w−1). Or u is a path from x1 to y1 as well as a path from y1 to x1. (See
Fig. 5.)

In the former case, some cyclic shift of w equals another cyclic shift of w or of w−1.
But w is primitive, so it is not invariant under any cyclic shift. To see that w cannot equal

Fig. 5. A cycle in ϒ yields one of these three scenarios. The thick line stands for the universal graph
�̂. The broken lines (arrows) stand for copies of u, the subword composed by the edges of the cycle
in ϒ . In the left and middle scenarios, u is a path from x1 to itself and a path from y1 to itself (in the
left graph the paths are equally oriented, in the middle one they have inconsistent orientation). The
right graph describes the case where u is a path from x1 to y1 as well as a path from y1 to x1. All three
scenarios are impossible.
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a cyclic shift of its inverse, we need to show that w−1 is not a subword of w2. To see this,
let w = g1 . . . gm and assume to the contrary that ∀j = 1, . . . , m g−1

j = gs−j for some
m + 1 ≤ s ≤ 2m (here gi+m = gi for i = 1, . . . , m). Is s is even, say s = 2q, we conclude
(for j = q) that gq = g−1

q which is impossible. If s = 2q + 1 we conclude for j = q that
g−1

q = gq+1, so that the word w is not reduced.
In the latter case, either u = u−1, which is impossible by the same argument, or w is a

cyclic shift of u2, which again contradicts its being primitive. This rules out the possibility
of a cycle in ϒ .

Clearly, two pairs of vertices in V(�̂) which belong to the same connected component
in ϒ , generate the same �. Thus the number of different �’s in Qw with characteristic 2 is
at most the number of connected components in ϒ . But ϒ has no cycles, so the number of

connected components is exactly
(v

�̂
2

) − ∑k
j=1

(e
j
�̂
2

)
.

Note that this last proof yields a surjective function from the connected components of
ϒ to type-A graphs of characteristics 2 in Qw. To prove that φ(w) = 2 ⇔ β(w) = 2 it
suffices to show that this function is injective (which we believe is true). That would yield
that the number of type-A quotients of characteristic 2 exactly balances off the negative
contribution of �̂ to a2(w). Thus, a2(w) 	= 0 (or more precisely a2(w) > 0) iff there is a
type-B graph of characteristic 2, i.e., iff β(w) = 2.

In fact, we believe that something similar happens in general. Namely, for every integer
i ≥ 0, if Qw has no type-B graphs of characteristic < i, then the contributions from all the
type-A graphs of characteristic ≤ i. (i.e., the graphs generated from the universal graph by
fewer than i pairs) balances out. Hence a0(w) = a1(w) = · · · = ai−1(w) = 0, and ai(w)

equals the number of type-B quotients of characteristic i.
There are three kinds of supporting evidence to this belief. As we saw, it is valid for

i = 0, 1, and we have a good understanding why it should hold for i = 2 as well. Also, we
have carried out extensive numerical simulations to test it for i = 2, 3, 4 without any failure.
Finally, consider a word w such that w ∼ a. Such a word has only type-A quotients, and we
know that ai(w) = 0 for all i. In this case, therefore, the type-A quotients of characteristic
≤ i indeed balance the contribution of each other to a0(w), . . . , ai(w). (We note that the
vanishing of all ai(w) even in this specialized case is not obvious).

Here, then, is a formal statement of this main conjecture:

Conjecture 15. For every w ∈ Fk,

φ(w) = β(w) (10)

Moreover, if φ(w) = i, then

ai(w) = |{� ∈ Qw : χ(�) = i and � has type B}| (11)

Conjecture 15 is the main missing link in our tentative proof to the claim that E(µmax) <

O(ρ). We return to this in Section 3. Note that this conjecture implies that the first non-zero
coefficient in the power series of �w(n) is positive. This means that E(X (n)

w ) ≥ 1 for every
w ∈ Fk and every large enough n.

Remark 16. It might be tempting to suspect something even stronger, namely that for
every w ∈ Fk and n ≥ 1, E(X (n)

w ) ≥ 1. However, this stronger assertion is false. (We would
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like to thank Miklós Abért for showing us the invalidity of this claim. The main ideas of
the proof can be found in [16].)

Finally, we present a second conjecture based on other simulations we conducted. These
simulations suggest that the only words for which φ(w) = ∞ are those mentioned above:

Conjecture 17. E(X (n)
w ) ≡ 1 iff w is equivalent (∼) to a single-letter word.

3. THE LARGEST NEW EIGENVALUE IN A RANDOM LIFT OF A GRAPH

In this section, we apply our findings concerning formal words and word maps on Sn to
study the new eigenvalues in random lifts of graphs. Our main result is Theorem 1 which
says that µmax ≤ O(λ

1/3
1 ρ2/3) almost surely.

Recall the definition of φ(w) for w ∈ Fk [Eq. (8)]. Namely, �w(n) = aφ(w)(w)+o(1)

nφ(w) . We
first seek an improved estimate of the o(1) term in the numerator.

Lemma 18. Let w ∈ �k and let i ≥ 0 be some integer. Then:

|{� ∈ Qw : χ(�) = i}| ≤ |w|2i

Proof. As we saw in Lemma 6, each � ∈ Qw with characteristic i is generated by some
set of i pairs. There are

(|w|+1
2

) ≤ |w|2 pairs to choose from, and the claim follows.

Lemma 19. If φ(w) = i and if n ≥ 3|w|2, then

�w(n) ≤ 1

ni

(
ai(w) + |w|2i+4

n

)
. (12)

Proof. As mentioned in the beginning of Section 2.3, ai(w), the coefficient of 1
ni in the

power series of �w(n), is completely determined by quotients in Qw of characteristic ≤ i.
We now bound the contribution to ai(w) of every such quotient.

To this end, we analyze the contribution of � to �w(n), as specified in (7). For the sake

of convenience, we let x equal 1
n , and express this contribution as xe�−v�+1 ·

∏v�−1
l=1 (1−lx)

∏k
j=1

∏e
j
�

−1
l=1 (1−lx)

.

For small x we can expand the fraction in this expression as a power series
∑∞

r=0 brxr . Write∏v�−1
l=1 (1 − lx) = 1 + ∑

r≥1 crxr , and
∏k

j=1

∏e
j
�

−1

l=1 (1 − lx) = 1 + ∑
r≥1 drxr . Then:

1 +
∞∑

r=1

crx
r =

[ ∞∑
r=0

brx
r

] [
1 +

∞∑
r=1

drx
r

]

Thus b0 = 1 and for r ≥ 1, br = cr − dr − b1dr−1 − · · · − br−1d1. We have

|cr| =
∑

1≤y1<···<yr≤v�−1

y1 · · · yr ≤
[

v�−1∑
y=1

y

]r

≤
(

v�
2

2

)r

≤ |w|2r

2r
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Similarly, |dr| ≤ |w|2r

2r . A simple induction now shows that |br| ≤ |w|2r :

|br| = |cr − dr − b1dr−1 − · · · − br−1d1| ≤
≤ |w|2r

2r
+ |w|2r

2r
+ |w|2|w|2r−2

2r−1
+ |w|4|w|2r−4

2r−2
+ · · · + |w|2r−2|w|2

2
= |w|2r

Now consider the coefficient ai(w). There is at most one quotient in Qw of characteristic
0 (Lemma 18) which contributes at most |w|2i to ai(w); There are at most |w|2 quotients
of characteristic 1 which contribute at most |w|2i−2 each, etc. There are no quotients with
characteristic greater then |w|, so we have at most contribution of |w|2i of quotients of every
characteristic 0 ≤ χ ≤ |w|. Thus ai(w) ≤ (|w| + 1)|w|2i.

This yields the following:

�w(n) =
∞∑

i=φ(w)

ai(w)
1

ni
≤ aφ(w)(w)

1

nφ(w)
+

∞∑
i=φ(w)+1

(|w| + 1)|w|2i

ni
=

= 1

nφ(w)

[
aφ(w)(w) + (|w| + 1)|w|2φ(w)+2

n

n

n − |w|2
]

The lemma now follows because n ≥ 3|w|2.

The set of possible values for β(w) is {0, 1, . . . , |w|} ∪ {∞}, and we now split the sum
over w ∈ CP t(G) in (3) according to β(w). This yields:

E(µmax
t) ≤

∑
w∈CP t (G)

[
E

(
X (n)

w

) − 1
] =

∑
w∈CP t (G)

n · �w(n)

=
∑

i∈{0,1,...,t}∪{∞}

∑
w∈CP t (G)

β(w)=i

n · �w(n)

The statement of (the unproved) Conjecture 15 implies that the sum over w with β(w) =
∞ vanishes, since β(w) = ∞ yields φ(w) = ∞ and hence �w(n) ≡ 0. We suspect that it
should be possible to bound the number of words with β(w) = i (Some results along these
lines are proved in Section 3.1). This, combined with the statement of Conjecture 15 would
have allowed us to bound the contribution of each 0 ≤ i ≤ t to the above sum.

This problem is still open, so instead we split the set CP t(G) into four parts:

E
(
µmax

t
)≤ ∑

w∈CP t (G)
β(w)=0

n · �w(n)+
∑

w∈CP t (G)
β(w)=1

n · �w(n)+
∑

w∈CP t (G)
β(w)=2

n · �w(n) +
∑

w∈CP t (G)
β(w)≥3

n · �w(n)

(13)

Using Lemmas 12 and 13 we can bound the value of �w(n) when β(w) = 0 or 1. For
these values β(w) = φ(w) and Lemma 19 can be applied. If β(w) = 2, then φ(w) ≥ 2, and
we can use (12) in its worst case, i.e. when φ(w) = 2. Finally, if β(w) ≥ 3, the following
lemma shows that �w(n) ≤ O

(
1

n3

)
.

Lemma 20. Let w ∈ Fk have β(w) ≥ 3. Then

�w(n) ≤ 1

n3

(
a3(w) + |w|10

n

)
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Proof. The assumption β(w) ≥ 3 yields that a0(w) = a1(w) = 0 and that a2(w) ≤ 0
(Lemma 14). Thus clearly �w(n) ≤ ∑∞

i=3 ai(w) 1
ni , and the claim is an immediate conse-

quence of the analysis in Lemma 19. (This is true since the proof of Lemma 19 does not
take full advantage of the assumption that φ(w) = i, but rather that aj(w) ≤ 0 for j < i.)

To proceed with our analysis of Eq. (13), we now bound the number of words in CP t(G)

with β(w) = i for i = 0, 1, 2.

3.1. The Number of Words w ∈ CP t (G) with Fixed β(w )

Our proof for this bound extends an idea that originated with [6] and was later developed in
[5]. Recall that ρ denotes the spectral radius of T , the universal cover of the base graph G
(as well as of any lift of G). Buck found a bound expressed in terms of ρ for the number of
words in CP t(G) that reduce to 1. Friedman used a similar method to bound the number of
imprimitive words in CP t(G). We further develop the method in order to bound the number
of words in CP t(G) with β(w) = 2.

We present the three cases (i = 0, 1, 2) one by one. The case i = 0 is indeed the simplest,
and things get more complicated as i grows. (However, it does seem that a general bound
can be proven for the number of words in CP t(G) for any fixed value of β(·).) We first
note that AT , the (infinite) adjacency matrix of T , is a self-adjoint bounded operator on
the Hilbert space l2(V(T)). Consequently, its operator norm equals its spectral radius, i.e.,
‖AT‖ = ρ. (The same argument shows that ‖AT

l‖ = ρ l for any integer l > 0). For every
v1, v2 ∈ V(T) the number of paths of length l from v1 to v2 is AT

l(v1, v2), which can be
bounded by ‖AT

l‖ = ρ l.
For every x ∈ V(G), we arbitrarily choose some vertex v1 = v1(x) in the fiber of x in T .

For every path γ in G that starts at x, we consider the lift of γ that starts at v1. We denote
the tail of the lifted path by vγ = vγ (x).

For i = 0, recall that β(w) = 0 ⇔ w reduces to 1 (Lemma 12). Thus, every w ∈ CP t(G)

with β(w) = 0 corresponds to some path in G of length t which reduces to 1 (a nullhomo-
topic path). But these are exactly the paths which lift to closed paths in T as well. Thus:

|{w ∈ CP t(G) : β(w) = 0}| =
∑

x∈V(G)

AT
t(v1, v1) ≤

∑
x∈V(G)

ρ t = |V(G)|ρ t (14)

For i = 1 we want to count the number of imprimitive words in CP t(G). If w is imprim-
itive, then w = ud (equality in Fk) for some u ∈ Fk and d ≥ 2. Suppose that the path of the
cyclically reduced form of u in G starts at x ∈ V(G). Since the path of w visits x, there is
some cyclic shift of w that starts at x. Thus, by adding a factor of |w| = t to our eventual
bound, we can assume w begins at x.

We now let γ be the path in G of the cyclically reduced form of u (a loop from x to
itself). We divide the path of w through G to three parts:

1. a path homotopic to γ of length l1

2. a path homotopic to γ of length l2

3. a path homotopic to γ d−2 of length l3

with l1 + l2 + l3 = t.
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These three parts lift to the following paths in T :

1. a path from v1 to vγ of length l1

2. a path from v1 to vγ of length l2

3. a path from v1 to vγ d−2 of length l3

Thus, we can bound the total number of imprimitive words in CP t(G) as follows:

|{w ∈ CP t(G) : β(w) = 1}| ≤

≤ t ·
t∑

d=2

∑
x∈V(G)

∑
γ is a reduced

loop from x to x

∑
l1+l2+l3=t

AT
l1(v1, vγ )AT

l2(v1, vγ )AT
l3(v1, vγ d−2)

(the initial factor of t accounts for the cyclic shift of w).
Using the symmetry of AT , the inequality Al3

T (v1, vγ d−2) ≤ ρ l3 and changing the order of
summations, we obtain:

|{w ∈ CP t(G) : β(w) = 1}|

≤ t ·
t∑

d=2

∑
x∈V(G)

∑
l1+l2+l3=t

ρ l3
∑

vγ ∈Fib(x)\{v1}⊂V(T)

AT
l1(v1, vγ )AT

l2(vγ , v1)

≤ t(t − 1)
∑

x∈V(G)

∑
l1+l2+l3=t

ρ l3AT
l1+l2(v1, v1)

≤ t(t − 1)
∑

x∈V(G)

∑
l1+l2+l3=t

ρ l3ρ l1+l2

= t(t − 1)|V(G)|
(

t

2

)
ρ t ≤ |V(G)|t4ρ t (15)

(The crux of the matter in this calculation is the second step which eliminates the need
to sum over closed paths γ ).

Next, we bound the number of words inCP t(G)withβ(w) = 2. To this end we introduce a
lemma that deals with quotient graphs of smallest characteristic among all type-B quotients.
Clearly, it is such quotients that determine β(w).

Let G be a graph, w ∈ CP t(G) and � ∈ Qw. Each label si that appears in a block that
is associated with a vertex in � corresponds to a vertex in G. Therefore, a vertex in � may
correspond to several vertices in G. We next show that for � as above each vertex in �

corresponds to a single vertex from G.

Lemma 21. Let G be a graph and w ∈ CP t(G). If � ∈ Qw has type B and χ(�) = β(w),
then all labels that appear in a block from a vertex in � correspond to the same vertex in G.

Proof. The proof proceeds by showing that otherwise there is another type-B quotient in
Qw with smaller characteristic. Indeed, let {si1 , . . . , sir } be a block in � where the labels
{si1 , . . . , sik } (k < r) correspond to the vertex v in G, while the labels {sik+1 , . . . , sir } corre-
spond to other vertices in G. Define the partition �̄ by splitting this block to {si1 , . . . , sik }
Random Structures and Algorithms DOI 10.1002/rsa
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Fig. 6. The three possible shapes of quotient graphs of a cyclically reduced word with characteristic
2. The edges γ , ζ and η denote subwords.

and {sik+1 , . . . , sir }. We claim that this is (i) a realizable quotient in Qw (ii) of characteristic
χ(�) − 1 and (iii) of type B as well.

To see (i), recall that every letter in w corresponds to some edge in G. As the two parts
of the split block correspond to disjoint sets of vertices in G, there is no j such that both of
them are heads (or tails) of a j-edge. Thus, the realizability of � yields the realizability of �̄.
In deriving �̄ from �, we have increased the number of vertices by one with no additional
edges, whence (ii) is proved. To show (iii), note that any generating set of �̄ can be extended
to a generating set of � by adding {si1 , sik+1}, so that if �̄ has type A, so does �.

As we saw (Lemmas 8 and 9) if w′ is the cyclic reduction of w, then β(w′) = β(w).
Moreover, every type-B � ∈ Qw with χ(�) = β(w) can be generated from some �′ ∈ Qw′
with χ(�′) = χ(�), through a series of δ-operations (as in Lemma 9). Since w′ is cyclically
reduced, every vertex in �′ has degree ≥ 2. (Indeed, �′ is obtained from � by successive
elimination of vertices of degree one in the graph).

Now assume β(w) = χ(�) = 2. There are three possible shapes that �′ can have:
Figure-Eight, Barbell or Theta (see Fig. 6). For a cost of an additional factor of t as above,
we may assume the path of w through � begins at the vertex x specified in each of the
diagrams. (More accurately, it begins at the vertex of � corresponding to x through the
series of δ-operations.) By Lemma 21, x corresponds to a unique vertex in G which we
call x as well (by abuse of notation). This vertex x in G marks the starting point of w. We
now analyze each case separately, and using the notations in Fig. 6, we trace the path of w′

through �′.
Assume first that �′ has the shape of a Figure-Eight. In this case w′ can be expressed

using γ , ζ in a reduced expression in which each of them appears at least twice (Lemma
10). For any fixed reduced expression in γ , ζ , we specify certain two appearances of γ and
certain two appearances of ζ . The path of w through � can be then divided to at most seven
parts: four parts for the chosen appearances of γ and ζ , and three parts for sequences of the
rest of the expression (we can always choose the first two characters in the expression, but
we may be forced to have spaces between the second and the third, between the third and
the fourth and after the fourth). We then proceed to a calculation as in (15).

To illustrate, let w′ = γ γ γ ζγ −1ζ−1ζ−1γ . We split w′ to seven parts as shown in the
following bracketing: w′ = (γ )(γ )(γ )(ζ )(γ −1)(ζ−1)(ζ−1γ ). The corresponding lengths
are: l1 steps for the first γ , l2 for the second, l3 steps for the next γ (which is considered “a
space”), l4 steps for ζ , l5 for the space γ −1, l6 for ζ−1 and l7 for the space ζ−1γ . We can
now bound the total number of words which reduce cyclically (and with a possible cyclic

Random Structures and Algorithms DOI 10.1002/rsa



RANDOM GRAPH LIFTS 121

shift) to this expression in some γ and ζ . (The first factor of t in the calculation accounts
for the initial cyclic shift of w.)

|{w ∈ CP t(G) : w reduces cyclically to γ γ γ ζγ −1ζ−1ζ−1γ for some γ , ζ }|
≤ t ·

∑
x∈V(G)

∑
γ ,ζ

∑
l1+···+l7=t

Al1
T (v1, vγ )Al2

T (v1, vγ )Al3
T (v1, vγ )Al4

T (v1, vζ )

· Al5
T (vγ , v1)A

l6
T (vζ , v1)A

l7
T (v1, vζ−1γ )

(The second sum is over all γ and ζ - two distinct nonempty reduced loops from x to itself
in G.) We proceed as before:

≤ t ·
∑

x∈V(G)

∑
l1+···+l7=t

ρ l3+l5+l7
∑

vγ ∈Fib(x)\{v1}
Al1

T (v1, vγ )Al2
T (vγ , v1)·

∑
vζ ∈Fib(x)\{v1}

Al4
T (v1, vζ )A

l6
T (vζ , v1)

≤ t ·
∑

x∈V(G)

∑
l1+···+l7=t

ρ l3+l5+l7ρ l1+l2ρ l4+l6 ≤ |V(G)|t7ρ t

This bound was calculated for a specific reduced expression in γ , ζ . The total number of
possible expressions is less than 3t . (w.l.o.g every expression begins with γ , and it contains
a total of between four and t components. For r components there are at most 3r−1 possible
continuations, and 33 + 34 + · · · + 3t−1 < 3t). Thus, we can bound the total number of
words in CP t(G) with β(w) = 2 and which have a type-B Eight-Figure quotient graph, by
|V(G)|t73tρ t .

For the Barbell and Theta the analysis is similar, but their contribution is negligible
relative to the contribution of the Figure-Eight. This time we construct a reduced expression
in three subwords: γ , ζ , and η, but the possible number of expressions is bounded by 2t (the
same argument as above, only this time every subword has only two possible subsequent
subwords). We need to specify two occurrences of each of the three letters this time, so we
may need to split the path of w′ to 6 + 5 = 11 parts. The bound is therefore |V(G)|t112tρ t ,
the asymptotic comparison is clearly |V(G)|t112tρ t � |V(G)|t73tρ t .

To illustrate the calculation, consider the following (reduced) expression for the Barbell:
w′ = γ ηζζζη−1γ −1ηζη−1γ . The number of words in CP t(G) which reduce cyclically to
such an expression can be bounded by:

≤ t ·
∑

x,y,γ ,ζ ,η

∑
l1,...,l8

Al1
T (v1(x), vγ (x))Al2

T (v1(x), vη(x))A
l3
T (v1(y), vζ (y))·

· Al4
T (v1(y), vζ (y))A

l5
T (v1(y), vζ (y))A

l6
T (vη(x), v1(x))·

· Al7
T (vγ (x), v1(x))A

l8
T (v1(x), vηζη−1γ (x))

≤ t ·
∑

l1,...,l8

ρ l5+l8
∑

x

ρ l1+l7
∑

y

ρ l3+l4
∑

vη∈Fib(y)

Al2
T (v1(x), vη)A

l6
T (vη, v1(x))

≤ t ·
∑

l1,...,l8

ρ t−l2−l6
∑

x

∑
vη∈V(T)

Al2
T (v1(x), vη)A

l6
T (vη, v1(x))

≤ |V(G)|t8ρ t

[Here x and y are vertices of G, γ (resp. ζ ) is a reduced loop from x (resp. y) to itself, and
η a reduced path from x to y, and l1 + · · · + l8 = t].
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TABLE 2. A Bound for the Size of Each of the Four Subsets of CP t(G), and a Bound for the
Value of �w(n) for Each Word in the Subset

The Value of β(w) The Size of the Subset ≤ �w(n) ≤
0 |V(G)| · ρ t 1 + t4

n

1 |V(G)|t4 · ρ t 1
n (t2 + t6

n )

2 |V(G)|t7 · 3t · ρ t 1
n2 (t4 + t8

n )

≥ 3 |V(G)| · λt
1

1
n3 (3t6 + t10

n )

To sum up, we have for large enough t:

|{w ∈ CP t(G) : β(w) = 2}| ≤ (1 + o(1))|V(G)|t73tρ t (16)

Remark 22. These calculations suggest that for every integer r ≥ 2, the dominant figure
among quotient graphs of characteristic r (after cyclic reduction) is a bouquet with r loops.
Thus, for large enough t, the number of words in CP t(G) with β(w) = r is less than
(1 + o(1))|V(G)|t4r−1(2r − 1)tρ t .

Remark 23. Note that this counting argument is quite wasteful, and involves a good deal
of overcounting. For instance, in the case i = 1, we counted each word of the form w = u4

twice: once with the root u and d = 4, and once with the root u2 and d = 2. It seems that
in fact, we have bounded

∑
w∈CP t (G)

β(w)=i
ai(w).

3.2. The Proof of Theorem 1

We now have all the necessary ingredients for a proof of Theorem 1. Recall that in (13), we
split the set of words CP t(G) to four subsets according to the value of β(·). In Table 2, we
collect the following information for each subset: A bound on the subset’s size and a bound
on the value of �w(n) for the words in the subset. This table highlights the significance of
the proved and unproved relations between φ(·) and β(·) to the analysis of the sum in (13).
The value of φ(·) yields the bounds in the right column of the table, whereas β(·) is used
to derive the bounds in the middle one.

The number of words with β(w) = 0 was bounded in (14), and the bound for �w(n) is
from Lemma 19 (since a0(w) = 0 whenever β(w) = 0). In (15) we bounded the number of
imprimitive words in CP t(G), and Lemma 19 yields again a bound for �w(n) for imprimitive
w. (By Lemma 18, a1(w) ≤ t2). The number of words with β(w) = 2 was bounded in (16)
(for t large enough), and this time we bound �w(n) using the fact that φ(w) ≥ 2 for every
word in this subset. The size of the fourth set is bounded by the total size of CP t(G)

|CP t(G)| = tr
(
AG

t
) =

|V(G)|∑
i=1

λi
t ≤ |V(G)|λ1

t ,

and the bound on �w(n) in this case comes from Lemma 20 and the analysis of ai(w) in the
proof of Lemma 19.
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We now select t to minimize the resulting upper bound on E(µmax
t). It is not hard to

see that the optimal t is �(log n). Consequently, all terms t4

n , . . . , t10

n are on(1) and can be
ignored. The information in Table 2 is now combined with (13) to yield [for t = �(log n)]:

E
(
µmax

t
) ≤ (1 + on(1))

·
(

n · |V(G)| · ρ t + |V(G)| · t6 · ρ t + |V(G)| · t11 · 3t · ρ t

n
+ |V(G)| · 3t6 · λt

1

n2

)
≤ (1 + on(1))|V(G)| · t11 · 4[max(ρ · n1/t , ρ, 3ρ · n−1/t , λ1 · n−2/t)]t

To balance the first and the last terms, we set n1/t ≈ ρ−1/3λ1/3 (recall that t is an even
integer, so we cannot guarantee exact equality here). Since t → ∞ with n, the constant and
polynomial factors can be replaced by (1 + on(1))t . We obtain

E
(
µmax

t
) ≤

[
λ

1/3
1 ρ2/3 · (1 + on(1)) · max

(
1,

(
ρ

λ1

)1/3

, 3

(
ρ

λ1

)2/3

, 1

)]t

=
[
λ

1/3
1 ρ2/3 · (1 + on(1)) · max

(
1, 3

(
ρ

λ1

)2/3
)]t

(the equality holds because ρ ≤ λ1 is always true, see Remark 2).
The statement of Theorem 1 now follows from a standard application of Markov’s

inequality. Obviously, for every ε > 0, 3 · λ
1/3
1 ρ2/3 + ε may serve as an absolute upper

bound.

Remark 24. Here is a sketch of our proposed approach to Friedman’s Conjecture. Say
we seek to prove that all new eigenvalues are, almost surely O(ρ1−ελε

1) for every ε > 0.

To prove a bound of O(ρ
r

r+1 λ
1

r+1
1 ) one would have to show that β(w) = i ⇔ φ(w) = i for

every i ≤ r. We believe that this can be shown in a way similar to our proof of Theorem 1.
In addition, it would be necessary to follow up on Remark 22, and establish a bound on the
number of words w ∈ CP t(G) with given β(w).

4. THE NUMBER OF L-CYCLES IN w (s1, . . . , sk )

In this section, we introduce a new conceptual and relatively simple proof of a Theorem of
A. Nica [14]. In (2) we defined the random variable X (n)

w which counts the number of fixed
points in w(σ1, . . . , σk) for fixed w. We extend this concept and for every integer L ≥ 1
denote by X (n)

w,L a random variable on Sn
k which is defined by:

X (n)

w,L(σ1, . . . , σk) = # of cycles of length L of w(σ1, . . . , σk) (17)

(X (n)

w,1 is a new notation for X (n)
w ).

Nica’s theorem says that the variables X (n)

w,L have, for fixed w and L and for n → ∞, a limit
distribution which can be computed explicitly. (Unless otherwise stated, the distribution on
Sn

k is always uniform.)
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Theorem 25. Let 1 	= w ∈ Fk and suppose that w = ud, with u primitive. Then for
every integer L ≥ 1, the random variable X (n)

w,L defined in (17) has, for n → ∞, a limit
distribution, which is given by:

X (n)

w,L
dis→

∑
h∈H(d,L)

hZ1/Lh (18)

where H(d, L) is the set

H(d, L) =
{

h > 0 : h| d and gcd

(
d

h
, L

)
= 1

}
, (19)

Zm ∼ Poi(m) (a variable with Poisson distribution with parameter m), and “
dis→” denotes

convergence in distribution.
In particular, this limit distribution depends only on d and L (and not on u).

Note that in the case that w is primitive (i.e. d = 1), the limit distribution is simply
Poisson with parameter 1/L.

Our proof of Theorem 25 is based on the method of moments and provides, in particular,
explicit expressions for the moments of X (n)

w,L:

Corollary 26. For every 1 	= w ∈ Fk, L ≥ 1 and r ≥ 1 there exists a rational function
�w,L,r that is defined on a neighborhood of 0 such that E([X (n)

w,L]r) = �w,L,r(1/n) for suf-
ficiently large n. Consequently, the limit limn→∞ E([X (n)

w,L]r) exists and equals �w,L,r(0). In
addition, if w = ud, with u primitive, then this limit equals the corresponding moment of
the sum in (18). In particular, �w,L,1(0) = limn→∞ E(X (n)

w,L) = |H(d,L)|
L .

(Note that this is a generalization of the function �w(n) defined in (4): n · �w(n) + 1 =
E(X (n)

w,1) = �w,1,1(1/n).)
The contents of Nica’s work is Theorem 25 and Corollary 26 for the first moment.

The main idea of the proof was already illustrated in Section 2, where we analyzed the
expectation of X (n)

w,1. Recall Eq. (4) where �w(n) is expressed as a power series
∑∞

i=0 ai(w) 1
ni .

We already know (Lemma 12) that when w 	= 1, a0(w) = 0, and so limn→∞ E(X (n)

w,1) =
a1(w) + 1. But this is exactly the number of graphs � ∈ Qw with χ(�) = 1 (see, for
instance, Lemma 13).

If w is cyclically reduced, then the only graphs in Qw with χ = 1 are cycles (again, see
the proof of Lemma 13). Such a cycle consists of a cyclic concatenation of several copies
of u (the primitive word such that w = ud). The number of copies of u in the cycle has to
divide d, hence

lim
n→∞ E

(
X (n)

w,1

) = |H(d, 1)| = # of divisors of d

But we can indeed restrict our discussion to cyclically reduced words. The justification
for this is the following. Let 1 	= w ∈ Fk , and let w′ be its cyclic reduction. We have already
mentioned that w ∼ w′ and so they induce the same distribution on Sn. In particular, X (n)

w,L

and X (n)

w′ ,L are equally distributed. It is also quite evident that w and w′ share an identical
exponent of their primitive root (i.e., if w = xw′x−1 for some x ∈ Fk and w′ = ud with u
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primitive, then xux−1 is primitive too, and w = (xux−1)d). Thus, the validity of Theorem 25
and Corollary 26 for w′, yields their validity for w as well.

Below, we extend this argument to obtain the limit of the expectation of [X (n)

w,L]r for every
L and r. We essentially use the same way we counted fixed points in w(σ1, . . . , σk) for all
k-tuples (σ1, . . . , σk) ∈ Sk

n , to count L-cycles and sequences of L-cycles, which we call lists
of cycles. The point is that the total number of lists of length r of L-cycles, divided by (n!)k ,
equals the expectation of [X (n)

w,L]r , the r-th factorial moment of X (n)

w,L. Once we know how to
calculate the limits of the factorial moments, the limits of the regular moments are at easy
reach. To finish, we show that these limits equal the corresponding moments in the r.h.s of
(18), and use the method of moments to conclude the proof.

4.1. Lists of Trails and Their Categories

We begin by generalizing some of the notions from Section 2.1. Let 1 	= w ∈ Fk be
cyclically reduced, n ≥ 1 an integer, s0 ∈ {1, . . . , n}, and σ1, . . . , σk ∈ Sn. The trail of
s0 through w(σ1, . . . , σk) is the sequence of images of s0 under w(σ1, . . . , σk). Namely, if
w = gα1

i1
gα2

i2
. . . gαm

im (with αi ∈ {−1, 1}) in reduced form, then associated with s0 is the
following path:

s0

σ
α1
i1−→ s1

σ
α2
i2−→ s2

σ
α3
i3−→ · · · σ

αm
im−→ sm

with s1, . . . , sm ∈ {1, . . . , n}, and sb = σ
αb
ib

(sb−1) (b = 1, . . . , m). (Recall that we compose
permutations from left to right.)

Likewise, we can speak of the trail through some power of w. For example, the trail of
s0 through w3(σ1, . . . , σk) is

s0

σ
α1
i1−→ s1

σ
α2
i2−→ · · · σ

αm
im−→ sm

σ
α1
i1−→ sm+1

σ
α2
i2−→ · · · σ

αm
im−→ s2m

σ
α1
i1−→ s2m+1

σ
α2
i2−→ · · · σ

αm
im−→ s3m

with s1, . . . , sm as before, and sm+1, . . . , s3m ∈ {1, . . . , n} satisfying the obvious constraints.
We recall that two trails were placed in the same category if they have the same coin-

cidence pattern. This notion can be extended to our present, more general context, in an
obvious way. Namely, every category is associated with some directed edge-colored graph.
Moreover, we can define categories not only of single trails, but also of lists of trails, and
again, associate a graph to each category. The nature of this graph is exactly as described
in Section 2.1.

To illustrate, let w = g1g2g−1
1 g−1

2 be the commutator word, n ≥ 8 an integer and σ1, σ2 ∈
Sn such that the following trails are realized by w(σ1, σ2) and w2(σ1, σ2), respectively:

1
σ1−→ 3

σ2−→ 7
σ−1

1−→ 3
σ−1

2−→ 8

4
σ1−→ 6

σ2−→ 8
σ−1

1−→ 5
σ−1

2−→ 5
σ1−→ 8

σ2−→ 3
σ−1

1−→ 1
σ−1

2−→ 2

We denote the nodes of the trail through w by s1
0, . . . , s1

4 and the nodes through w2 by
s2

0, . . . , s2
8. Then the graph associated with the category of this list of trails through w, w2 is

shown in Fig. 7.
Although the notions here have a wider scope, we limit our discussion to categories of

trails which represent cycles in w(σ1, . . . , σk): an L-cycle is represented by a closed trail
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Fig. 7. An example of a graph associated with a certain category of a list of trails through w, w2,
where w = g1g2g−1

1 g−1
2 is the commutator word.

through wL(σ1, . . . , σk). In fact, we are interested in counting cycles of a given length,
so for our purposes we can confine ourselves to categories of a list of r trails through
wL(σ1, . . . , σk), for some L, r ≥ 1.

First, let us analyze the categories that represent a single L-cycle. A closed trail through
wL(σ1, . . . , σk) represents an L-cycle only if it does not represent any smaller cycle. That
is, in the closed trail

s0

σ
α1
i1−→ s1

σ
α2
i2−→ · · · σ

αm
im−→ sm

σ
α1
i1−→ · · · σ

αm
im−→ s2m

σ
α1
i1−→ · · · · · ·

σ
αm−1
im−1−→ sLm−1

σ
αm
im−→ s0,

the L labels s0, sm, s2m, . . . , s(L−1)m must all be distinct.
Once again, the graph of each category is a quotient of the universal graph. In this case,

the universal graph is CL·m, the cycle of length L ·m. A partition of its vertices corresponds to
some category of an L-cycle if and only if it does not create “collisions” of same-color edges,
and keeps apart all L vertices corresponding to s0, sm, s2m, . . . , s(L−1)m. We demonstrate this
in Fig. 8.

The most general case in our discussion comes up when we turn to calculate the
r-th moment of X (n)

w,L. To this end we consider categories of lists of r L-cycles through
w(σ1, . . . , σk). The universal graph �̃w,L,r which represents r ordered cycles of length L
each, consists of a disjoint union of r copies of CL·m. We name the vertices of the first cycle
in �̃w,L,r by s1

0, . . . , s1
Lm−1, the vertices of the second cycle by s2

0, . . . , s2
Lm−1 and so on until

sr
0, . . . , sr

Lm−1 for the r-th cycle.
We are interested in quotients (or partitions of the vertices) of �̃w,L,r that represent r

distinct L-cycles. This means that the vertices

s1
0, s1

m, s1
2m, . . . , s1

(L−1)m, s2
0, s2

m . . . , s2
(L−1)m, . . . , sr

0, sr
m, . . . , sr

(L−1)m

(a total of L · r vertices) should be kept apart in every partition, as illustrated in Fig. 9.

4.2. Formulas for the Moments of X (n)

w ,L

The method we use to calculate the expectation of [X (n)

w,L]r is quite similar to the one we
used for E(X (n)

w,1). We first calculate the “factorial moments” of X (n)

w,L and derive the regular
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Fig. 8. The universal graph of a 3-cycle when w = g1g2g−1
1 g−1

2 . In a realizable partition of the vertices
that represents a 3-cycle, the 3 circled vertices (s0, s4, s8) must belong to distinct blocks.

moments from them (the r-th factorial moment of a random variable X is defined as E([X]r),
where [X]r is the “falling factorial”, namely [X]r = X(X − 1) . . . (X − r + 1)).

[X (n)

w,L]r counts lists of r L-cycles in w(σ1, . . . , σk). As in the case of the first moment, we
calculate its expectation by counting the total number of lists of r L-cycles in w(σ1, . . . , σk)

for all k-tuples (σ1, . . . , σk) ∈ Sk
n and dividing by (n!)k .

The counting is carried out by classifying these lists into categories. Each list of r L-cycles
with specified starting point for each cycle, belongs to some category. These categories are
the quotients of the universal graph �̃w,L,r , which we denote by Qw,L,r (e.g., Qw,1,1 is the
same set as Qw). To recap, the set Qw,L,r can be generated as follows:

We first draw �̃w,L,r , the universal graph of r ordered L-cycles of w, which consists of r
disjoint cycles each of which has L · |w| vertices. Qw,L,r consists of quotient graphs that are

Fig. 9. The universal graph �̃w,3,4 of four 3-cycles where w = g1g2g−1
1 g−1

2 . In a realizable partition of
the vertices that represents four 3-cycles, the 12 circled vertices must belong to distinct blocks. (We
omit the blocks corresponding to the rest of the vertices.)
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generated by partitions of the vertices of �̃w,L,r . A quotient graph is included in Qw,L,r if it
is realizable, and if in the corresponding partition each of the r · L vertices that represent
the r L-cycles is in a different block.

Let � be some graph in Qw,L,r . A realization of � is a k-tuple of permutations σ1, . . . , σk ∈
Sn, a list of r L-cycles of w(σ1, . . . , σk) and a specified starting point for each cycle, such
that they belong to �’s category. The number of realizations of � is the same as in (5),
namely:

N�(n) = n(n − 1) . . . (n − v� + 1)

k∏
j=1

(
n − e j

�

)! (20)

Since every list of r L-cycles is counted Lr times (there are Lr ways to choose the starting
points), we have:

E
([

X (n)

w,L

]
r

) = 1

(n!)k

∑
(σ1,...,σk )∈Sk

n

[
X (n)

w,L(σ1, . . . , σk)
]

r

= 1

(n!)k
· 1

Lr

∑
�∈Qw,L,r

N�(n) (21)

= 1

Lr

∑
�∈Qw,L,r

n(n − 1) . . . (n − v� + 1)∏k
j=1 n(n − 1) . . . (n − e j

� + 1)
(22)

= 1

Lr

∑
�∈Qw,L,r

[n]v�

k∏
j=1

1

[n]
e

j
�

Note that the equality between (21) and (22) holds only for n large enough. Indeed
N�(n) = 0 if n < e j

� for some � ∈ Qw,L,r and j ∈ {1, . . . , k}. This holds for
n ≥ maxj=1,...,k(ej(�̃w,L,r)).

For every L ≥ 1 and r ≥ 1, (22) thus yields a rational function in n, which, for sufficiently
large n, is the r-th factorial moment of X (n)

w,L. It is convenient to rewrite (22) as a function
of 1

n :

E
([

X (n)

w,L

]
r

) = 1

Lr

∑
�∈Qw,L,r

(
1

n

)e�−v�
∏v�−1

t=1

(
1 − t

n

)
∏k

j=1

∏e
j
�

−1
t=1

(
1 − t

n

) (23)

We can now define a rational function ψw,L,r by:

ψw,L,r(x) = 1

Lr

∑
�∈Qw,L,r

xχ(�)−1

∏v�−1
t=1 (1 − tx)∏k

j=1

∏e
j
�

−1
t=1 (1 − tx)

(24)

and so E([X (n)

w,L]r) = ψw,L,r(
1
n ) for n ≥ maxj=1,...,k(ej(�̃w,L,r)).

The following lemma shows that ψw,L,r is well defined on a neighborhood of 0.

Lemma 27. For each � ∈ Qw,L,r , χ(�) ≥ 1.
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Proof. Note that in �̃w,L,r every vertex has degree 2, since w is cyclically reduced. This
degree can not decrease in a quotient. Therefore, every vertex in every � ∈ Qw,L,r has degree
at least 2, and the lemma follows.

It is well-known how to express the regular moments as linear combinations of the
factorial moments. Thus, we can derive (an efficiently computable) rational function �w,L,r

(which is a linear combination of ψw,L,1, . . . , ψw,L,r), such that E([X (n)

w,L]r) = �w,L,r(1/n) for
sufficiently large n. This function �w,L,r is obviously defined on a neighborhood of 0, which
proves the first part of Corollary 26.

4.3. Proving Theorem 25 With the Method of Moments

The proof of Theorem 25 is based on the method of moments. Under certain mild conditions,
a probability distribution is determined by its moments, or as here, a limit distribution is
determined by the limits of the moments.

4.3.1. Some Facts From the Method of Moments. A probability measure µ on R is
said to be determined by its moments if it has finite moments αr = ∫ ∞

−∞ xrµ(dx) of all
orders, and µ is the only probability measure with these moments. We quote Theorem 30.2
from [17]:

Theorem 28. Let X and Xn (n ∈ N) be random variables, and suppose that the distri-
bution of X is determined by its moments, that the Xn have moments of all order, and that
limn→∞ E(Xr

n) = E(Xr) for every r ∈ N. Then

Xn
dis→ X.

Note that if X and the Xn are integer-valued then Xn
dis→ X is equivalent to Pr(Xn = k) →

Pr(X = k) for every integer k.
The relation between regular moments and factorial moments implies:

Corollary 29. The statement of Theorem 28 holds where moments are replaced by
factorial moments.

In this section, we use Corollary 29 to prove Theorem 25. That X (n)

w,L has moments of all
order is evident. We still need to show that the r.h.s of (18) is determined by its moments,
and that the r-th factorial moment of X (n)

w,L indeed converges to the r-th factorial moment of
this random variable.

Theorem 30.1 from [17] provides a sufficient condition for a probability measure µ to
be determined by its moments, namely, that the power series

∑
r αr tr/r! where αr is the r-th

moment of µ has a positive radius of convergence. (This series is the moment generating
function of µ, when the latter exists.) For µ a Poisson distribution (with any parameter),
this power series converges for all real t (e.g., [18], section 4), so µ is determined by its
moments. A convolution (a summation) of several Poisson distributions is itself Poisson
(whose parameter is the sum of parameters), and thus satisfies the condition as well.

In particular, recall that the r.h.s. of (18) is
∑

h∈H(d,L) hZ1/Lh, where Zm ∼ Poi(m). If we
omit the constant h of every term in this sum, we obtain

∑
h∈H(d,L) Z1/Lh, whose distribution

is simply Poi
( ∑

h∈H(d,L) 1/Lh
)
, which is determined by its moments. According to the

Random Structures and Algorithms DOI 10.1002/rsa



130 LINIAL AND PUDER

definition of H(d, L) in (19), each h ∈ H(d, L) satisfies 1 ≤ h ≤ d. Thus, if we denote by
αr the r-th moment of

∑
h∈H(d,L) Z1/Lh and by βr the r-th moment of

∑
h∈H(d,L) hZ1/Lh, then

αr ≤ βr ≤ drαr . Consequently, the series
∑

r βr tr/r! has radius of convergence that is ≥ 1
d

that of the series
∑

r αr tr/r!. But the latter converges for all real t, hence so does
∑

r βr tr/r!,
and the distribution of

∑
h∈H(d,L) hZ1/Lh is determined by its moments.

To conclude the proof of Theorem 25, we need to show that the (factorial) moments
of X (n)

w,L indeed converge to the respective moments of the r.h.s. of (18). But what is the
limit of E

([X (n)

w,L]r

)
? By Lemma 27, the limit of each term in the r.h.s. of (23) is either 0 (if

χ(�) ≥ 2), or 1 (if χ(�) = 1). Therefore,

lim
n→∞ E

([
X (n)

w,L

]
r

) = 1

Lr
|{� ∈ Qw,L,r : χ(�) = 1}| (25)

As explained in the proof of Lemma 27, the equality χ(�) = 1 holds for some � ∈ Qw,L,r ,
iff every vertex in � has degree 2, i.e., iff � is a disjoint union of cycles.

We denote by Cw,L,r the subset of Qw,L,r consisting of all graphs which are a disjoint union
of cycles. (25) now becomes:

lim
n→∞ E

([
X (n)

w,L

]
r

) = 1

Lr
|Cw,L,r| (26)

4.3.2. The Graphs in Cw ,L,r . Let w ∈ Fk be cyclically reduced and equal ud with u
primitive and d ≥ 1. A graph � ∈ Cw,L,r has a very specific structure: Each cycle c in �

must be a cyclic concatenation of several copies of u (every cycle in � looks like �̃u,b,1 for
some positive integer b).

To see this, recall that each cycle c in � represents a closed trail through wL (at least one
closed trail). Hence there is some vertex x in c and some orientation on c, such that if we
leave x in this orientation and go exactly d · L times through u, we get back to x (possibly
after tracing c several times). Since u is primitive, it cannot be invariant under cyclic shift
of any length l < |u|, and the size of c must divide |u|. (In fact, the integer |c|/|u| divides
d · L).

Moreover, all closed trails that are represented in c, go in the same direction (and thus
also start in one of the |c|/|u| head vertices of u). We already saw in the proof of Lemma
14 that for u primitive, u−1 is not a subword of u2. This rules out the possibility of “finding
u in the opposite direction.”

This analysis of the structure of the graphs in Cw,L,r yields an important corollary, which
ultimately explains why the limit distribution of X (n)

w.L depends solely on d and L, and not
on u:

Corollary 30. Let w1, w2 ∈ Fk be cyclically reduced and equal ud
1 and ud

2 , respectively,
with u1 and u2 primitive and d ≥ 1. Then

|Cw1,L,r| = |Cw2,L,r|

Proof. The analysis above shows that the inner structure of u is completely irrelevant to
the graphs in Cw,L,r , and there is a natural bijection between Cw1,L,r and Cw2,L,r : simply replace
each copy of u1 by a copy of u2.
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4.3.3. The Simple Case of a Primitive Word. The material in this section is not neces-
sary for the proof and deals with the special case of primitive words. Our hope is that this
spacial case makes it easier to follow the general proof. So let us assume that u = w and
d = 1. The universal graph �̃w,L,r is a disjoint union of r cycles, each of which consists of L
copies of u. We have a total of r ·L copies of u, and their r ·L initial vertices are kept separated
in each quotient. It is easily verified that the only quotient of �̃w,L,r which is a disjoint union
of cycles is �̃w,L,r itself, and thus |Cw1,L,r| = 1. By (26) we have limn→∞ E([X (n)

w,L]r) = 1
Lr .

On the other hand, when w is primitive, the r.h.s. of (18) is simply Z1/L. Let X be an
integer-valued non-negative random variable and let fX(t) be its generating function

fX(t) =
∞∑

j=0

Pr(X = j)tj.

Under certain mild conditions and in particular if fX(t) is analytic on R,

E([X]r) = f (r)
X (1) ∀r ∈ N.

The generating function of Z1/L is f (t) = e
−1
L e

t
L . Thus,

E([Z1/L]r) = f (r)(1) = 1

Lr

which completes the proof of Theorem 25 for w primitive.

4.3.4. The General Case. To complete the proof of Theorem 25, we show that for every
w = ud ∈ Fk , L ≥ 1 and r ≥ 1, the series E([X (n)

w,L]r) converges, for n → ∞, to E([Yd,L]r),
where Yd,L is the r.h.s. of (18), i.e. Yd,L = ∑

h∈H(d,L) hZ1/Lh.
Let X1 and X2 be non-negative integer-valued variables with generating functions

fX1(t), fX2(t). If Y = X1 + X2, then clearly Y ’s generating function is fY (t) = fX1(t) · fX2(t).

The generating function of hZm (h ∈ N, Zm ∼ Poi(m)) is fhZm(t) = e−m · emth . Therefore,

fYd,L =
∏

h∈H(d,L)

e− 1
Lh e

th
Lh

and if H(d, L) = {h1, . . . , hp}, then

E([Yd,L]r) = f (r)
Yd,L

(t)
∣∣

t=1

=
∑

r1+···+rp=r
rj≥0

(
r

r1 . . . rp

) p∏
j=1

f
(rj)

hjZ1/Lhj
(t)

∣∣
t=1

(27)

By (26), the series E([X (n)

w,L]r) converges to 1
Lr

∣∣Cw,L,r

∣∣, so we proceed to analyze the set
Cw,L,r . Let � be a graph in Cw,L,r . As explained in section 4.3.2, � is a disjoint union of cycles,
each of which consists of several copies of u. If we let b denote the number of copies of u in
some cycle, what are the possible values of b? To begin with, b|dL, as this cycle represents
a closed path that consists of dL copies of u. Second, as this cycle represents an L-cycle,
L|b and b � dL′ for any 1 ≤ L′ < L. If we let h = b

L , then the constraints on b translate
into the following conditions: h|d and ( d

h , L) = 1, precisely as in the definition of H(d, L).
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Fig. 10. One of the graphs � ∈ Ch
w,L,r , where w = u3 for some primitive u ∈ Fk , h = 3, L = 2 and

r = 3. (We use the labels sj
i introduced in Section 4.1) This � contains two cycles, each of which

consists of six copies of u. Each of the cycles can correspond to up to three distinct L-cycles (indeed,
h = 3), so � can contain up to six L-cycles. As it already contains three, it has 6 − 3 = 3 free spots.

Note that a cycle in � with b = Lh copies of u can represent up to h distinct L-cycles in
w(σ1, . . . , σk).

As before, let H(d, L) = {h1, . . . , hp}. For j = 1, . . . , p consider those L-cycles which
are associated in the quotient � to a cycle of length Lhj · |u|. (The i-th L-cycle belongs to
the cycle c in � if the blocks containing si

0, . . . , si
L|w|−1 correspond to vertices in c.) Let rj be

the number of such L-cycles whence
∑

rj = r, and there are
( r

r1...rp

)
ways to choose which

L-cycles go where (Recall that �̃w,L,r consists of an ordered list of r L-cycles). Now let Ch
w,L,r

denote the subset of Cw,L,r consisting of all quotient graphs where all disjoint cycles are of
equal length of Lh|u| each. Then we have:

lim
n→∞ E

([
X (n)

w,L

]
r

) (26)= 1

Lr
|Cw,L,r| = 1

Lr

∑
r1+···+rp=r

rj≥0

(
r

r1 . . . rp

) p∏
j=1

∣∣Chj
w,L,rj

∣∣

=
∑

r1+···+rp=r
rj≥0

(
r

r1 . . . rp

) p∏
j=1

1

Lrj

∣∣Chj
w,L,rj

∣∣ (28)

(Ch
w,L,0 denotes the singleton of the empty graph, and therefore

∣∣Ch
w,L,0

∣∣ = 1).
By combining (27) and (28), we conclude that Theorem 25 will follow if we show

1

Lr

∣∣Ch
w,L,r

∣∣ = f (r)
hZ1/Lh

(t)
∣∣
t=1

, (29)

for every L ≥ 1, r ≥ 0 and h ∈ H(d, L).
We begin with the l.h.s. of (29). Recall that by definition, each graph � ∈ Ch

w,L,r consists
of a disjoint union of cycles of length Lh|u| each. Thus, each cycle represents up to h distinct
L-cycles of w(σ1, . . . , σk), and � can represent up to h · (# cycles in �) distinct L-cycles.
But � represents only r distinct L-cycles, whence there are h · (# cycles in �) − r “free
spots” in � that can contain new L-cycles. We illustrate these notions in Fig. 10.
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Now let αh
w,L,r[j] denote the number of graphs in Ch

w,L,r with j free spots. We can define
the generating function of the αh

w,L,r[j]:

gh
w,L,r(t) = αh

w,L,r[0] + αh
w,L,r[1]t + αh

w,L,r[2]t2 + · · ·

and obviously gh
w,L,r(1) = |Ch

w,L,r|.
Before we derive a recursion formula for this function, we want to illustrate by writing

explicit expressions for r = 0, 1, 2. Every connected component (=cycle) in every � ∈ Ch
w,L,r ,

realizes at least one L-cycle. Thus, when r = 0 and there are no L-cycles at all, we have
only the empty graph which has no free spots, and so gh

w,L,0(t) = 1. When r = 1, we have a
single graph in Ch

w,L,1, with h − 1 free spots (a single cycle of Lh copies of u), and therefore
gh

w,L,1(t) = th−1. For r = 2 there is always a two-cycle graph with one L-cycle in each cycle.
This graph has 2(h − 1) free spots. In addition, if h ≥ 2, there are also graphs consisting of
a single cycles that corresponds to two L-cycles. There are L(h − 1) ways to place the two
L-cycles and such graphs have (h − 2) free spots. Thus, for h = 1, gh

w,L,2(t) = t2(h−1) and
for h ≥ 2 gh

w,L,2(t) = L(h − 1)th−2 + t2(h−1).
We now want to derive the functions gh

w,L,r by recursing on r. Let � be a graph in Ch
w,L,r

with j free spots. In what manners can we add another L-cycle and make it a graph in
Ch

w,L,r+1? We have two options: we can put the new L-cycle in one of the j free spots, in L
possible ways (L possible cyclic shifts), resulting in j · L different graphs in Ch

w,L,r+1, each
of which has j − 1 free spots. Alternatively, we can add one new cycle to � and put there
our new L-cycle, which yields a single graph in Ch

w,L,r+1 with j + h − 1 free spots. Thus, we
have:

gh
w,L,r+1(t) = L · (

gh
w,L,r(t)

)′ + th−1 · gh
w,L,r(t).

We now go back to the right side of (29). Recall that fhZ1/Lh(t) = e− 1
Lh e

th
Lh . If we write

f (r)
hZ1/Lh

(t) = e− 1
Lh e

th
Lh · qh

L,r(t) where qh
L,r(t) is the appropriate polynomial, then

qh
L,0(t) = 1

and

qh
L,r+1(t) = (

qh
L,r(t)

)′ + 1

L
· th−1 · qh

L,r(t)

Thus gh
w,L,r(t) = Lr · qh

L,r(t), and we can conclude:

1

Lr

∣∣Ch
w,L,r

∣∣ = 1

Lr
· gh

w,L,r(1) = qh
L,r(1) = f (r)

hZ1/Lh
(1) (30)

when the last equality comes from the fact that e− 1
Lh e

th
Lh

∣∣
t=1

= 1.
The proof of Theorem 25 is now complete. Corollary 26 is also proved. For completeness

sake, here is a short proof of the last sentence in the corollary, namely, that limn→∞ E(X (n)

w,L) =
|H(d,L)|

L .
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Proof.

lim
n→∞ E

(
X (n)

w,L

) = E(Yd,L) = E

( ∑
h∈H(d,L)

hZ1/Lh

)
=

∑
h∈H(d,L)

E(hZ1/Lh)

=
∑

h∈H(d,L)

h · 1

Lh
= |H(d, L)|

L

Remark 31. In fact, the techniques presented here are likely to yield further results. The
method of moment applies as well to random vectors (for distributions that are determined
by their moments, see, e.g., [19], Theorem 6.2). The joint moments of X (n)

w,L1
, . . . , X (n)

w,Lk
for

some k and positive integers L1, . . . , Lk can be analyzed similarly to the way we analyzed
the moments of X (n)

w,L for some L, and the limit joint distribution of these variables is probably
determined by its moments.

5. OPEN PROBLEMS

Many interesting questions and conjectures were raised in this article. We collect them
here.

• Let u and w be two words such that for any finite group G, the distribution of the two
word maps on G are identical. Is it true that u ∼ w?

• (Conjecture 15) β(w) = φ(w) for every word w.
• (A consequence of Conjecture 15:) For every word w, and sufficiently large n, a random

permutation in the image of w in Sn has, on average, at least one fixed point.
• Friedman’s Conjecture: For every base graph G, almost surely all new eigenvalues in

lifts of G are ≤ ρ + o(1).
• Nica’s theorem determines the behavior of the number of L-cycles in the Sn-image of

any formal word w. There are numerous other parameters of such permutations (e.g.,
the number of cycles) whose typical behavior is still not understood.
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