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Abstract: We study the local profiles of trees. We show that in contrast
with the situation for general graphs, the limit set of k-profiles of trees is
convex. We initiate a study of the defining inequalities of this convex set.
Many challenging problems remain open. C© 2015 Wiley Periodicals, Inc. J. Graph Theory
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1. INTRODUCTION

For (unlabeled) trees T , S, we denote by c(S, T ) the number of copies of S in T , or in
other words the number of injective homomorphism from S to T . Let T k

1 , . . . , T k
Nk

be a
list of all (isomorphism types of) k-vertex trees,1 where T k

1 , T k
2 are the k-vertex path and

the k-vertex star, respectively. The k-profile of a tree T is the vector p(k)(T ) ∈ R
Nk whose

Contract grant sponsor: ISF; Contract grant sponsor: I-Core.
1Recall that the sequence (Nk )k≥1 starts with 1, 1, 1, 2, 3, 6 . . .
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ith coordinate is

(
p(k)(T )

)
i
= c(T k

i , T )

Zk(T )
, where Zk(T ) =

Nk∑
j=1

c(T k
j , T ).

In other words, the k-profile is the induced density vector of k-vertex trees. We are
interested in understanding the limit set of k-profiles:

�(k) =
{

p ∈ R
Nk : ∃(Tn), |Tn| ∞−→

n→∞, and p(k)(Tn) −→
n→∞ p

}
,

where |T | denotes the number of vertices in T .
Our main result, proved in Section 2, is as follows.

Theorem 1. The set �(k) is convex.

This property of profiles of trees is in sharp contrast with what happens for gen-
eral graphs. Let �(k) be the k-profiles limit set of general graphs (which is defined
as �(k) with a list of all k-vertex graphs rather than k-vertex trees). The first and
second coordinates in p ∈ �(k) correspond to k-anticliques and k-cliques, respec-
tively. Clearly e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0) ∈ �(k) but 1

2 e1 + 1
2 e2 �∈ �(k).

Not only is �(k) nonconvex, it is even computationally infeasible to derive a description
of its convex hull (see [1]). Our understanding of the sets �(k) is rather fragmentary
(e.g., [2]). Flag algebras [3] are a major tool in such investigations. The convexity of �(k)

suggests that we may have a better chance understanding profiles of trees by deriving the
linear inequalities that define these sets. We take some steps in this direction. Concretely,
we prove the following result in Section 3.

Theorem 2. Let p ∈ �(k), then

p1 + p2 ≥ 1

2Nkk2k
.

We suspect that a stronger lower bound holds here. In Section 3, we give examples
that show that p1 + p2 can be exponentially small in k.

For 5-profiles, we get a better inequality. In Section 4, we prove the following theorem.

Theorem 3. Let p ∈ �(5), then

p2 ≥ 1 − 2p1

37
.

The above inequality holds with equality at the point (1/2, 0) ∈ �(5), but we believe
that it is not tight for p ∈ �(5) such that p2 > 0. We discuss tightness in more detail in
Section 4. We end the article with a list of open problems in Section 5.

2. CONVEXITY OF THE k-PROFILES LIMIT SET

In this section, we prove Theorem 2. We first explain how to “glue” two trees, and then
show how gluing allows us to generate convex combinations of tree profiles.

Step 1: The gluing operation. If T and S are trees, we define T �k S as follows. This
is a tree that consists of a copy of T , a copy of S, and a (k − 1)-vertex path that
connects some arbitrary leaf x in T to an arbitrary leaf y in S. In other words, we
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add to S and T a path x = z0, . . . , zk = y, where z1, . . . , zk−1 are new vertices.
The resulting tree depends of course on the choice of the two leaves x and y, but
we ignore this issue, since this will not affect anything that is said below.
We denote by D(K) the largest vertex degree in a given tree K. The following
inequalities are easy to verify:

c
(
T k

i , T
) + c

(
T k

i , S
) ≤ c

(
T k

i , T �k S
) ≤ c

(
T k

i , T
)+ c

(
T k

i , S
)

+ kD(T )k−2 + kD(S)k−2, (1)

and consequently

Zk(T ) + Zk(S) ≤ Zk(T �k S) ≤ Zk(T ) + Zk(S) + kNkD(T )k−2

+ kNkD(S)k−2. (2)

We define by induction T �k� = T �k(�−1) �k T (with T �k1 = T ). Observe that
D(T �k�) = D(T ) and thus using (1) and (2) one has

�c
(
T k

i , T
) ≤ c(T k

i , T �k�) ≤ �c
(
T k

i , T
)+ 2k(� − 1)D(T )k−2, (3)

�Zk(T ) ≤ Zk(T
�k�) ≤ �Zk(T ) + 2kNk(� − 1)D(T )k−2. (4)

Step 2: Convex combinations by gluing. Let p, q ∈ �(k). Namely, there exists two
sequences of trees Tn and Sn such that

|Tn|, |Sn| −→
n→∞ ∞, and

(
p(k)(Tn), p(k)(Sn)

)−→
n→∞(p, q).

Now, given λ ∈ (0, 1), we want to construct a sequence of trees Rn such that

|Rn| −→
n→∞ ∞, and p(k)(Rn) −→

n→∞ λp + (1 − λ)q.

First, let αn/βn be a sequence of rational numbers that converges to λ. We
correspondingly define the sequence of trees Rn via:

Rn = T �k[αnZk(Sn)]
n �k S�k[(βn−αn)Zk(Tn)]

n .

Using (2) and (4) one immediately obtains

βnZk(Tn)Zk(Sn)

≤ Zk(Rn)

≤ βnZk(Tn)Zk(Sn)+2kNkαnZk(Sn)D(Tn)
k−2+2kNk(βn−αn)Zk(Tn)D(Sn)

k−2. (5)

Now the key observation is that

D(Tn)
k−2 = o(Zk(Tn)). (6)

Indeed, Zk(Tn) ≥ (D(Tn)

k−1

)
follows by counting k-vertex stars rooted at the highest degree

vertex in Tn, which yields Equation (6) if D(Tn) → ∞. On the other hand, if D(Tn) is
bounded then (6) is also clearly true since Zk(Tn) → ∞.

Using (6), one can rewrite (5) as

Zk(Rn) = βnZk(Tn)Zk(Sn) + o(βnZk(Tn)Zk(Sn)).

Similarly, using (1) and (3) we obtain

c
(
T k

i , Rn
) = αnZk(Sn)c

(
T k

i , Tn
)+ (βn − αn)Zk(Tn)c

(
T k

i , Sn
)+ o(βnZk(Tn)Zk(Sn)).
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FIGURE 1. A d -millipede.

We combine these two identities and conclude that

(
p(k)(Rn)

)
i
= c

(
T k

i , Rn
)

Zk(Rn)
= (1 + o(1))

[
αn

βn

c
(
T k

i , Tn
)

Zk(Tn)
+
(

1 − αn

βn

)
c
(
T k

i , Sn
)

Zk(Sn)

]

+ o(1) → λpi + (1 − λ)qi,

as claimed.

3. ON STARS AND PATHS

In this section, we prove Theorem 2. We use the shorthand Pk(T ) = c(T k
1 , T ) and Sk(T ) =

c(T k
2 , T ), and also omit the reference to T whenever it is clear from context. Before

delving into the proof, let us show why the exponential decrease in k is unavoidable.
A d-millipede is a tree where all nonleaf vertices reside on a single path and they have
degree d + 2 each. See Figure 1 for an illustration. The number of nonleaves is called
the d-millipede’s length.

We denote by Tn the (k − 4)-millipede of length n with k even. Also, Rk is the k−4
2 -

millipede of length 2. It is easy to see that for k ≥ 6,

Zk(Tn) ≥ c(Rk, Tn) ≥ 2(n − 2)

(
k − 3

(k − 2)/2

)
≥ (n − 2)(3/2)k/2,

and

Sk(Tn) = 0, Pk(Tn) ≤ n(k − 3)2.

Thus, the limiting profile that corresponds to the sequence (Tn) satisfies

p1 + p2 ≤ (k − 3)2

(3/2)k/2
. (7)

For k > 3, let (k) be the projection of �(k) on the first two coordinates, that is,

(k) = {((p1, p2), p ∈ �(k)}.
As a side note, we also observe that the above inequality yields

∪k(k) = {x ∈2
+: x1 + x2 ≤ 1},

where A denotes the closure of a set A. Indeed (1, 0) and (0, 1) are always in (k), (7)
shows that for k large enough one can find a point arbitrarily close to (0, 0), and thus
using the convexity of (k) (Theorem 1) one obtains the above set equality.

Journal of Graph Theory DOI 10.1002/jgt
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We now turn to the proof of Theorem 2. We repeatedly use the following obvious result
that we state without a proof.

Lemma 1. A tree with maximal degree D has at most kNkDk−1 k-vertex subtrees that
contain a given vertex.

Lemma 2 is an enumerative analog of the probabilistic statement of Theorem 2, which
applies when Sk = 0. In Lemma 3 we deal with the case of Sk ≥ 0, which then yields
Theorem 2.

Lemma 2. If D(T ) ≤ k − 2 for some tree T , then

Zk ≤ kNk(k − 2)k−1Pk + kNk(k − 2)2k−2.

Proof. For trees with n ≤ (k − 2)k−1 vertices, this inequality clearly follows from
Lemma 1. For n > (k − 2)k−1, we proceed by induction. Clearly for this range of n, the
tree’s diameter must be at least 2(k − 2). In other words, it must contain a copy P of
P2(k−2)+1. Let the tree T ′ be obtained by removing a leaf x from T . This eliminates at
least one k-vertex path, namely the path from x toward P possibly proceeding toward P’s
furthest end. In other words:

Pk(T ) ≥ Pk(T
′) + 1.

Furthermore by Lemma 1,

Zk(T ) ≤ Zk(T
′) + kNk(k − 2)k−1.

Applying the induction hypothesis to T ′ yields

Zk(T
′) ≤ kNk(k − 2)k−1Pk(T

′) + kNk(k − 2)2k−2,

together with the two above inequalities this gives the same inequality for T . �
Lemma 3. Every tree satisfies

Zk ≤ Nkk2k(Pk + 2Sk + 1).

Proof. First, observe that if n ≤ kk then by (a variant of) Lemma 1:

Zk ≤
∑

u:d(u)≤k−2

kNkd(u)k−1 +
∑

u:d(u)≥k−1

kNkd(u)k−1

≤ Nkk2k +
∑

u:d(u)≥k−1

kNk(k − 1)k−1

(
d(u)

k − 1

)

≤ Nkk2k + NkkkSk,

as needed. For larger trees, we prove the following stronger inequality by induction on
the number of vertices:

Zk ≤ Nkk2k (Pk + 1) 1{Pk ≥ 1} + 2Nkk2kSk.

Clearly, the expression 1{Pk ≥ 1} captures the information whether or not T ’s diameter
is at least k − 1. The base case n = kk follows since necessarily Pk ≥ 1 or Sk ≥ 1. The
induction step has two cases:

Case 1: If D(T ) ≤ k − 2, then Lemma 2 yields the inequality, since Pk ≥ 1.

Journal of Graph Theory DOI 10.1002/jgt
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Case 2: Let v be the vertex of largest degree d ≥ k − 1, and let T1, . . . , Td be the trees
of the forest T \ {v}. By Lemma 1

Zk(T ) ≤
d∑

i=1

Zk(Ti) + kNkdk−1.

Furthermore,

Sk(T ) ≥
d∑

i=1

Sk(Ti) +
(

d

k − 1

)
≥

d∑
i=1

Sk(Ti) +
(

d

k − 1

)k−1

and

(1 + Pk(T ))1{Pk(T ) ≥ 1} ≥
d∑

i=1

(1 + Pk(Ti))1{Pk(Ti) ≥ 1}.

To see why the last inequality holds true, observe first that it is trivial if
∑d

i=1 1{Pk(Ti) ≥
1} ∈ {0, 1}. Furthermore if

∑d
i=1 1{Pk(Ti) ≥ 1} ≥ 2, then for each i such that Pk(Ti) ≥ 1,

one can find a path in T containing both v and vertices from Ti, which means that in this
case one even has Pk(T ) ≥ ∑d

i=1(1 + Pk(Ti))1{Pk(Ti) ≥ 1}.
Combine the three above displays and apply induction to the Ti’s to conclude:

Zk(T ) ≤
d∑

i=1

Zk(Ti) + kNkdk−1

≤ Nkk2k
d∑

i=1

(Pk(Ti) + 1) 1{Pk(Ti) ≥ 1} + 2Nkk2k
d∑

i=1

Sk(Ti) + kNkdk−1

≤ Nkk2k(1 + Pk(T ))1{Pk(T ) ≥ 1} + 2Nkk2kSk(T ),

which concludes the proof. �

4. 5-PROFILES

Clearly, �(5) is entirely determined by (5). In this section, we prove Theorem 1 that
improves Theorem 2 for k = 5.

Before we embark on the proof, we show that millipedes generate a “large” set of
points in (5). To simplify notation, let P(T ) = c(T 5

1 , T ), S(T ) = c(T 5
2 , T ), and Y (T ) =

c(T 5
3 , T ) (note that T 5

3 has the Y -shape). We also omit the dependency on T whenever it
is clear from context. For a d-millipede of length n, we get the following expressions:

S = n

(
d + 2

4

)
,

P = (n − 2)(d + 1)2,

Y = 2(n − 2)

(
d + 1

2

)
(d + 1) + 2

(
d + 1

2

)
(d + 1) = (n − 1)(d + 1)2d,

S + Y + P = n

(
d + 2

4

)
+ (n − 2)(d + 1)3 + (d + 1)2d.

Journal of Graph Theory DOI 10.1002/jgt
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FIGURE 2. The equation of the red line is y = 1−2x
37 . In blue, the polygonal curve

connecting consecutive md , d ≥ 1 of Equation (8) as well as (0, 1) to (1, 0). By
Theorem 3, the set (5) lies above the red line and by Theorem 1 it contains the

convex domain bounded by the blue lines.

In particular for fixed d and n → ∞, we get the following point in (5):

md =
(

(d + 1)2(d+2
4

)+ (d + 1)3
,

(d+2
4

)
(d+2

4

)+ (d + 1)3

)
. (8)

Thus, by convexity we have

(5) ⊇ conv({(0, 1)} ∪ {md, d ≥ 0}). (9)

We cannot rule out the possibility that this is, in fact an equality. This inclusion and the
inequality from Theorem 3 are illustrated in Figure 2.

Our proof of Theorem 3 proceeds along the route that we took in proving Theorem 2.
Now, however, we are much more careful with the details. Lemma 4, a counterpart of
Theorem 3, gives an inequality on the unnormalized quantities when S = 0. The general
case S ≥ 0 is handled in Lemma 5 that yields Theorem 3.

Lemma 4. If D(T ) ≤ 3, then

Y ≤ P + 4,

with equality if and only if T is a 1-millipede.

Note that to prove Theorem 3, we will only need the inequality provided by Lemma 4.

Proof. It is immediate that a 1-millipede satisfiesY = P + 4. We prove the inequality
in two steps. A third step shows that only 1-millipedes satisfy Y = P + 4.

Journal of Graph Theory DOI 10.1002/jgt
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Step 1: A formula for P − Y . We say that a vertex of degree 3 has type xyz with
x, y, z ∈ {0, 1, 2} if its three neighbors have degree x + 1, y + 1, and z + 1,
respectively. The number of vertices of type xyz is denoted as nxyz. Similarly,
we define for degree-2 vertices the quantity nxy.
A straightforward (but slightly painful) calculation yields

P=12n222+8n221+4n220+5n211+2n210+3n111+n110+4n22+2n21+n11,

and

Y = 6n222 + 5n221 + 4n220 + 4n211 + 3n210 + 2n200 + 3n111 + 2n110 + n100.

Hence,

P − Y = 6n222 + 3n221 + n211 − n210 − 2n200 − n110 − n100 + 4n22

+ 2n21 + n11. (10)

Step 2: Double counting. Let nx be the number of degree-x vertices. Clearly n1 + n2 +
n3 = n, and by double counting of edges, also n1 + 2n2 + 3n3 = 2(n − 1). In
particular,

n1 − n3 = 2. (11)

Next, observe that n1 and n3 can easily be expressed in terms of the parameters
nxy and nxyz. Namely,

n3 = n222 + n221 + n220 + n211 + n210 + n200 + n111 + n110 + n100,

n1 = n220 + n210 + 2n200 + n110 + 2n100 + n20 + n10.

Together with (11) we find

− n222 − n221 − n211 + n200 − n111 + n100 + n20 + n10 = 2. (12)

Next, adding (10) to twice (12) one gets

P − Y + 4 = 4n222 + n221 − n211 − n210 − 2n111 − n110 + n100

+ 4n22 + 2n21 + n11 + 2n20 + 2n10.

It only remains to show that the right-hand side term is nonnegative. To this
end, we count edges between a degree-2 vertex and degree-3 vertex in two
ways: once from the degree-3 side and once from the degree-2 side

n221 + 2n211 + n210 + 3n111 + 2n110 + n100 = 2n22 + n21 + n20.

This concludes the proof of the inequality stated in the theorem. Note that we
have, in fact, shown a more precise statement:

P − Y + 4 = 4n222 + 2n221 + n211 + n111 + n110 + 2n100 + 2n22 + n21

+ n11 + n20 + 2n10. (13)

Step 3: The equality case. Equation (13) shows that if P − Y + 4 = 0 then

4n222+2n221+n211+n111+n110+2n100+2n22+n21+n11+n20 + 2n10 = 0.

In particular the tree contains no degree-2 vertices, and no degree-3 vertices of
type 222. In other words, it has only leaves and degree-3 vertices of types 220

Journal of Graph Theory DOI 10.1002/jgt
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and 200. Moreover, by (12) in this case n200 = 2. A straightforward inductive
proof shows that the tree must be a 1-millipede. �

We now adapt Lemma 4 to the case where S > 0. This more general inequality directly
implies Theorem 3.

Lemma 5. All trees satisfy

Y ≤ 36S + P + 4.

Proof. First observe the following expressions:

Y =
∑

{u,v}∈E

((
d(v) − 1

2

)
(d(u) − 1) +

(
d(u) − 1

2

)
(d(v) − 1)

)
.

We split Y = Ys + Y�, where

Ys =
∑

{u,v}∈E:max(d(u),d(v))≤3

((
d(v) − 1

2

)
(d(u) − 1) +

(
d(u) − 1

2

)
(d(v) − 1)

)
,

and

Y� =
∑

{u,v}∈E:max(d(u),d(v))≥4

((
d(v) − 1

2

)
(d(u) − 1) +

(
d(u) − 1

2

)
(d(v) − 1)

)
.

The proof deals separately with Ys and Y�.

Step 1: We prove that Y� ≤ 36S by observing

S =
∑
u∈V

(
d(u)

4

)
= 1

4

∑
u,v:{u,v}∈E

(
d(u) − 1

3

)

= 1

4

∑
{u,v}∈E

((
d(u) − 1

3

)
+
(

d(v) − 1

3

))
,

and making a term-by-term comparison with the expression for Y�. We use the
fact that for any nonnegative integers x �= 2, y ≥ 3

yx(x − 1) + xy(y − 1) ≤ x2(x − 1) + y2(y − 1) ≤ 3(x(x − 1)(x − 2)

+ y(y − 1)(y − 2)),

and furthermore for x = 2 this inequality (without the intermediate step) is also
true.

Step 2: We prove by induction on the size of the tree that Ys ≤ P + 4. The base case is
trivial. The induction step has three cases:

Case 1: D(T ) ≤ 3. The inequality follows readily from Lemma 4.
Case 2: There are two neighbors u, v in T , where d(u) ≥ 4 and v is a leaf. Clearly,

Ys(T ) ≤ Ys(T
′) and P(T ′) ≤ P(T ),

where T ′ := T \ {v. By applying the induction hypothesis to T ′, we see that
Ys(T ′) ≤ P(T ′) + 4, which implies Ys ≤ P + 4.

Case 3: There is a vertex u in T with d(u) ≥ 4, and no neighbor of u is a leaf. Let v be a
neighbor of u and let T1, T2 be the two trees of the forest obtained by removing

Journal of Graph Theory DOI 10.1002/jgt
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the edge uv and adding a new edge to v, where u is in T1 and v in T2. As in
Case 2,

Ys(T ) ≤ Ys(T1) + Ys(T2).

Observe that we can assume that v was selected such that T2 has at least three
edges, for otherwise Ys(T ) = 0 and thus the inequality would trivially hold.
Indeed if T2 had two edges for all neighbors of u, then T \ {u would be a
matching, and thus any copy of T 5

3 in T would have u in its “middle edge,”
which implies Ys(T ) = 0.

Now clearly if T2 has at least three edges,

P(T ) ≥ P(T1) + P(T2) + 2(d(u) − 1) ≥ P(T1) + P(T2) + 4.

Applying the induction hypothesis to T1 and T2 and using the above inequalities yield
Ys ≤ P + 4 in this case as well. �

5. OPEN PROBLEMS

(1) Is the blue curve in Figure 2 tight? That is, is (9) in fact an equality? Less
ambitiously, can the bound in Lemma 5 be improved to Y ≤ 9S + P + K, for
some universal K ≥ 0? If true, this shows that the first segment of the polygonal
curve is tight.

(2) Recall that (k) is the projection of the limit set of k-profiles to the first two
coordinates. Are these sets increasing, that is, is it true that

(k) ⊂ (k + 1)

for all integer k?
(3) Let p ∈ �(k). Does p1 = 0 imply p2 = 1?
(4) Imitating a concept from graph theory we define the inducibility of a tree T to

be lim sup c(T,T )

Z|T |(T )
, where the lim sup is over trees T of size tending to infinity. By

gluing many copies of T as in Section 2, it is easy to show that every T has positive
inducibility. By Theorem 2 paths and stars are the only trees with inducibility 1,
but are there other trees with inducibility arbitrarily close to 1? If such trees do
not exist, is it nonetheless possible to find infinitely many trees of inducibility
≥ ε for some ε > 0? Note that in the realm of graphs, there are infinitely many
distinct graphs with inducibility > 1

10 , for example, the complete bipartite graphs
H = K3,r with r > 10. It can be easily verified that randomly chosen set of r + 3
vertices in K3n,rn for n large spans a copy of H with probability >0.1.

(5) Call a sequence of trees (Tn) k-universal if

lim inf
n→∞

(
p(k)(Tn)

)
i
> 0

for every i ∈ [Nk]. The convexity of �(k) and the fact that every tree has posi-
tive inducibility implies that k-universal sequences exist. But does there exist a
sequence of trees which is k-universal simultaneously for every k? For general
graphs the answer is positive, for example, using G(n, p) graphs.

(6) Is there a probabilistic interpretation to the profile of a tree?

Journal of Graph Theory DOI 10.1002/jgt
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(7) In this article, we found only linear inequalities satisfied by the sets �T (k). We
wonder if higher order inequalities can be derived as well. Is there a framework
similar to flag algebras that applies to trees?
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