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On the phase transition in
random simplicial complexes

By Nathan Linial and Yuval Peled

Abstract

It is well known that the G(n, p) model of random graphs undergoes a

dramatic change around p = 1
n

. It is here that the random graph, almost

surely, contains cycles, and here it first acquires a giant (i.e., order Ω(n))

connected component. Several years ago, Linial and Meshulam introduced

the Yd(n, p) model, a probability space of n-vertex d-dimensional simplicial

complexes, where Y1(n, p) coincides with G(n, p). Within this model we

prove a natural d-dimensional analog of these graph theoretic phenomena.

Specifically, we determine the exact threshold for the nonvanishing of the

real d-th homology of complexes from Yd(n, p). We also compute the real

Betti numbers of Yd(n, p) for p = c/n. Finally, we establish the emergence

of giant shadow at this threshold. (For d = 1, a giant shadow and a giant

component are equivalent). Unlike the case for graphs, for d ≥ 2 the

emergence of the giant shadow is a first order phase transition.

1. Introduction

The systematic study of random graphs was started by Erdős and Rényi

in the early 1960’s. It is hard to overstate the significance of random graphs

in modern discrete mathematics, computer science and engineering. Since a

graph can be viewed as a one-dimensional simplicial complex, it is natural to

seek an analogous theory of d-dimensional random simplicial complexes for all

d ≥ 1. Such an analog of Erdős and Rényi’s G(n, p) model, called Yd(n, p),

was introduced in [20]. A simplicial complex Y in this probability space is

d-dimensional; it has n vertices and a full (d − 1)-dimensional skeleton. Each

d-face is placed in Y independently with probability p. Note that Y1(n, p) is

identical with G(n, p).

One of the main themes in G(n, p) theory is the search for threshold prob-

abilities. If Q is a monotone graph property of interest, we seek the critical

probability p = p(n) where a graph sampled from G(n, p) has property Q
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with probability equal to 1
2 . One of Erdős and Rényi’s main discoveries is

that p = lnn
n is the threshold for graph connectivity. Graph connectivity can

be equivalently described as the vanishing of the zeroth homology, and this

suggests a d-dimensional counterpart. Indeed, it was shown in [20] with sub-

sequent work in [24] that in Yd(n, p) the threshold for the vanishing of the

(d−1)-th homology is p = d lnn
n . This statement is known for all finite Abelian

groups of coefficients. The same problem with integer coefficients is still not

fully resolved, but see [14]. The threshold for the vanishing of the fundamental

group of Y2(n, p) was studied in [7].

Perhaps the most exciting early discovery in G(n, p) theory is the so-called

phase transition that occurs at p = 1
n . This is where the random graph asymp-

totically almost surely, i.e., with probability tending to 1 as n tends to infinity,

acquires cycles [16]. Namely for p = o( 1
n) a G(n, p) graph is asymptotically

almost surely (a.a.s.) a forest. For every 0 < c < 1, the probability that

G(n, cn) is a forest approaches an explicitly computable bounded probability

0 < f(c) < 1 as n → ∞. Finally, for p ≥ 1
n , a G(n, p) graph has, a.a.s., at

least one cycle. Moreover, at around p = 1
n the random G(n, p) graph acquires

a giant component, a connected component with Ω(n) vertices. The present

work is motivated by the quest of d-dimensional analogs of these phenomena.

As is often the case when we consider the one vs. high-dimensional situa-

tions, the plot thickens here. Whereas acyclicity and collapsibility are equiv-

alent for graphs, this is no longer the case for d ≥ 2. Clearly, a d-collapsible

simplicial complex has a trivial d-th homology, but the reverse implication

does not hold in dimension d ≥ 2. In this view, there are now two potentially

separate thresholds to determine in Yd(n, p): for d-collapsibility and for the

vanishing of the d-th homology. Some of these questions were answered in

several papers, and the present one takes the last step in this endeavour. A

lower bound on the threshold for d-collapsibility was found in [6], and a match-

ing upper bound was proved in [5]. An upper bound on the threshold for the

vanishing of the d-th homology was found in [4], and here we prove a matching

lower bound for the d-th homology over real coefficients. We conjecture that

the same bound holds for all coefficient rings, but this question remains open

at present. Both thresholds are of the form p = c
n , but they differ quite sub-

stantially. The results allow the numerical computation of both ccol
d and c∗d to

any desirable accuracy; see Table 1.

d 2 3 4 5 10 100 1000

ccold 2.455 3.089 3.509 3.822 4.749 7.555 10.175

c∗d 2.754 3.907 4.962 5.984 11− 10−3.73 101− 10−41.8 1001− 10−431.7

Table 1. Values of ccol
d and c∗d for a selection of d’s.
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We turn to state the main results of this work. Note that all the asymp-

totic terms in this paper are with respect to the number of vertices n unless

stated explicitly otherwise. In addition, we only use natural logarithms. Our

first main result gives the threshold for the vanishing of the d-th homology

over R and shows that the upper bound from [4] is tight.

Theorem 1.1. Let t∗d be the unique root in (0, 1) of

(d+ 1)(1− t∗d) + (1 + dt∗d) ln t∗d = 0,

and let

c∗d :=
− ln t∗d

(1− t∗d)d
.

Then for every c < c∗d, asymptotically almost surely, Hd
(
Yd
(
n, cn

)
;R
)

is either

trivial or it is generated by at most a bounded number of copies of the boundary

of a (d+ 1)-simplex.

Remark 1.2.

(1) In Appendix B we show that t∗d and therefore c∗d are well defined.

(2) Direct calculation shows that for large d, t∗d = e−(d+1) + Od(d
2e−2d) and

c∗d = (d + 1)(1 − e−(d+1)) + Od(d
3e−2d). The threshold for d-collapsibility

is known to be ccol
d = (1 + od(1)) ln d.

(3) The theorem holds also for Hd
(
Yd
(
n, cn

)
;Z
)
. Indeed, this is a free abelian

group whose rank coincides with the dimension of the real d-th homology.

Also, every boundary of a (d+ 1)-simplex is a d-cycle in the integral d-th

homology.

(4) Let the random variable Z count the copies of boundaries of a (d + 1)-

simplex in Yd
(
n, cn

)
. It is easily verified that Z is Poisson distributed with

constant expectation and, in particular, Pr(Z = 0) is bounded away from

both zero and one. Thus the emergence of the first cycle follows a one-sided

sharp transition, as does the emergence of the first cycle in a G(n, p) graph.

There is an easily verifiable condition that implies that Hd(Y ;R) 6= 0 for Y

a d-complex with a full (d−1)-skeleton and any ring of coefficients R. Namely,

after all possible d-collapses are carried out, the remaining complex has more

d-faces than (d− 1)-faces that are covered by some d-face. By the result from

[4] and Theorem 1.1, for every 0 ≤ p ≤ 1 and almost all Y ∈ Yd(n, p), if this

condition does not hold, then Hd(Y ;R) is either trivial or it is generated by at

most a constant number of copies of the boundary of a (d+ 1)-simplex.

We also determine the asymptotics of the Betti numbers of Yd
(
n, cn

)
for

every c > 0.
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Theorem 1.3. For c > c∗d, let tc be the smallest positive root of t =

e−c(1−t)
d
. Then, asymptotically almost surely,

dimHd

Å
Yd

Å
n,
c

n

ã
;R
ã

=

Ç
n

d

å
(1 + o(1))

Å
ctc(1− tc)d +

c

d+ 1
(1− tc)d+1 − (1− tc)

ã
.
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Figure 1. Illustration of Theorem 1.3 for d = 2. Here βi(c) =

limn→∞
1

(n2)
dimHi

(
Y2
(
n, cn

)
;R
)
, i = 1, 2. Note that by Eu-

ler’s formula, β1(c)− β2(c) = 1− c
3 .

There is extensive literature dealing with the emergence of the giant com-

ponent in G(n, p); see, e.g., [15]. However, since there is no obvious high-

dimensional counterpart to the notion of connected components, it is not clear

how to proceed on this front. The concept of a shadow, introduced in [21],

suggests a way around this difficulty. The shadow of a graph G is the set of

those edges that are not in G, both vertices of which are in the same connected

component of G. In other words, an edge belongs to SH(G) if it is not in G,

and adding it creates a new cycle. It follows that a sparse graph has a giant

component if and only if its shadow has positive density. Consequently, the

giant component emerges exactly when the shadow of the evolving random

graph acquires positive density. For c > 1, the giant component of G(n, cn) has

((1− tc) + o(1)) · n vertices, where tc is the root of t = e−c(1−t). Therefore, its

shadow has density (1− tc)2 + o(1); see Figure 2(a).

The above discussion suggests very naturally how to define the shadow

of Y , an arbitrary d-dimensional complex with full skeleton. Note that in

dimensions d ≥ 2 the underlying coefficient field is taken into account in the
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Figure 2. Illustration of Theorem 1.4 for d = 2, and comparison

to the density of the shadow of a random graph.

definition. The R-shadow of Y is the following set of d-faces:

SHR(Y ) = {σ /∈ Y : Hd(Y ;R) is a proper subspace of Hd(Y ∪ {σ};R)}.

In other words, a d-face belongs to SHR(Y ) if it is not in Y , and adding it

creates a new d-cycle.

The dramatic transition in the shadow’s density shows a qualitative dif-

ference between the one- and high-dimensional cases. Indeed, at p = 1/n,

the density of the giant component of G(n, cn) exhibits a continuous phase

transition with discontinuous derivative; i.e., a second order phase transition.

Consequently, the density of its shadow undergoes a smooth transition. In

contrast, in the high-dimensional case of d ≥ 2, the R-shadow of Yd
(
n, cn

)
un-

dergoes a discontinuous first-order phase transition at the critical point c = c∗d.

Theorem 1.4. Let Y ∈ Yd
(
n, cn

)
for some integer d ≥ 2 and c > 0 real.

(1) If c < c∗d, then a.a.s.,

|SHR(Y )| = Θ(n).

(2) If c > c∗d, let tc be the smallest root in (0, 1) of t = e−c(1−t)
d
. Then a.a.s.,

|SHR(Y )| =
Ç

n

d+ 1

å
((1− tc)d+1 + o(1)).

It is a key idea in [6], [5], [4] that in the range p = Θ( 1
n) many of the

interesting properties of Yd(n, p) can be revealed by studying its local struc-

ture. In particular, this observation was essential in studying the threshold

for d-collapsibility and in establishing an upper bound on the threshold of the

vanishing of the d-th homology. As explained below, this is taken a step further

here with the help of the theory of local weak limits.

The root of a rooted tree is said to have depth 0, and if u is the parent of

v, then we define depth(v) to be depth(u) + 1.
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Definition 1.5. A d-tree is a rooted tree in which every vertex at odd depth

has exactly d children. A Poisson d-tree with parameter c is a random d-tree in

which the number of children of every vertex at even depth is a random variable

with a Poi(c) distribution, where all these random variables are independent.

It was shown in [6], with a slightly different terminology, that the (bipar-

tite) incidence graph of (d−1)-dimensional vs. d-dimensional faces in Yd
(
n, cn

)
has the local structure of a Poisson d-tree with parameter c. A main challenge

in this present work is to deduce algebraic parameters, such as dimensions of

homology groups, from this local structure.

This naturally suggests resorting to the framework of local weak conver-

gence, introduced by Benjamini and Schramm [8] and Aldous and Steele [3].

In recent years, new asymptotic results in various fields of mathematics were

obtained using this approach (e.g., [1], [22]). We were particularly inspired by

an impressive work of Bordenave, Lelarge and Salez [10], on the rank of the

adjacency matrix of random graphs. They showed how to read off algebraic

parameters of a sequence of combinatorial objects from its local limit. Indeed,

many tools in their work turned out to be extremely useful in the study of the

homology of random complexes.

Suppose Y ∈ Yd
(
n, cn

)
. The group Hd(Y ;R) is simply the kernel of the

boundary operator ∂d(Y ) of Y ; see Section 2. By standard linear algebra,

dimHd is expressible in terms of the dimension of the left kernel of ∂d(Y ),

which can be read off the spectral measure of the Laplacian operator LY =

∂d(Y )·∂d(Y )∗ with respect to the characteristic vector of a random (d−1)-face.

The key idea is that this spectral measure of the Laplacian weakly converges

to the spectral measure of a corresponding operator defined on the vertices of a

Poisson d-tree, because this d-tree is the local weak limit of Yd
(
n, cn

)
. Finally,

the Poisson d-tree’s spectral measure of the atom {0} (which is the parameter

required for bounding the kernel’s dimension) is computed using a recursive

formula exploiting the tree structure.

Our work highlights the importance of the local weak limit in the study

of random simplicial complexes. The d-tree is also the local weak limit of the

bipartite incidence graph between vertices and hyperedges in random (d+ 1)-

uniform hypergraphs in which every hyperedge is chosen independently with

probability c/
(n
d

)
[18], [19]. Collapsibility and acyclicity can be defined on

hypergraphs, and these notions have been studied extensively in the contexts

of random k-Xorsat and cuckoo hashing [26], [19], [12], [27]. Surprisingly, the

critical c’s for these hypergraph properties coincide with ccol
d and c∗d. It is less

surprising in view of the key role that the d-tree plays in some of these proofs.

This observation illustrates the close connection between random simplicial

complexes and random uniform hypergraphs at some ranges of parameters.
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The rest of the paper is organized as follows. Section 2 gives some nec-

essary background material about simplicial complexes, Laplacians, operator

theory and local weak convergence. In Section 3 we prove that the dimen-

sion of the homology of Yd
(
n, cn

)
can be bounded using the spectral measure

of Poisson d-trees. In Section 4 we study the spectral measure of general and

Poisson d-trees. In Section 5 we prove the main theorems. Concluding remarks

and open questions are presented in Section 6.

2. Preliminaries

2.1. Simplicial complexes. A simplicial complex Y is a collection of subsets

of its vertex set V that is closed under taking subsets. Namely, if A ∈ Y and

B ⊆ A, then B ∈ Y as well. Members of Y are called faces or simplices. The

dimension of the simplex A ∈ Y is defined as |A|−1. A d-dimensional simplex

is also called a d-simplex or a d-face for short. The dimension dim(Y ) is defined

as max dim(A) over all faces A ∈ Y . A d-dimensional simplicial complex is

also referred to as a d-complex. The set of j-faces in Y is denoted by Fj(Y ).

For t < dim(Y ), the t-skeleton of Y is the simplicial complex that consists

of all faces of dimension ≤ t in Y , and Y is said to have a full t-dimensional

skeleton if its t-skeleton contains all the t-faces of V . The degree of a face in a

complex is the number of faces of one higher dimension that contain it. Here

we consider only locally-finite complexes in which every face has a finite degree.

For a face σ, the permutations on σ’s vertices are split in two orientations,

according to the permutation’s sign. The boundary operator ∂ = ∂d maps an

oriented d-simplex σ = (v0, . . . , vd) to the formal sum
∑d
i=0(−1)i(σi), where

σi = (v0, . . . , vi−1, vi+1, . . . , vd) is an oriented (d − 1)-simplex. We fix some

commutative ring R and linearly extend the boundary operator to free R-sums

of simplices. We denote by ∂d(Y ) the d-dimensional boundary operator of a

d-complex Y .

When Y is finite, we consider the |Fd−1(Y )| × |Fd(Y )| matrix form of ∂d
by choosing arbitrary orientations for (d− 1)-simplices and d-simplices. Note

that changing the orientation of a d-simplex (resp. d − 1-simplex) results in

multiplying the corresponding column (resp. row) by −1.

The d-th homology group Hd(Y ;R) (or vector space in case R is a field)

of a d-complex Y is the (right) kernel of its boundary operator ∂d. In this

paper we work over the reals in order to use spectral methods. An element in

Hd(Y ;R) is called a d-cycle.

The upper (d − 1)-dimensional Lapalacian, or Laplacian for short, of a

complex Y is the operator LY = ∂d(Y )∂d(Y )∗. The kernel of the Laplacian

equals the left kernel of ∂d(Y ). For every 0 ≤ i ≤ d, the i-th Betti number

of a complex Y is defined to be the dimension of the vector quotient space

ker ∂i(Y )/ Im ∂i+1(Y ).
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A (d − 1)-face τ in a d-complex Y is said to be exposed if it is contained

in exactly one d-face σ of Y . An elementary d-collapse on τ consists of the

removal of τ and σ from Y . When the parameter d is clear from the context,

we refer to a d-collapse just as collapse. We say that Y is d-collapsible if it is

possible to eliminate all the d-faces of Y by a series of elementary d-collapses.

A d-core is a d-complex with no exposed (d− 1)-faces.

2.2. Graphs of boundary operators, Laplacians and unbounded operators.

In order to use the framework of local convergence, we formulate some of the

concepts and problems of interest in terms of graphs.

It is clear how to equate between matrices and weighted bipartite graphs.

In particular, we can represent the boundary operator ∂d(Y ) of a d-complex Y

by a bipartite graph GY = (VY , UY , EY ), where VY = Fd−1(Y ), UY = Fd(Y )

with edges representing inclusion among faces. In addition, edges are marked

by ±1 according to the orientation. Note that every two (d−1)-faces can have

at most one common neighbor (a d-face).

Accordingly, we discuss ±1 edge-marked, locally-finite (but not neces-

sarily bounded-degree) bipartite graphs G = (V,U,E), in which every two

vertices v1, v2 ∈ V have at most one common neighbor. Associated with G

is an operator LG that coincides with the Lapalacian LY for G that comes

from a boundary operator of some d-complex. Since G may be infinite and

have unbounded degrees, we must resort to the theory of unbounded opera-

tors [28]. The operator L := LG is a symmetric operator densely-defined on

the subset H of finitely-supported functions of the Hilbert space H = `2(V ) ={
ψ : V → C | ∑v∈V |ψ(v)|2 <∞

}
. This operator is defined by

(1) 〈Lev, ev〉 = deg(v), 〈Lev1 , ev2〉 = sign(v1, v2),

where ev ∈ `2(V ) is the characteristic function of v ∈ V . The sign function

is defined via sign(v1, v2) = E(v1, u) ·E(v2, u), where u is the unique common

neighbor and E(v, w) ∈ {−1, 1} is the mark on the edge vw. If v1, v2 have no

common neighbor, then sign(v1, v2) = 0.

Note that this operator is not the Laplacian of the graph G = (V,U,E).

In fact, it is a marked version of the operator A2 restricted to V , where A is

G’s adjacency operator. To avoid confusion, we will refer to it as the operator

of G.

The densely-defined operator L has a unique extension to H since it is

symmetric. If this extension is a self-adjoint operator, we say that L is essen-

tially self-adjoint. In such a case, the spectral theorem for self-adjoint operators

implies that the action of polynomials on L can be extended to every measur-

able function f : R → C, uniquely defining the operator f(L). In addition,

associated with every function ψ ∈ H is a real measure πL,ψ, called the spectral
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measure of L with respect to ψ, which satisfies∫
R
f(x)dπL,ψ(x) = 〈f(L)ψ,ψ〉 .

In particular, πL,ψ is a probability measure if ψ is a unit vector.

Example 2.1 (Spectral measure in finite-dimensional spaces). Suppose that

dim(H) = k < ∞, ψ ∈ H and L is a k × k Hermitian matrix. The spectral

measure πL,ψ is a discrete measure supported on the spectrum of L, and for

every eigenvalue λ,

πL,ψ({λ}) = ‖Pλψ‖2,
where Pλ is the projection onto the λ-eigenspace of L. In particular, if L

is the operator of some finite marked bipartite graph G = (V,U,E), then

dim(kerL) =
∑
v∈V πL,ev({0}). Intuitively speaking, πL,ev({0}) is the local

contribution of the vertex v to the kernel of L.

Spectral measures have the following continuity property. If L,L1, L2, . . .

are symmetric essentially self-adjoint operators densely-defined on H, and

Lnψ → Lψ for every vector ψ ∈ H, then the spectral measures πLn,η weakly

converge to πL,η for every η ∈ H.

2.3. Local weak convergence. Let G = (U, V,E) be a marked bipartite

graph, and let v ∈ U ∪ V be a vertex. A flip at v is an operation at which

we reverse the mark on every edge incident with v. Two markings on E are

considered equivalent if one can be obtained from the other by a series of

flips. Note that flips may change the operator of G, but if it is essentially

self-adjoint, the spectral measure with respect to any characteristic function

does not change.

A rooted marked bipartite graph (G, o) is comprised of a marked bipartite

graph G = (V,U,E) and a vertex o ∈ V — the root. An isomorphism (G, o) ∼=
(G′, o′) between two such graphs is a root-preserving graph isomorphism that

induces an equivalent marking on the edge sets.

Note that two rooted trees that are isomorphic as rooted graphs are also

isomorphic as marked rooted graphs, since every mark pattern on the edges

can be obtained by flips.

We now consider the framework of local convergence [3], [8] implemented

with marked bipartite graphs and with the above definition of isomorphism.

Let G∗ denote the set of all (isomorphism types of) locally-finite rooted

marked bipartite graphs. For (G, o) ∈ G∗, we denote by (G, o)k the radius k

neighborhood of o, i.e., the subgraph of vertices at distance ≤ r in G from the

root. There is a metric on G∗ defined by

d((G, o), (G′, o′)) = inf

ß
1

k + 1
: (G, o)k ∼= (G′, o′)k

™
.
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It can be easily verified that (G∗, d) is a separable and complete metric

space, which comes as usual equipped with its Borel σ-algebra; see [2].

Every probability distribution Gn = (Vn, Un, En) on finite marked bipar-

tite graphs induces a probability measure νn on G∗ by sampling a uniform root

o ∈ Vn. A probability measure ν on G∗ is the local weak limit of Gn if νn weakly

converges to ν; namely, if∫
G∗
f(G, o)dνn →

∫
G∗
f(G, o)dν

for every continuous bounded function f : G∗ → R. Two equivalent conditions

are (i) the same requirement for all bounded uniformly continuous functions

f : G∗ → R, and (ii) lim sup νn(C) ≤ ν(C) for every closed set C.

3. Local convergence of simplicial complexes

and their spectral measures

A basic fact about local weak convergence of graphs is that the local

weak limit of the random graphs G
(
n, cn

)
is a Galton-Watson tree with degree

distribution Poi(c) [11]. Lemma 3.1 below is a high-dimensional counterpart

of this fact.

Let Y ∈ Yd
(
n, cn

)
for some d ≥ 2 and c > 0, and let G = (V,U,E) be the

graph representation of the boundary operator of Y . Let νd,n be the probability

measure on G∗ induced by selecting a random root o ∈ V = Fd−1(Y ), and let

νd,c be the probability measure on G∗ of a Poisson d-tree with parameter c.

For every d-tree T of finite depth k, denote the event

AT = {(G, o) : (G, o)k ∼= T} .

An essential ingredient in [6], [5], [4] is the proof that νd,n(AT )
n→∞−−−→ νd,c(AT )

for every finite d-tree T . (See, e.g., the proof of Claim 5.2 in [6].) A straight-

forward calculus argument yields the following lemma.

Lemma 3.1. The measures νd,n weakly converges to νd,c for every integer

d ≥ 2 and real c > 0. In other words, the local weak limit of Gn is a Pois-

son d-tree with parameter c, where Gn is the graph representing the boundary

operator of Yd
(
n, cn

)
.

We say that (G, o) ∈ G∗ is self-adjoint if the corresponding operator LG
is essentially self-adjoint. Note that µG,o := πLG,eo ; the spectral measure of

LG with respect to its root is well defined since this measure depends only on

the isomorphism type of (G, o). More generally, a probability measure ν on

G∗ is self-adjoint if the ν-measure of the set of self-adjoint members of G∗ is 1.
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A self-adjoint measure ν induces a spectral measure µ defined by

µ(E) =

∫
G∗
µG,o(E)dν

for every Borel set E ⊆ R.

Lemma 3.2. Suppose (Gn, on) ∈ G∗ is a sequence of self-adjoint elements

that converges to a self-adjoint element (G, o) ∈ G∗. Then, the spectral mea-

sures µGn,on weakly converge to µG,o.

Consequently, if a sequence of self-adjoint measures νn weakly converges

to a self-adjoint measure ν, then the induced spectral measures µn weakly con-

verges to µ.

Proof. Suppose G = (V,U,E) and H = `2(V ). Let ψ ∈ H be a function

supported on vertices of distance less than k from o for some integer k. For

sufficiently large n, (G, o)k ∼= (Gn, on)k, and we may as well assume that these

graphs are equal. Consequently, LGnψ = LGψ for every sufficiently large n.

In other words, LGnψ → LGψ for every finitely supported function, and this is

a sufficient condition for the weak convergence of the spectral measures with

respect to the root; see Section 2.

The second item in the lemma is immediate by the definitions of weak

convergence. �

The claim below illustrates the subtle difference between symmetric and

essentially self-adjoint operators. This distinction is important because spec-

tral measures are defined only for essentially self-adjoint operators. This ques-

tion is well studied in the related context of adjacency operators of graphs [25],

[29]. The proof of the claim, given in Appendix A, is based on known methods

and criteria for self-adjointness of adjacency operators [10].

Claim 3.3. The measure νd,c is self-adjoint for every d ≥ 2 and c > 0.

Finally, we are able to state the bound on the dimension of the kernel of

the Laplacian of Yd
(
n, cn

)
.

Corollary 3.4. Let T be a Poisson d-tree with parameter c for some

integer d ≥ 2 and c > 0 real. Let µT be the spectral measure of the operator

LT with respect to the characteristic function of the root. In addition, let

Y ∈ Yd
(
n, cn

)
. Then,

lim sup
n→∞

1(n
d

)EY [dim(kerLY )] ≤ ET [µT ({0})] .

Proof. The measures νd,n are self-adjoint, since they are supported on

finite graphs and the measure νd,c is self-adjoint by the previous claim. Con-

sequently, the induced spectral measures µd,n, µd,c are well defined and µd,n
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weakly converges to µd,c. By measuring the closed set {0} we conclude that

lim supµd,n({0}) ≤ µd,c({0}) = ET [µT ({0})] .

Let G = (V,U,E) be the graph representation of ∂d(Y ):

µd,n({0}) = EY Ev∈V [πLG,ev({0})]

= EY

[
1(n
d

) ∑
v∈V

πLG,ev({0})
]

= EY
ñ

1(n
d

) dim(kerLG)

ô
.

The first equality follows from the definition of the induced spectral measure

µd,n. In the next step we expand the expectation over the random vertex v ∈ V ,

using the fact that |V | =
(n
d

)
. For the last step, recall the remark following

Example 2.1 regarding spectral measures in finite-dimensional spaces.

The proof is concluded by the fact that LG = LY , since G is a graph

representation of ∂d(Y ). �

Inspired by the work of [10], we bound the dimension of the kernel of

the Laplacian using the structure of its local weak limit. This idea is crucial

to our work, since other approaches in the study of algebraic parameters of

random graphs and hypergraphs seem inapplicable in the context of simplicial

complexes.

4. The spectral measure of a Poisson d-tree

Clearly the next order of things is to bound the expectation ET [µT ({0})].
However, it is not clear how to find the spectral measure of {0} corresponding

to a given self-adjoint operator other than through a direct computation of

the operator’s kernel. Fortunately, for adjacency operators and Laplacians of

trees, the recursive structure of trees yields simple recursion formulas on these

spectral measures [9], [10]. We apply these methods to the operator LT of a

d-tree T .

4.1. A recursion formula for d-trees. Given a d-tree T with root v, we let

xT := µT ({0}), where µT is the spectral measure of the tree’s operator LT
with respect to the characteristic function of the root. For every vertex v′ of

even depth, the subtree of T rooted at v′ is the d-tree that contains v′ and its

descendants.

Lemma 4.1. Let T be a rooted self-adjoint d-tree, and let u1, . . . , um be

the root ’s children. Let Tj,r, 1 ≤ j ≤ m and 1 ≤ r ≤ d, be the subtree of T

rooted at vrj , the r-th child of uj . Then, xT = 0 if there exists some 1 ≤ j ≤ m
such that xTj,1 = · · · = xTj,d = 0. Otherwise,

xT =

Ñ
1 +

m∑
j=1

(
d∑
r=1

xTj,r

)−1
é−1

.
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Example 4.2. We demonstrate the recursion formula in Lemma 4.1 on

a d-Tree T of depth 2 that consists of a root o with m children, each hav-

ing d children. With the underlying basis eo, (evrj )1≤j≤m, 1≤r≤d, LT takes the

(1 +md)× (1 +md) matrix form

LT =


m jT jT . . . jT

j J 0 . . . 0

j 0 J . . . 0
...

...
...

. . . 0

j 0 0 0 J

 ,

where J is the d× d all-ones matrix and j one of its columns. It is easy to find

a set of m linearly independent columns in LT , hence the dimension of kerLT
is at most 1 + m(d − 1). Consequently, the following set of vectors forms an

orthonormal basis for kerLT :

(i) the m(d − 1) vectors that are obtained by a Gram-Schmidt process on

the set of vectors {ev1j − evrj } where 1 ≤ j ≤ m and 2 ≤ r ≤ d;

(ii) the vector η := 1√
d2+md

Ä
d · eo −

∑
j
∑
r evrj

ä
.

Since eo is orthogonal to all the basis vectors except η, we deduce from Exam-

ple 2.1 that xT = 〈η, eo〉2 = d2

d2+md
= d

d+m .

The same conclusion follows from the recursion formula. Indeed, xTj,r = 1

for every j, r since Tj,r are empty d-trees and their corresponding operators are

null operators. By Lemma 4.1, xT = (1 +m · d−1)−1 = d
d+m .

We turn to prove the lemma in the general case.

Proof. Let us introduce some terms that we need below. We consider

T = (V,U,E) as a bipartite graph and work over the Hilbert space H = `2(V ).

Let L, Lj,r denote the operators of T , Tj,r resp., and let M denote the operator

of the subtree of depth 2 from the root (i.e., the operator from Example 4.2).

Consequently, L admits the decomposition L = M ⊕ L̃, where L̃ :=
⊕

j,r Lj,r.

The recursion formula is derived using the resolvents of L and L̃. We let

R := R(−is;L) = (L + is · I)−1 and R̃ = (L̃ + is · I)−1, where s ∈ R. We

denote Av1,v2 := 〈Aev1 , ev2〉 for every operator A acting on H and v1, v2 ∈ V .

By the Spectral Theorem,

Rv,v =

∫
R

1

x+ is
dµT (x)

and

R̃vrj ,v
r
j

=

∫
R

1

x+ is
dµTj,r(x), 1 ≤ j ≤ m, 1 ≤ r ≤ d.

It is easy to see that (i) R̃ev = 1
isev, and (ii) R̃

vrj ,v
r′
j′

= 0 for every (j, r) 6= (j′, r′),

by the tree structure.
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The recursion formula of these resolvents is proved using the Second Re-

solvent Identity:

RMR̃ = R̃−R.

We compute the complex number (RMR̃)v,v = (R̃ − R)v,v in two ways.

On the one hand, since M is supported only on v and the vrj ’s, and R̃ev = 1
isev,

it holds that

(RMR̃)v,v = Rv,vMv,vR̃v,v +
m∑
j=1

d∑
r=1

Rv,vrjMvrj ,v
R̃v,v.

Using the concrete structure of the operator M (see Example 4.2), this can be

restated as

(RMR̃)v,v =
1

is

Ñ
mRv,v +

m∑
j=1

d∑
r=1

Rv,vrj

é
.

On the other hand,

(R̃−R)v,v =
1

is
−Rv,v.

A comparison of these two terms yields

(2) isRv,v +
m∑
j=1

(
Rv,v +

d∑
r=1

Rv,vrj

)
= 1.

Similarly, we compute the complex number (RMR̃)v,vrj = (R̃−R)v,vrj for

every j, r:

(RMR̃)v,vrj = R̃vrj ,v
r
j

(
Rv,v +

d∑
r′=1

R
v,vr

′
j

)
.

Consequently,

d∑
r=1

(RMR̃)v,vrj =

(
d∑
r=1

R̃vrj ,v
r
j

)(
Rv,v +

d∑
r=1

Rv,vrj

)
.

On the other hand,
d∑
r=1

(R̃−R)v,vrj = −
d∑
r=1

Rv,vrj .

By comparing these last two terms,

(3)
d∑
r=1

Rv,vrj = −Rv,v

Ñ ∑d
r=1 R̃vrj ,v

r
j

1 +
∑d
r=1 R̃vrj ,v

r
j

é
.

(Below we explain why the denominator 1 +
∑d
r=1 R̃vrj ,v

r
j

does not vanish.)



ON THE PHASE TRANSITION IN RANDOM SIMPLICIAL COMPLEXES 759

By combining equations (2) and (3), we obtain a recursion formula of the

resolvents.

(4) Rv,v

Ñ
is+

m∑
j=1

Ñ
1

1 +
∑d
r=1 R̃vrj ,v

r
j

éé
= 1.

We next turn to derive the recursion formula on xT from the recursion of

the resolvents.

Let hT (s) = is
∫
R

1
x+isdµT (x) = isRv,v. Then

hT (s) = is

∫
x− is
x2 + s2

dµT (x) =

∫
s2

x2 + s2
dµT (x) + i

∫
xs

x2 + s2
dµT (x).

Note that the pointwise limit of xs
x2+s2

as s → 0 is the zero function.

Also the pointwise limit of s2

x2+s2
as s→ 0 is the Kronecker delta function δ0.

Since both these families of real functions are bounded, the dominant con-

vergence theorem implies that hT (s)
s→0−−−→ µT ({0}) = xT . We can similarly

define hTj,r(s) = isR̃vrj ,v
r
j
, and by the same argument, hTj,r(s)

s→0−−−→ xTj,r .

Equation (4) takes the form

hT (s)

Ñ
1 +

m∑
=1

(
is+

d∑
r=1

hTj,r(s)

)−1
é

= 1.

The proof is concluded by letting s→ 0.

Note that is+
∑d
r=1 hTj,r(s) does not vanish, since the real part of hTj,r(s)

is strictly positive. This also explains why the denominator in (3) does not

vanish. �

4.2. Solving the recursion for Poisson d-trees. We will now deduce a con-

crete bound on the spectral measure of a Poisson d-tree using the recursion

formula. The proof of Lemma 4.3 below follows ideas from [10].

Lemma 4.3. Let T be a rooted Poisson d-tree with parameter c, and let

µT be the spectral measure with respect to its root. Then,

E[µT ({0})]

≤ max

ß
t+ ct(1− t)d − c

d+ 1

Ä
1− (1− t)d+1

ä
| t ∈ [0, 1], t = e−c(1−t)

d
™
.

Remark 4.4. Due to the condition t = e−c(1−t)
d
, this maximum is always

over a finite set. In fact, there are at most three possible values of t; see

Appendix B for details.

Proof. Let D denote the distribution of µT ({0}) ∈ [0, 1], where T is a

Poisson d-tree with parameter c. We next define a real-valued random variable

X and denote its distribution by D′. To define X we sample first an integer



760 NATHAN LINIAL and YUVAL PELED

m ∼ Poi(c) and Xj,r ∼ D independent and identically distributed for every

1 ≤ j ≤ m and 1 ≤ r ≤ d. Given these samples, X takes the value 0 if there

exists some j for which Xj,1 = · · · = Xj,d = 0. Otherwise,

X =

Ñ
1 +

m∑
j=1

(
d∑
r=1

Xj,r

)−1
é−1

.

The recursion formula of Lemma 4.1 implies the distributional equation

D = D′, since every vertex at depth two in a Poisson d-tree is the root of a

Poisson d-tree.

The definition of D,D′ yields the following equation for the probability

t := Pr(X > 0):

(5) t =
∞∑
m=0

e−ccm

m!
(1− (1− t)d)m = e−c(1−t)

d
.

Let S, S1, S2, . . . be random variables whose distribution is that of a sum of d

independent and identically distributed D-distributed variables.

E[X] = E
[
1{∀j∈[m], Sj>0}

1 +
∑m
j=1 S

−1
j

]

= E
[
1{∀j, Sj>0}

(
1−

∑m
j=1 S

−1
j

1 +
∑m
j=1 S

−1
j

)]

= t− E
[
m∑
i=1

S−1
i · 1{∀j Sj>0}

1 + S−1
i +

∑
j 6=i S

−1
j

]

= t− Em

[
m · E

[
S−1 · 1{S>0; ∀j Sj>0}

1 + S−1 +
∑m−1
j=1 S−1

j

]]
(6)

= t− c · E
[
S−1 · 1{S>0; ∀j Sj>0}

1 + S−1 +
∑m
j=1 S

−1
j

]
(7)

= t− c · E
ï

X

X + S
· 1{S>0, X>0}

ò
(8)

= t− c
(

d∑
i=1

Ç
d

i

å
ti+1(1− t)d−i 1

i+ 1

)
.(9)

Equation (6) is obtained by linearity of expectation, since the m random

variables
S−1
i ·1{∀j Sj>0}

1+S−1
i +

∑
j 6=i

S−1
j

, i = 1, . . . ,m, are identically distributed.

To derive equation (7) recall that E[m ·ϕ(m− 1)] = c ·E[ϕ(m)], provided

that m ∼ Poi(c). This holds for every function ϕ : N→ R.

We pass to equation (8) by multiplying both the numerator and the de-

nominator by S
/ Ä

1 +
∑m
j=1 S

−1
j

ä
, using the fact that X ∼ D′.
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To see why equation (9) holds, note the following. By linearity of ex-

pectation, if Z,Z1 . . . , Zi are independent and identically distributed positive

random variables, then E[Z
/

(Z + Z1 + · · · + Zi)] = 1/(i + 1). In our case,

the probability that X and exactly i out of the d summands in S are positive

equals
(d
i

)
ti+1(1− t)d−i.

The proof is completed with the following straightforward calculation:

t−c
(

d∑
i=1

Ç
d

i

å
ti+1(1− t)d−i 1

i+ 1

)
= t+ct(1−t)d− c

d+ 1

Ä
1− (1− t)d+1

ä
. �

We conclude this section by restating the bound in Lemma 4.3 in concrete

terms. The proof, which uses only basic calculus, is in Appendix B.

Lemma 4.5. Recall the definition of c∗d from Theorem 1.1. Then, the

maximum of

t+ ct(1− t)d − c

d+ 1

Ä
1− (1− t)d+1

ä
, such that t = e−c(1−t)

d
,

is attained at

(1) t = 1 for c < c∗d — in particular, the maximum equals 1− c
d+1 ;

(2) the smallest root tc in (0, 1) of the equation t = e−c(1−t)
d

for c ≥ c∗d.

5. Proofs of the main theorems

5.1. From expectation to high probability : proof of Theorem 1.1. We start

with the range c < c∗d. Let Y be an n-vertex d-complex. We apply the rank-

nullity theorem from linear algebra to ∂d(Y ) and its adjoint to conclude that

dimHd(Y ;R)− dim(kerLY ) = |Fd(Y )| − |Fd−1(Y )|.

For Y ∈ Yd
(
n, cn

)
, this becomes

E[dimHd(Y ;R)]− E[dim(kerLY )] =
c

n

Ç
n

d+ 1

å
−
Ç
n

d

å
.

By the results from the previous sections and, in particular, the first item of

Lemma 4.5, we deduce that

lim sup
1(n
d

)E[dimHd(Y ;R)]

= lim sup

Ç
1(n
d

)E[dim(kerLY )] +
c

d+ 1

Å
1− d

n

ã
− 1

å
≤ ET [µT ({0})]−

Å
1− c

d+ 1

ã
= 0.
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Proof of Theorem 1.1. Now we complete the proof of Theorem 1.1 by

proving a high probability statement. To this end we recall the following,

a.a.s. characterization of minimal cores in Yd
(
n, cn

)
(Theorem 4.1 from [6]).

Namely, for every c > 0 a.a.s. every minimal core in Yd
(
n, cn

)
is either the

boundary of (d + 1)-simplex, or it has cardinality at least δnd, where δ > 0

depends only on c. Since every d-cycle is a core, we conclude that

Lemma 5.1. For every c > 0, a.a.s. every d-cycle of Yd
(
n, cn

)
that is not

the boundary of (d + 1)-simplex is big; i.e., it has at least δnd d-faces. Here

δ > 0 depends only on c.

To finish the proof of Theorem 1.1, all we need, then, is to rule out the

existence of big cycles. Let Y0 ∈ Yd
Ä
n, c

′

n

ä
for some c < c′ < c∗d. As we showed,

E[dimHd(Y0;R)] = o(nd), and so, by Markov inequality, a.a.s. dimHd(Y0;R) =

o(nd). Sample uniformly at random |Fd(Y0)| numbers from [0, 1], and let k be

the number of these samples that are < 1 − c/c′. Clearly, a.a.s. k = Θ(nd).

Define the d-complexes Y0 ⊃ Y1 ⊃ Y2 ⊃ · · · ⊃ Yk, where Yi+1 results by

removing a random d-face σi from Yi for i = 0, 1, . . . , k − 1. Clearly, Yk ∈
Yd
(
n, cn

)
.

If Yi contains a big d-cycle, then with probability bounded away from zero,

the random d-face σi+1 is in it, in which case,

dimHd(Yi+1;R) = dimHd(Yi;R)− 1.

It follows that if Yk has a big cycle, then {dimHd(Yi;R)}ki=1 is a random

sequence of Ω(nd) nonnegative integers that starts with a value of o(nd) and

has a constant probability of dropping by 1 at each step. A contradiction. �

5.2. Betti numbers of Yd
(
n, cn

)
: proof of Theorem 1.3. We now deal with

the range c > c∗d. Let tc be the smallest root of t = e−c(1−t)
d

in (0, 1). Let

Y ∈ Yd
(
n, cn

)
. The argument of the previous paragraph and the second item

of Lemma 4.5 imply that

lim sup
1(n
d

)E[dimHd(Y ;R)] ≤ ET [µT ({0})]−
Å

1− c

d+ 1

ã
= ctc(1− tc)d +

c

d+ 1
(1− tc)d+1 − (1− tc)

=: gd(c).

(10)

This upper bound matches a lower bound that is derived by analyzing the

following process on a Yd
(
n, cn

)
complex. We first carry out a large but constant

number of comprehensive collapse steps, and then we remove all uncovered

(d − 1)-faces from the remaining complex. As shown in [4], the expected

difference between the number of d-faces and (d − 1)-faces in the remaining

complex is
(n
d

)
(1 + o(1))gd(c). A simple linear algebraic consideration yields
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that gd(c) is also a lower bound for lim inf 1

(nd)
E[dimHd(Y ;R)]. Consequently,

E[dimHd(Y ;R)] =

Ç
n

d

å
(1 + o(1))gd(c).

The fact that a.a.s. dimHd(Y ;R) =
(n
d

)
(1+o(1))gd(c) is shown by the following

version of the Azuma inequality from [23].

Claim 5.2. Let Φ : {0, 1}m → R be a function with the property that

|Φ(z) − Φ(z′)| ≤ 1 whenever z and z′ differ at exactly one coordinate. If

Z1, . . . , Zm are independent indicator random variables, then for every r > 0,

Pr[|Φ(Z1, . . . , Zm)− E[Φ(Z1, . . . , Zm)]| ≥ r] ≤ 2e−2r2/m.

We apply this inequality with m =
( n
d+1

)
and r = n(d+2)/2. Fix some

ordering σ1, . . . , σ( n
d+1)

of all d-faces, and let Zi be the indicator of the event

σi ∈ Y . The function Φ = dimHd(Y ;R) clearly satisfies the assumption of

Claim 5.2. It follows that

Pr

ñ∣∣∣∣dimHd(Y ;R)−
Ç
n

d

å
(1 + o(1))gd(c)

∣∣∣∣ ≥ n(d+2)/2

ô
≤ 2e−Ω(n) → 0,

which concludes the proof.

5.3. Shadows of random complexes : proof of Theorem 1.4. The first item

in the theorem regarding the range c < c∗d is easy. We first consider d-faces

that are in the shadow because their addition completes the boundary of a

(d+ 1)-simplex. But a second moment calculation shows that a.a.s. there are

Θ(n) sets of d + 2 vertices in Y that span all but one of the d-faces in the

boundary of a (d+ 1)-simplex. The rest of the proof proceeds in reverse along

the argument of Lemma 5.1: Assume for contradiction that |SHR(Y )| � n.

This implies that for every c < c′ < c∗d, the following holds with probability

bounded away from zero: The d-th homology of Yd
Ä
n, c

′

n

ä
contains a d-cycle

that is not the boundary of (d+ 1)-simplex. But this contradicts Theorem 1.1.

We turn to the range c > c∗d. Recall that 1

(nd)
E[dimHd(Y ;R)] = gd(c) +

o(1), where

gd(c) = ctc(1− tc)d +
c

d+ 1
(1− tc)d+1 − (1− tc).

We need the following technical claim, which is proved in Appendix B.

Claim 5.3. For every c > c∗d, gd(c) is differentiable and

g′d(c) =
1

d+ 1
(1− tc)d+1.
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We now derive a lower bound on the density of the R-shadow. Fix some

c > c∗d, and assume toward contradiction that the event

(11)
1( n
d+1

) ∣∣∣∣SHR

Å
Yd

Å
n,
c

n

ãã∣∣∣∣ < (1− tc)d+1 − α

holds with probability bounded from zero for some α > 0. As in the proof of

Theorem 1.1, we employ a d-dimensional analog of the so-called evolution of

random graphs. We fix some small ε > 0 and start with the n-vertex complex

Y0 ∈ Yd
(
n, c−εn

)
. For i = 0, . . . ,m− 1, we obtain the complex Yi+1 by adding

a random d-face σi /∈ Yi to Yi. The parameter m is sampled randomly so

as to guarantee that Ym ∼ Yd
(
n, cn

)
. A standard concentration argument

implies that almost surely m = ε
d+1

(n
d

)
(1 + o(1)) with an exponentially small

probability of error.

Clearly, dimHd(Yi+1;R) = dimHd(Yi;R) + Zi, where Zi is the indicator

random variable of the event σi ∈ SHR(Yi). We condition on the event that (i)

Ym satisfies relation (11) and (ii) m = ε
d+1

(n
d

)
(1 + o(1)). By assumption and

by a previous comment, with probability bounded from zero both conditions

are satisfied. Since SHR(Yi) ⊆ SHR(Yi+1) ∪ {σi} for 0 ≤ i ≤ m, the densities

of SHR(Yi) are nondecreasing (up to −o(1) terms) and, in particular, SHR(Yi)

has density ≤ (1− tc)d+1−α+o(1). Consequently, under the above mentioned

conditioning, the random variable
∑
Zi is stochastically bounded from above

by a binomial random variable with ε
d+1

(n
d

)
(1 + o(1)) experiments and success

probability of (1 − tc)d+1 − α + o(1). By Chernoff’s inequality (see [16]), this

binomial variable is a.a.s. bounded from above by ε
d+1

(n
d

)
((1− tc)d+1 − α/2).

In conclusion, our assumption implies that with probability bounded from

zero,

dimHd(Ym;R)− dimHd(Y0;R) =
∑

Zi <
ε

d+ 1

Ç
n

d

å
((1− tc)d+1 − α/2).

On the other hand, by Theorem 1.3, a.a.s.,

dimHd(Ym;R)− dimHd(Y0;R) =

Ç
n

d

å
(gd(c)− gd(c− ε) + o(1)).

Since g′d(c) = 1
d+1(1− tc)d+1, this yields a contradiction when ε is sufficiently

small.

We next establish a matching upper bound. Fix some c > c∗d and assume

toward contradiction that

(12)
1( n
d+1

) ∣∣∣∣SHR

Å
Yd

Å
n,
c

n

ãã∣∣∣∣ > (1− tc)d+1 + α.

holds with probability bounded from zero, for some α > 0. Fix some ε > 0,

and consider, as above, an increasing sequence of random complexes Y0, . . . , Ym
with Y0 ∈ Yd

(
n, cn

)
and Ym ∈ Yd

(
n, c+εn

)
, where Yi+1 is created by adding a

random d-face σi /∈ Yi to Yi. Note that dimHd(Ym;R) − dimHd(Y0;R) ≥
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|{σ0, . . . , σm−1} ∩ SHR(Y0)|. Indeed, every σi in the shadow of Y0 contributes

a d-cycle that contains aside from itself only d-faces from Y0. Such a cycle is

therefore linearly independent of the other d-cycles.

By assumption, with probability bounded from zero, F := {σ0, . . . , σm−1}
is a random set of d-faces of size ε

d+1

(n
d

)
(1 + o(1)) and SHR(Y0) has density as

in (12). Consequently,

|F ∩ SHR(Y0)| > ε

d+ 1

Ç
n

d

å
((1− tc)d+1 + α/2)

holds with probability bounded away from zero, which yields a contradiction,

similarly to the previous case.

6. Concluding remarks and open questions

• We work throughout with R as the underlying coefficient ring. We suspect

that the threshold for the vanishing of the d-th homology does not depend on

the coefficient ring. Presumably the best place to start these investigations

is R = Z2.

• Here we view the phase transition in G = G(n, cn) at c = 1 as reflected in the

growth of the shadow. More traditionally, one considers instead the growth

of the graph’s connected components. This information can be conveniently

read off the left kernel of the graph’s vertices-edges boundary matrix. In

analogy, one may investigate the structure of the left kernel of ∂d(Y ) and the

(d− 1)-th cohomology group in Y = Yd
(
n, cn

)
. Here we found this group’s

dimension for every c, but much remains unknown about its structure.

• Kalai [17] introduced Q-acyclic complexes (or hypertrees) as high-dimen-

sional analogs of trees. These are sets of d-faces whose corresponding

columns in ∂d constitute a basis for the column space of this matrix. Grim-

mett’s Lemma [13] determines the local weak limit of a random tree. In

view of the role played by local weak limits in the study of Yd
(
n, cn

)
, we

ask: What is the local weak limit of random hypertrees?

• Many questions on a uniformly drawn random hypertree remain open: What

is the probability that it is d-collapsible? Its integral (d − 1)-th homology

is a finite group. How is its size distributed?

Consider the following random process: First pick a random ordering

σ1, . . . , σ( n
d+1)

of the d-faces. Now create a sequence of complexes that

starts with a full (d − 1)-skeleton and no d-faces. At each step we add

to the complex the next d-face according to σ that does not form a d-cycle

when added. This process ends after
(n−1
d

)
steps with a random hypertree

T . Equivalently, T is a min-weight hypertree where d-faces are assigned

random weights.
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Fix some ccol
d < c < c∗d, and let i ∼ Bin

Ä( n
d+1

)
, cn

ä
. The d-complex Y that

has a full (d − 1)-skeleton and the set {σ1, . . . σi} as its d-faces is precisely

Yd
(
n, cn

)
. By Theorem 1.1 and [5] we know that Y is a.a.s. not d-collapsible

and it does not contain d-cycles except, possibly, a constant number k of

boundaries of (d + 1)-simplices. Remove one d-face from each of these k

boundaries of (d+ 1)-simplices to obtain a complex Y ′ ⊆ Y that is acyclic

and not d-collapsible. Note that Y ′ is a subcomplex of T . Concretely, its

d-faces are exactly the first i−k d-faces that are placed in T . Consequently,

T is a.a.s. not d-collapsible.

Quite a few basic questions concerning such random hypertrees are open:

What is their local weak limit? How large is the integral (d−1)-th homology?

• We know that for c > c∗d, a d-cycle in Yd
(
n, cn

)
is either the boundary of

a (d + 1)-simplex or it has Ω(nd) faces, but many structural issues remain

unknown. The following phenomena are observed in numerical experiments,

but there is still no proof or refutation:

(i) All such big cycles contain all n vertices.

(ii) Consider an inclusion-minimal d-cycle C. Every (d − 1)-face that is

contained in a d-face of C must clearly have degree ≥ 2 in C, equality

being attained by closed manifolds. On the other hand, by a simple

degree argument, the average degree of such (d − 1)-faces is ≤ d+ 1.

In our experiments, this average degree in the d-cycles in Yd
(
n, cn

)
is

consistently close to d+ 1.

• We have determined here the density of the R-shadow of Yd
(
n, cn

)
for every

c > 0. It would be of interest to give a more detailed description of its

combinatorial structure.

Appendix A. Proof of Claim 3.3

Let T = (V,U,E) be a Poisson d-tree with parameter c, considered as a

bipartite graph with root o ∈ V . Namely, V (resp. U) is the set of vertices

of even (odd) depth. Let L := LT be the operator of T and L∗ its adjoint.

We follow a method used in [10] for adjacency operators of Galton-Watson

trees with finite first moment. By a characterization of essentially self-adjoint

operators [28], it is sufficient to show that ker(L∗ ± i) = 0.

A trim R of T is a finite subtree rooted at o, all leaves of which belong

to V . The fan-out of R is the maximal number of children that a leaf in R has

as a vertex in T .

Claim A.1. For every c > 0 and d ≥ 2, there exists a constant k = k(d, c)

such that almost surely a Poisson d-tree T with parameter c has a trim of fan-

out at most k.
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Proof. Let k be large enough so that
∑
m>k

e−ccm

m! dm < 1. Consider the

random d-tree in which the number of children of each vertex v at even depth

is determined as follows: We independently sample from Poisson distribution

Poi(c). If the sample is k or less, this is the number of v’s children. Otherwise,

v is childless, i.e., a leaf. In this branching process, the expected number of

grandchildren of a vertex v is
∑
m>k

e−ccm

m! dm < 1, and therefore it is almost

surely finite. If we do this process on T while it is being generated, we obtain

the desired trim. �

Corollary A.2. A Poisson d-tree T can almost surely be covered by

trims of fan-out ≤ k = k(d, c). That is, there exists a sequence R1 ⊂ R2 ⊂ . . .
of trims such that

(i) every vertex of T is in some Rj ; and

(ii) for every j, every leaf in Rj has at most k children in T .

Proof. Let R1 be the trim from the previous claim. The general case is

proved inductively by applying the same claim to the subtrees of T rooted at

the leaves of previous trims. �

We now turn to use the above criterion and show that a d-tree that is

covered by trims of bounded fan-out is essentially self-adjoint. Suppose that

L∗ψ = −iψ for some ψ ∈ `2(V ) in the domain of L∗. (The case +i is very

similar.) Namely, for every finitely supported function ϕ, 〈Lϕ,ψ〉 = 〈ϕ,−iψ〉.
As usual N(x) denotes the neighbor set of vertex x in T . We define a

function F (v → u) on pairs of neighbors v ∈ V, u ∈ U as follows:

F (v → u) := Im

ψ(v)
∑

v′∈N(u)

ψ(v′)

 .
We occasionally think of F as a flow. Concretely we note two key prop-

erties of F :

(i) the total flow into every vertex u ∈ U is zero, and

(ii) the total out of every vertex v ∈ V is |ψ(v)|2.

Indeed, for every u ∈ U ,

∑
v∈N(u)

F (v → u) = Im

 ∑
v∈N(u)

ψ(v)
∑

v∈N(u)

ψ(v)

 = 0.
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Also, for every v ∈ V ,

∑
u∈N(v)

F (v → u) =
∑

u∈N(v)

Im

ψ(v)
∑

v′∈N(u)

ψ(v′)


= Im

ψ(v)

∞ ∑
u∈N(v)

∑
v′∈N(u)

ev′ , ψ

∫
= Im [ψ(v) 〈Lev, ψ〉] = Im [ψ(v) 〈ev,−iψ〉] = |ψ(v)|2.

Two notations that we need are the following. The set of leaves in a trim

R is denoted ∆(R). Also, for v ∈ V , we denote by C(v) ⊆ U the set of v’s

children in T . It follows that for every trim R of T ,∑
v∈R∩V

|ψ(v)|2 =
∑

v∈R∩V

∑
u∈N(v)

F (v → u) =
∑

v∈∆(R)

∑
u∈C(v)

F (v → u).

Note that |F (v → u)| ≤ |ψ(v)|∑v′∈N(u) |ψ(v′)|. Consequently, by applying

Cauchy-Schwartz twice,∑
v∈R∩V

|ψ(v)|2 ≤
∑

v∈∆(R)

|ψ(v)|
∑

u∈C(v)

∑
v′∈N(u)

|ψ(v′)|

≤

Ñ ∑
v∈∆(R)

|ψ(v)|2
é1/2

Ö ∑
v∈∆(R)

Ñ ∑
u∈C(v)

∑
v′∈N(u)

|ψ(v′)|

é2
è1/2

≤

Ñ ∑
v∈∆(R)

|ψ(v)|2
é1/2Ñ ∑

v∈∆(R)

|C(v)|(d+ 1)
∑

u∈C(v)

∑
v′∈N(u)

|ψ(v′)|2
é1/2

.

By considering the sequence of trims with bounded fan-out from the previous

claim, we obtain∑
v∈Rj∩V

|ψ(v)|2

≤
»
k(d+ 1)

Ñ ∑
v∈∆(Rj)

|ψ(v)|2
é1/2Ñ ∑

v∈∆(Rj)

∑
u∈C(v)

∑
v′∈N(u)

|ψ(v′)|2
é1/2

.

Clearly,
∑
v∈Rj∩V |ψ(v)|2 → ‖ψ‖2 when j → ∞. On the other hand, let tj

be the depth of the set ∆(Rj). The right-hand side is bounded by a constant

times the sum of |ψ(v)|2 over vertices at depth at least tj . This is arbitrarily

small, since tj →∞ and ‖ψ‖ <∞.

Appendix B. Some technical proofs

In this appendix we prove Lemma 4.5, a technical claim that appears

implicitly in Theorem 1.1 and Claim 5.3. Figure 3 can help in following the
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general description of the proof that we now give. We seek to maximize f(t) :=

t + ct(1 − t)d − c
d+1

Ä
1− (1− t)d+1

ä
subject to t = e−c(1−t)

d
. The equation

t = e−c(1−t)
d

has the root t = 1, and for 1 > t > 0, it takes the form ψ(t) = c,

where

ψ(t) =
− ln t

(1− t)d
.

As we show, there is some 1 > tψ > 0 such that ψ is decreasing in (0, tψ) and

increasing in (tψ, 1). Therefore, the equation ψ(t) = c has at most two roots

in (0, 1), and we only need to find the largest number among f(1) = 1 − c
d+1

and at most two other values of f . We then observe that

(13) if t = e−c(1−t)
d
, then f(t) > f(1) if and only if ϕ(t) < 0,

where

ϕ(t) = (d+ 1)(1− t) + (1 + dt) ln t.

As implicitly stated in Theorem 1.1, and as we soon show, there is some 1 >

t∗d > 0 such that ϕ(t) is negative in (0, t∗d) and positive in (t∗d, 1). Consequently,

the relevant maximum of f occurs at t = 1 unless the equation ψ(t) = c has

a root in (0, t∗d). As we show, exactly one such a root, namely t = tc, exists

exactly when c > c∗d := ψ(t∗d).

We turn to fill in the details. Clearly, ψ(t) → ∞ when t → 1− (since

d ≥ 2), or t→ 0+. Also,

ψ′ = −1− t+ dt ln t

t(1− t)d−1
.

Consequently, ψ has a unique local extremum 1 > tψ > 0 that is a minimum.

We recall from [6], [5] that this minimum ccol
d = ψ(tψ) is the threshold for

d-collapsibility. It follows that in (0, 1) the equation ψ(t) = c has

(i) no roots when 0 < c < ccol
d ;

(ii) a single root t = tψ when c = ccol
d ; and

(iii) two roots t = t1(c), t = t2(c), satisfying t1(c) < tψ < t2(c) < 1 when

c > ccol
d .

To prove the claim in equation (13), note that if t = e−c(1−t)
d
, then

ϕ(t) = (d+ 1)(1− t)− (1 + dt)c(1− t)d

= (d+ 1)

Å
1− t− ct(1− t)d − c

d+ 1
(1− t)d+1

ã
= (d+ 1)

Å
1− c

d+ 1
− f(t)

ã
.

It is easily verified that ϕ(t)→ −∞ when t→ 0+. In addition, the Taylor

expansion of ϕ(t) at t = 1 yields that ϕ(t) = d−1
2 (1− t)2 +O((1− t)3). Hence
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Figure 3. Illustration of the proof of Lemma 4.5 for d = 2. This

is the qualitative picture for every d ≥ 2.

ϕ(t)↘ 0 when t→ 1−, since d ≥ 2. Also,

ϕ′ =
1

t
(1− t+ dt ln t) = − 1

(1− t)d−1
ψ′,

and since ψ′ vanishes exactly once at (0, 1), at tψ, it follows that ϕ has a unique

extremum in (0, 1), at t = tψ, which is clearly a maximum.

Our analysis of ϕ yields that as implicitly assumed in the statement of

Theorem 1.1, ϕ vanishes exactly once in (0, 1), at a point that we call t∗d.

Moreover, ϕ is negative in (0, t∗d) and positive in (t∗d, 1), and t∗d < tψ, where ϕ

takes its unique maximum value.

To complete the proof, note that ψ is decreasing in (0, tψ) and tψ > t∗d, so

the equation ψ(t) = c has a root in (0, t∗d) if and only if c > ψ(t∗d) = c∗d. By

definition this root is t = tc. �
We conclude by proving Claim 5.3.

Proof of Claim 5.3. Consider tc as a function of c, defined implicitly as

the smaller root of ψ(t) = c. We denote derivatives with respect to c by ′ and

find that

t′c =
1

ψ′(tc)
= − tc(1− tc)d+1

1− tc + dtc ln tc
.

By straightforward calculation,

g′d(c) = tc(1− tc)d +
1

d+ 1
(1− tc)d+1 + t′c(1− dctc(1− tc)d−1).
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Since c(1− tc)d = − ln tc, this can be restated as

g′d(c) = tc(1−tc)d+
1

d+ 1
(1−tc)d+1+t′c·

1− tc + dtc ln tc
1− tc

=
1

d+ 1
(1−tc)d+1. �
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