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In thiq paper we prove the following: let G be a graph with k edges, wihich js (k - l)-edge- 
connectd, and with all valences 3k k. Let 1 c r~ k be an integer, then (3 -tins a spanning 
subgraph H, so that all valences in H are ar, with no more than r~/r:] edges. The proof is 
based on a useful extension of Tutte’s factor theorem [4,5], due to JN&Z [3]. For other 
extensions of Petersen’s theorem, see [6,7, $1. 

Our graph-theoretic terminology is quite standard, generally following Berge 

[l]. We add the following conventions: a graph G = (V, E) has IV1 = IJ edges, and 
e = IEl edges. For A, B disjoint subsets of V we denote by e(A) the number of 
edges in E with both end-vertices in A, e(A, B) is the number of edges in H 
having orle vertex in A and ode iw B. Tke subgraph of G, spanned by A is 
denoted by (A). The set of neighbors in G., 13’ a vertex x E V is denoted by N(x). 
IN(X tht: valence of < is denot& by d(x). 

We sometimes add a subscript to the graph-theoretic function in order to clarify 

for which graph it is evaluated. 
Let f be a limifer on G, namely, an integer-valued function defined on V, so 

that &(x)af(x)~O (X E V). For A cr V define f(A) =LEA f(x). We define now 
two classes of spanning subgraphs of G, which #depend on F. 9 = 4 is the class of 
all spanning subgraphs H of G for which f(x) a &(x) (X E V) holds. % z= (J&f is the 
clrrss of all spanning subgraphs HI of G which satisfy cPH(x) of (X E V). Define 
Lv) to be the minimum of cXov (l’(;u)- &(x)) = f(V)-2cH over 41 WEE U(f) is 
defined as the minimum of cXev i&(x) -f(x)) = 2e, --f(V) over all NE Lzc. 

Let B = (S, T, U) be a decomposition of V into three subsets. Let h be the 
number of components C of ( v) for which f(C) + e(C, T) is odd. Define 

n(B,f)= h +f(T)-f(S)-2!e(7’)-e(T, U). 

The key lemma in proving our main theorem is the following extension of 
Tutte’s factor theorem [4 51, which is due to Lov&.z [3]. 

1, Let G =: (V, E) be a y-aph, and leir f bdz a limiter on G. 7’hen 
Wfl= U.fJ 3 max{rt(B, fl\ B = (S, 11, U) is a decmq.mitiosz of V into 3 subsets}. 
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2. The main theorem 

Theorem 2. Let G = (V, .E) be a (k - lj.-edge-connected graph so that d(x) 2 k for 
everyxEV, andlet 1Gr 2~ k be an integer. then G emtains a @xwuaing subgrgph H, 

so that dH(x) > t (x E V). and eH 6 [r+-Jkl . 

Proof. For u = k, the theorem is obvkus, so we assume 1 s r 6 k - 1. We have to 
show that n(B,f):s2 [re&l -f(V’J, t.vhere f(x) = I (XE V), for every I3 = 
(S, T, U), a 3-decomposition of V. 

Suppose first that B =:: (8, 0, V), ther n(&, fl= h. hJamely, n(i3, f)= 0 or 1, 
according to the parity of f(V) = r l v. Since d(x) 3 k for every x E V, we have 
3 3 4 kv and therefore 2 I’re/kl 3 2 [$rz~l = ru -t h, as needed. 

Now we show that if I!3 = (3, T, v) is a 34ecomposition of V different from 

(Ib, 8, VI, then 

Note that the square brackets are missing and this statement is stronger than 
that of the theorem. So we show 

h -i-f(T)--f(S) 
2re 

-2e(T)-e(T, U)<k-f(V). 

Substituting f(x) - r, and rearranging this is the same as: 

h +2r lTl+r [Ui-2e(T)-e(T, U)G?, 

or ; 

kh + 2kr ITI + kr 1 U( G 2re + 2ke(T) -I- ke(T, U). 

Since d(x) 2 k for every x E V, we have 

k ITIS 1 d(x)=:2e(T)+e(?‘, U)+e(S, T). 
xeT 

So instead of (1) we shall show: 

k(h -t r l~J)+2r(2e(T)+e(T, U)-t+S, T)) 

s 2re + 2kCIJ + ke(T, U) 

= 2r(e(S)+el:T)+e(UI+e(S, T)+e(S, U)+e(T, U)i 

+2ke(T; + ke(l: U). 

That is 

(1) 

k(rIU(+h) s 2re( U) -t- 2re(S, U) + ke(T, U) + 2(k - r)e(T) + 2ae(S). (2:! 
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ConLiider a 6zomponent C of (U). If f(C) +e(C, T) ii even, we sbw 

proving (2). 
Now we prove (3.1) and (3.2). For every component C of e(v), we have 

k [Cl s c d(x) = 2e(C) + e(C, I’) + eic”, S). 
xec 

(4) 

We multiply (4) by r and (3.1) follows. 
Since G is (k- l)sdge-connected, and U# V we have 

k- lGe(C, T)+e(C,S). 

We multiply (4) by r and add (5) to get: 

(5) 

k(r ICI + 1) - 1 <ILre(C) + (r + l)e(C, 7’) + (r + l)e(C, S), 

and since l<rsk-1, also 

k(rICI+l)-1d2re(C)+ke(CYT)+2re(C,S). (6) 

To prove (3.2) we show that if f(C) + e(C, T) is odd, then equality cannot hold in 
(6). If, on the contrary 

k(r ICI+ l)- l= 2r(e(C)+e(C, S))+ ke(C, T), 

then 

k(r IC + e(C, T) + 1) -- 1 = 2r(e(C) + e(C, S)) -t 2ke(C, T’). 

But this is impossible, because the right-hand side is even and the left-hand side is 
odd. This proves (3.2) and thz proof of Theorem 2 is complete. 

From Theorem 2 we infer ,a corollary on regular graphs: 

comlky 1. t G = (V, E) be a (k - l)-edge-connected, k-regular graph on v 
vertices, a& let 1 G r 6 k be an integer. If n, is even, lthen G contains a spanning 
subgmph which is r-regular. IjF rv is odd, then G contains o spanning subgraph in 
which a11 txrtkes have calenos r, except for oqe vertex who,se valence is r + 1. 

This corollary is an immediate consequence of Theorem 2: G has $kv edges SO 
re/k = $=v. A spalming subgraph in which all valences are > jr hais at leasx $rv 
edges, and the results follows. 
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