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In this paper we prove the following: let G be a graph with ¢; edges, which is (k - 1)-edge-
connected, and with all valences =k. Let 1=<r=<k be an integer, then (3 contains a spanning
subgraph H, so that all valences in H are =r, with no more than Treglk1 edges The proof is
based on a useful extension of Tutte’s factor theorem [4, 5], due to _ovasz [3]. For other
extensions of Petersen’s theorem, see [6, 7, 8].

1. Notations

Our graph-theoretic terminology is quite standard, generally following Berge
[1]. We add the following conventions: a graph G =(V, E) has |V|= v edges, and

=|E| edges. For A, B disjoint subsets of V we denote by e(A) the number of
edges in E with both end-vertices in A, e(A, B) is the number of edges in H
having orie vertex in A and one it B. The subgraph of G, spanned by A is
denoted by (A). The set of neighbors in G, of a vertex x € V is denoted by N(x).
[N(x)|, the valence of x, is denoted by d(x).

We sometimes add a subscript to the graph-theoretic functxon in order to clarify
for which graph it is evaluated.

Let f be a limiter on G, namely, an integer-valued functlon defined on V, so
that dg(x)= f(x)BO (xe V). For Ac V define f(A)=Y..4 f(x). We define now
two classes of spanning subgraphs of G, which depend on F. £ = 2 is the class of
all spanning subgraphs H of G for which f(x)=:d(x) (x€ V) bolds. U = %; is the
class of all spanning subgraphs H of G which satisfy dy(x)= f(x) (x € V). Define
L(#) to be the minimum of ¥, .v (f(x) = dy(x)) = f(V)—2¢y over all He Z. U(f) is
defined as the minimum of Y, .y (dy;(x)— f(x)) = 2e —f(V) over all He .

Let B=(S, T, U) be a decomposition of V into three subsets. Let h be the
number of components C of (U) for which f(C)+e(C, T) is odd. Define

n(B, f)= h+f(T)~f(S)~2e(T)~e(T, U).
The key lemma in proving our main theorem is the following extension of
Tutte’s factor theorem [4 5], which is due to Lovisz [3].
Theorem 1. Let G=(V,E) be a Traph, and let f be a limiter on G. Then
U() = L{f)=max{n(B, )| B=(S, T, U) is a decomposition of V into 3 subsets}.
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2. The main theorem

Theorem 2. Let G ={V, E) be a (k — 1)-edge-connected graph so that d(x)=k for
every x € V, and let 1=<r=<k be an inieger. then G contains a spanning subgraph H,
so that dy(x)=r (xe V), and ey <[reg/k].

Proof. For r =k, the theorem is obvious, so we assume 1<r=<k—1. We have to
show that n(B,f)=<2 [reg/k]—f(V), where f(x)=r (xeV), for every B=
(S, T, U), a 3-decoraposition of V.

Suppose first that B=(@, §, V), ther n(B,f)=h. Namely, n(B,f)=0 or 1,
according to the parity of f(V)=r-v. Since d{x)=k for every x€V, we have
¢=1 kv and therefore 2[re/k] =2[3rv] = rv-+}, as needed.

Now we show that if B=(S, T, U) is a 3-decomposition of V different from
0,0, V), then

e
n(B’ f) =2 "]‘(‘— re.

Note that the square brackets are missing and this statement is stronger than
that of the theorem. So we show

h+f(T)—f{S)—2e(T)—e(T, U) s%:f_f(v).
Substituting f(x)=r, and rearranging this is the same as:

h+2r |T|+r|U|—2e(T)—e(T, U)&gl-:f,

or .
kh +2kr |T|+ kr |(U|<2re + 2ke(T) + ke(T, U). 1)
Since d(x)=k for every x e V, we have

k|T|< Y d(x)=2e(T)+e(T, U)+e(S, T).

xeT

So instead of (1) we shall show:

k(h-+r|UD)+2r(2e(T)+e(T, U)+2(S, T))
<2re+2ke’T)+ ke(T, U)
=2r(e(S)--e(T)+e(U+e(S, T)+e(S, U)+e(T, U))

+2ke(T:+ ke(T, U).
That is

k(r|U+h)<2re(U)+2re(S, U)+ ke(T, U)+2(k —r)e(T)+2re(S). (2}
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Consider a component C of ”(»U); ¥ f(jC)—}}é(C, T) is even, we show .
krCl=2re(C)+2re(G S +ke(C, T » (,3,1,),,,

‘ k(r lcl+ 1)s2re(C)+2r¢(C. ; )+ ke(C, .
Summmg (3 1) and (3.2) for all o oomponents c of (U) we :shall obtam |
k(e IU]+h)s2ne(U)+2re(S, v +‘ke('r' v, | |

proving (2). ,
Now we prove G. 1) and (3. 2) For every component C of { U), we have

(3 2)

kicl< ¥ dx)= 2e(C)+e(C, T)+e(C, S). @

xeC

We multiply (4) by r and (3.1) follows.
Since G is (k- 1)-edge-connected, and U# V we have

k—1=<e(C, T)+e(C, S). ' )]
We multiply (4) by r and add (5) to get:
k(r|Cl|+1)—1=<2re(C)+(r+1)e(C, T)+(r + 1)e(C, S),
and since 1<r<k-1, also
k(r |Cl+1)—1=<2re(C)+ ke(C, T)+2re(C, S). (6)

To prove (3.2) we show that if f(C)+e(C, T) is odd, then equality cannot hold in
(6). If, on the contrary

k(r|Cl+1)—-1=2r(e(C)+e(C, S))+ ke(C, T),
then
k(r|C +e(C, T)+1)-1=2r(e(C)+e(C, S))+2ke(C, T).

But this is impossible, because the right-hand side is even and the left-hand side is
odd. This proves (3.2) and the proof of Theorem 2 is complete.
From Theorem 2 we infer a corollary on regular graphs:

Corollary 1. Let G=(V, E) be a (k—1)-edge-connected, k-regular graph on v
vertices, and let 1<r<k be an integer. If rv is even, then G contains a spanning
subgraph which is r-regular. If rv is odd, then G contains ¢ spanning subgraph in
which all vertices have valence r, except for one vertex whose valence is r+1.

This corollary is an immediate consequence of Theorem 2: G has 3kv edges so
relk =3rv. A spaxlning subgraph in which all valences are =r has at least 3rv
edges, and the results follows.

}
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