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Abstract

The representation of knots by petal diagrams (Adams et al. 2012) naturally defines a
sequence of distributions on the set of knots. In this article we establish some basic properties
of this randomized knot model. We prove that in the random n-petal model the probability
of obtaining every specific knot type decays to zero as n, the number of petals, grows. In
addition we improve the bounds relating the crossing number and the petal number of a knot.
This implies that the n-petal model represents at least exponentially many distinct knots.

Past approaches to showing, in some random models, that individual knot types occur with
vanishing probability, rely on the prevalence of localized connect summands as the complexity
of the knot increases. However this phenomenon is not clear in other models, including petal
diagrams, random grid diagrams, and uniform random polygons. Thus we provide a new
approach to investigate this question.

MSC 57M25, 60B05

1 Introduction

The study of random knots and links emerges from various perspectives, both theoretical and
applied. See [Eve17] for a survey of randomized knot models in the literature. We here pursue the
study of the Petaluma model, based on petal diagrams [ACD+15]. This model has the advantage
of being based on one random permutation, and it seems related to knotting phenomena arising
in biology and elsewhere. In a previous work [EHLN16, Eve16] we investigated the distribution
of finite type invariants in the Petaluma model. Here we return to some remaining fundamental
questions about this model, such as how many knots can appear and with what probabilities.

Figure 1: Petal diagrams with 3, 5, 7 and 9 petals.

Consider a petal diagram with an odd number 2n+1 of petals, as in Figure 1. Each assignment
of 2n + 1 heights to the 2n + 1 straight arcs above the multi-crossing point determines a knot.
Indeed, the knot type is well-defined by the relative ordering of the heights, through a smooth
curve in R

3 that projects to this diagram. The random variable K2n+1 is the knot type obtained
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from a uniformly random sequence of heights π ∈ S2n+1. These heights π(1), π(2), . . . correspond
to the straight arcs in the order they occur as one travels along the diagram.

For example, K3 is the unknot with probability 1, while K5 yields a trefoil knot with prob-
ability 1/12. This is obtained by the permutation π = (1,3,5,2,4) ∈ S5 and by its rotations and
reflections. The permutation (1,5,3,7,2,4,6) ∈ S7 yields the figure eight knot. Adams et al. give
more examples, and prove that all knots appear in this model.

Theorem 1 ([ACD+15]). For every knot K there exists an odd p ∈ N such that K can be realized
by a p-petal diagram with a permutation π ∈ Sp.

In fact, the knot K will then have a q-petal diagram for every odd q ≥ p. This follows easily
by inserting two consecutive heights to the permutation, without changing the knot type. The
smallest such p is denoted p(K), the petal number of K.

The efficiency of this representation is studied by relating it to regular knot diagrams, which
are planar projections that are one-to-one except for finitely many transverse double points. The
crossing number, denoted c(K), is the least number of such crossings in any diagram of K.

Example. Adams et al. [ACD+15] precisely compute the petal number for two infinite families of
knots.

1. Tn = the (n,n + 1)-torus knot, p(Tn) = 2n + 1, c(Tn) = n2 − 1.
2. Sn = the (2n − 1)-twist knot, p(Sn) = 2n + 1, c(Sn) = 2n − 1.
These explicit constructions are optimal for petal representations in the following sense.

Theorem 2 ([ACD+15, ACSF+15]). For every non-trivial knot K,

c(K) ≤ ⌊p(K)
2
⌋
2

− 1 .
If K is alternating, then

c(K) ≤ p(K) − 2 .
Here we consider the opposite direction and give a quantitative bound on the worst case, which

turns out to be only a constant factor away from the second example above.

Theorem 3. For every non-trivial knot K,

p(K) ≤ 2 c(K) − 1 .
Theorem 3 is proved in Section 2 via the analysis of an efficient algorithm that transforms a

regular knot diagram into a petal diagram with a suitable permutation. This, in particular, yields
a constructive proof of Theorem 1.

Theorem 3 shows that (2n−1)-petal diagrams represent at least as many knots as regular knot
diagrams with n crossings. Some explicit constructions are known to generate Ω(2.68n) different
n-crossing knots [Wel91]. Consequently,

Corollary 4. There are at least Ω(2.68n) distinct (2n − 1)-petal knots.
A natural question that applies to any random model of knots, asks for the probability of

generating the unknot. This goes back to the oldest models of random knots, by Delbruck [Del61]
and by Frisch and Wasserman [FW61], that are based on certain types of polygonal paths in Z

3 and
in R

3. The Delbruck–Frisch–Wasserman Conjecture asserts that the resulting knot is non-trivial
with high probability, i.e., the probability of the unknot decays to zero as the number of steps grows.
This was positively settled in various models by finding small localized connected summands in
the prime decomposition of the knot [SW88, Pip89, SSW92, DPS94, Dia95]. Similar reasoning
worked for another model, based on random planar diagrams [Cha17]. However, we don’t expect
this behavior of the prime decomposition in the Petaluma model, and hence we have to use another
knot invariant.
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The Casson invariant c2(K) is the coefficient of x2 in the Alexander-Conway polynomial
CK(x) = 1 + c2x2 + . . . [Lic97]. It is also the unique second order invariant of knots, up to affine
transformations [CDM12]. In the Petaluma model we showed E[c2(K2n+1)k] = µkn

2k +O(n2k−1),
and obtained formulas for the normalized limiting moments µk [EHLN16]. However, it is impossi-
ble to conclude that with high probability c2 does not vanish based solely on finitely many limiting
moments [KN77]. Here we overcome this difficulty.

Theorem 5. For every n ∈ N and v ∈ Z,
P [c2 (K2n+1) = v] ≤ 8

n1/10
.

Consequently, for every knot K,

P [K2n+1 =K] n→∞ÐÐÐ→ 0 ,

and in particular, K2n+1 is knotted with high probability.

Theorem 5 is proved in Section 3. Our approach involves the analysis of the formulas for the
Casson invariant and for the linking number, evaluated on random knots and links, together with
a simple coupling argument. As these invariants are given by summation over all crossings, we
show that a small perturbation of the heights’ ordering is likely to spread their distribution over
many values, and deduce that they cannot be too concentrated.

In our proof, we establish a similar bound, P [lk (L2m,2n) = v] ≤ 6/√min(m,n), for the linking
number of a random (2m,2n)-petal link. See Section 3 for precise definitions and statement.

Our approach to the Delbruck–Frisch–Wasserman conjecture is different than those previously
applied to other constructions of random knots, as it doesn’t rely on establishing the presence
of small connected summands. Indeed, the occurrence of such summands seems less likely in
the Petaluma model, where the typical “step-length” is comparable to the diameter of the whole
curve. We thus expect our methods to extend to other well-studied knot models, in which local
entanglements are similarly believed to be rare.

For example, two random permutations π,σ ∈ Sn define a knot via an n×n grid diagram [Bru97,
Cro98]. See also [EHLN16]. It is very plausible that an adaptation of our argument, based on per-
turbing one of these permutations, would yield a proof of the still-open Delbruck–Frisch–Wasserman
conjecture in this setting. Another case in point is Millett’s uniform random polygon [Mil00] with
n segments, where the spatial confinement to the cube seems to decrease local knotting, and the
conjecture is yet to be verified.

Further discussion and open questions appear at the end of each section.

2 Petal Number and Crossing Number

We first give a simple proof of p(K) < 4c(K), and then improve it to p(K) < 2c(K) with a more
technical argument.

Proof of p(K) < 4c(K). The proof refines the construction of petal diagrams by Adams et al.
[ACD+15]. Basically, we preprocess the planar embedding of a minimal-crossing knot diagram,
and then run their algorithm.

Consider a knot diagram with n crossings. Travel along the knot diagram starting from some
base point B. Mark each crossing as ascending (A) or descending (D), depending on whether its
lower or upper strand is visited first. See Figure 3A. Note that if all the vertices have the same
type then K is the unknot.

This yields two finite sets of points in the plane which can be separated by a generic simple
closed curve C. We assume that C passes through B, avoids all the crossing points of the diagram,
and crosses it transversely finitely many times. It simplifies the construction to assume that the
point at infinity lies on C, either by choosing it accordingly or by applying an isotopy of the
diagram in S2.
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Let E be any edge of the knot diagram, viewed as a 4-regular plane graph. We claim that the
separating curve C can be chosen so that it does not intersect E more than twice. Indeed, if they
intersect three times, then the local operation shown in Figure 2 keeps A and D separated and C

connected. Note that this is the only possible configuration of three adjacent intersection points
on E, up to rotations and reflections. If one of them is the base point B then we can let the new
curve C pass through it again. Repeating for all 2n edges as needed, C intersects the knot at ≤ 4n
points.

The rest of the construction is almost unchanged from [ACD+15], and we briefly repeat its main
steps. The reader is referred to [ACD+15] for more details and illustrations.

1. Isotope the plane diagram so that C is the y-axis, ascending crossings have positive x-
coordinate, and descending crossings have negative x-coordinate.

2. Further isotope the knot diagram so that for ∣x∣ ≤ 1 it consists of an even number of horizontal
segments, intersecting the y-axis.

3. Start at B = (0, y0) and travel along the knot diagram. The point B and the other p

intersection points (0, y1), . . . , (0, yp) cut the knot into p + 1 arcs. Denote yp+1 = y0.
4. Lift the diagram to R

3 so that above (0, yk) it remains a straight segment z = kx for ∣x∣ ≤ 1,
and the angle arctan(z/x) is non-decreasing within each arc.

5. Instead of lifting B to (0, y0,0), with two half segments to (1, y0,0) and (−1, yp+1,−(p + 1)),
connect these two points directly by a straight line segment.

Note that step 4 preserves the knot type thanks to the condition on the A and D crossings. Indeed,
by the choice of line segments between arcs and lifting within them, z/x is increasing throughout
our travel along the knot. Since x > 0 in each ascending point, the z-coordinate of the lifted curve
rises between its two visits to such point. The case of decreasing points is similar.

It follows from the construction that the projection of the lifted knot along the y-direction to
the xz-plane yields a single multi-crossing point at the origin. Moreover, the projected curve has(p− 1)/2 petals contained in the first quadrant, (p− 1)/2 petals in the third quadrant, and one fat
petal encompassing the fourth quadrant. This is a petal diagram with p < 4n petals.

To summarize, the construction in the above proof underlies the following petal algorithm,
cf. [ACSF+15], representing a knot by a petal diagram given a regular diagram.

▸ Travel along the diagram starting at some point B, and identify crossing types in {A,D}.
▸ Choose a generic curve C, containing B, separating A’s from D’s.

▸ Travel along C and label with 1, . . . , p all intersections with the diagram other than B.

▸ Travel again along the diagram and record the ordering of the labels as π ∈ Sp.

Remark. By the above argument, in the third and fourth steps one has to travel along the curve C
starting from the point at infinity, and along the knot diagram starting from the base point B.

1

2

3

E

C

;

1 2

3

E

Figure 2: Reducing intersections. The cyclic ordering of parts of C is marked by 1,2,3.
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However, as observed in [ACSF+15], the resulting knot type is preserved under rotations of π from
both directions: Kp(π) = Kp(π ○ ρ) = Kp(ρ ○ π) where ρ(x) = (x + 1)mod p. It follows that these
two starting points can be chosen arbitrarily.

We have shown that there always exists such a C with at most 4n intersections. Now we
improve the bound by choosing C even more efficiently.

Proof of p(K) < 2c(K). The upper bound is derived by better controlling the number ∈ {0,1,2} of
intersection points on each edge. Since the curve C is separating, an edge between two vertices of
type A and D contributes one point of intersection. We construct C more carefully, such that the
edges that are disjoint from it can be at least as frequent as those with two intersection points.

Consider a knot diagram of K with n crossings, not necessarily one that realizes the crossing
number. As before, we view K as a 4-regular plane graph with a base point B on one edge, and
vertices of type A or D, as in Figure 3A.

It is sufficient to prove p(K) < 2n for the case of 3-edge-connected diagrams, ones that re-
main connected whenever 2 edges are removed. Otherwise, find a 2-edge cut that disconnects the
diagram. It follows that K is a connected sum K1#K2 with diagrams of n1 and n2 crossings
respectively, where n1 + n2 = n. By the sub-additivity of petal numbers [ACD+15, Theorem 2.4]
and induction on n, we have p(K) < p(K1) + p(K2) < 2n1 + 2n2 = 2n. We note that if K is prime
and given by a diagram with c(K) crossings then it is already 3-edge-connected.

As usual, the vertices of the dual graph K ′ correspond to the faces of the diagram, and edges
correspond to edges. K ′ is simple, without loops and multiple edges, since the knot diagram is
3-edge connected. It is also bipartite since the diagram is 4-regular and planar, so that its faces
admit a checkerboard coloring.

We define a subgraph G of K ′, with the same set of vertices, whose edges are those that
correspond to the A-D edges in the diagram. Denote by 2m the number of edges as this number
must be even. Recall that we are assuming K is nontrivial, and so m > 0. Note also that there
is an even number of A-D edges around each face of the knot diagram, hence the vertices of G
have even degrees. G is planar, simple and bipartite since K ′ is. See Figure 3B for an example of
such G.

Let H be a connected component of G with k > 0 edges, which implies k > 1 by the above. It is
a corollary of Euler’s formula that the number of vertices and edges in a connected simple bipartite
plane graph satisfy the relation 2v ≥ e + 4, since each face has at least four sides. Hence H has at
least k/2 + 2 vertices, and a spanning tree with at least k/2 + 1 edges.

The union of spanning trees for all such H ’s yields a forest F in G with at least m + 1 edges.
By adding at most n −m edges of type A-A or D-D, we complete F to a spanning tree T of the
whole (n + 2)-vertex graph K ′.

We now describe how to make sure that either G or T contains the edge that corresponds to the
base point. If it is an A-D edge then we are fine as G contains it. If its two adjacent faces are in
different connected components of G, then we can pick this edge when choosing T . Otherwise, we
throw this edge into G even though its type is A-A or D-D, so that G has 2m+1 edges. Repeating
the above computation with 2m+1 in place of 2m shows that in fact F has ≥m+2 edges. Therefore
at most n −m − 1 further A-A or D-D edges were needed to construct T . See Figure 3B again for
an example of this latter scenario.

In conclusion, G∪T is connected and spans the dual graph K ′, with 2m edges of type A-D and
at most n −m edges of type A-A or D-D.

We construct C so that it intersects the knot diagram exactly in the edges corresponding
to G ∪ T . We start by putting one small line segment across every A-D edge, and two small
line segments across every A-A or D-D edge in G ∪ T , as in Figure 3C. The total number of line
segments is at most 2m ⋅ 1 + (n −m) ⋅ 2 = 2n.

Since an even number of line segments emanate into each face, we can match their tips to each
other without crossings, say by connecting adjacent ones. We have thus separated the A’s from
the D’s by a set of disjoint embedded circles. See Figure 3D.

Different circles may be cut and reconnected together via the local moves )
(

↭ ) ( as long as
they pass through a common face. Since the graph G∪T connects all faces of the diagram, we can
perform such moves until we end up with one long circle C, as in Figure 3E.
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(A) Assigning A/D types to n = 10 crossings (B) The dual subgraph G with m = 5 [solid],
with respect to the base point B. an edge through B, extension to T [dashed].
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(C) Putting 18 line segments by G ∪ T , (D) Matching adjacent segment tips in each
10 ⋅ 1 for A-D edges, 4 ⋅ 2 for A-A / D-D. face yields a circle set.
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(E) Performing suitable )
(

↭ ) ( moves (F) Labeling intersections by C yields π =
leads to C, a separating curve. 1,3,5,8,11,2,17,14,12,15,6,13,7,9,10,4,16.

Figure 3: Different stages of the construction in the proof of Theorem 3. Here K = 31#41.
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Since the curve C intersects each A-D edge once and each A-A or D-D edge twice, it separates
the ascending and descending crossings. By construction, C intersects the knot at ≤ 2n points, and
visits both the base point and the point at infinity if specified. We apply to it the algorithm by
Adams et al. as above. See Figure 3F.

Discussion. Several questions remain open.

1. How tight is Theorem 3? It is tight for c(K) = 3 or 4, but this is presently known in general
only up to a factor of two, by Theorem 2.

2. As observed in Corollary 4 there are at least exponentially many distinct n-petal knots. Is
this asymptotic estimate tight? We cannot, at present, rule out the possibility that the
answer is, in fact, exp (Ω(n logn)).

3. What is the typical crossing number of K2n+1 in the Petaluma model? By Theorems 2-3, the
crossing number of a knot is between linear and quadratic in its petal number.

Experiments by the authors and by Adams and Kehne [AK16, Keh16] indicate that the
hyperbolic volume of K2n+1 is typically of order n logn, which yields a similar lower bound
for the typical c(K2n+1). See [DHO+14] for experiments on the hyperbolic volume and the
number of crossings in a different model.

3 Petaluma Knots are Knotted

The proof of Theorem 5 relies on an analogous and easier statement concerning the linking number
of 2-component links in the Petaluma model.

A random 2-component link L2m,2n is obtained from a petal diagram as in Figure 5B, with 2m
and 2n petals in the black and grey components respectively. A uniformly random permutation
π ∈ S2m+2n determines the height of the arcs above the center point.

Recall that the linking number of a 2-component link L can be defined in terms of a link diagram
of L as the sum of crossing signs: lk(L) = 1

2
(# −# ) where only crossings between the two

components are counted. In our previous work we found the limiting distribution of the linking
number in the Petaluma model [EHLN16].

The analogue of Theorem 5 for 2-component links is the following bound.

Theorem 6. For every m,n ∈ N and v ∈ Z,
P [lk (L2m,2n) = v] ≤ 6√

min(m,n) .
We shall use more than once in our proofs the following classical result by Erdős, known as the

Littlewood–Offord problem.

Theorem 7 ([Erd45]). Let a1, . . . , at ∈ R. At most ( t

⌊t/2⌋
) of the 2t sums {∑i∈I ai ∶ I ⊆ {1, . . . , t}}

are contained in any open interval of length mini ∣ai∣.
In the language of probability, if one of the 2t sums is sampled uniformly at random, then it is

contained in such an interval with probability at most ( t

⌊t/2⌋
)/2t ≤ 1/√t.

Proof of Theorem 6. Consider a random 2-component link L2m,2n. Denote the 2m and 2n straight
arcs at the center of the petal diagram by I = {1, . . . ,2m} and J = {2m+1, . . . ,2m+2n} respectively.
As usual, let π ∈ S2m+2n be the random heights of these arcs, and denote for brevity lk(π) =
lk (L2m,2n(π)). Perturb the petal diagram near the center point to obtain a regular link diagram.

By the crossing signs formula for the linking number,

lk(π) = 1

2
(# − # ) = 1

2
∑
i∈I

∑
j∈J

(−1)i+j ⋅ ⎧⎪⎪⎨⎪⎪⎩
+1 π(i) > π(j)
−1 π(i) < π(j)

where the (i, j) term corresponds to the crossing of arc i from the first component and arc j from
the second component. The sign of such a crossing depends on the heights π(i), π(j) of these two
arcs, and also on their orientations as determined by the parity of i and j, see Figure 5B.

7



The proof of Theorem 6 goes by perturbing the permutation π with m + n swaps, which are
transpositions of arcs with adjacent heights, such as π′ = (1 2)○π. By the above formula, the effect
of such swaps is ±1 for a mixed pair of arcs, with one arc from each components, and 0 otherwise.
The contributions of disjoint swaps are additive.

We proceed by the following procedure. We first pick π uniformly at random from all (2m+2n)!
permutations. Then we obtain π′ from π by swapping, via a random subset of {(1 2), (3 4), . . . },
uniformly chosen from all 2m+n subsets. Note that if π is uniformly distributed then so is τ ○ π
for any fixed τ . Therefore, the distribution of π′ is a mixture of uniform distributions, which is
uniform as well.

Starting from lk(π), each mixed pair contained in this random subset changes the linking
number by ±1. Therefore, the probability that lk(π′) attains a given value v is bounded by
Theorem 7, in the easy special case where all ai = ±1. If there are t mixed pairs in π then
P [ lk(π′) = v ∣ t ] ≤ 1/√t.

It is hence useful to derive a lower bound on t, the number of mixed pairs of arcs out of all
m + n pairs under consideration. Lemma 8 below claims that the probability of having less than
min(m,n)/2 mixed pairs is at most 20/min(m,n).

Finally, we divide into two cases, according to whether or not t ≥ min(m,n)/2. Applying the
union bound,

P [lk(π′) = v] ≤ 1√
min(m,n)/2 +

20

min(m,n) ≤
2 + 4√

min(m,n)
where we use the observation that the proposition is trivially true for

√
min(m,n) ≤ 5.

Lemma 8. Let I and J be two disjoint non-empty sets of cardinality 2m and 2n respectively. Let
E = (e1, . . . , em+n) be a random matching of I ∪J . Then the probability that less than min(m,n)/2
edges in the matching connect elements of I and J is at most 20/min(m,n).
Proof. Denote by Z the count of edges that mix I and J , meaning that they connect an element of
I with an element of J . Chebyshev’s inequality for Z will be sufficient for our argument [Ros09].
We estimate the expectation and variance of Z. Denote Z = Z1 + ⋅ ⋅ ⋅ + Zm+n where Zi = 1 if the
edge ei is mixed and 0 otherwise.

E[Zi] = 2m ⋅ 2n
(2m+2n

2
) ≥

2mn

(m + n)2 ⇒ E[Z] ≥ 2mn

m + n

Note that we may assume m,n ≥ 20, as otherwise the lemma clearly holds.

V [Zi] = 4mn

(2m+2n
2
) −
⎛
⎝

4mn

(2m+2n
2
)
⎞
⎠
2

≤ 4mn

2(m + n)2 (1 − 1

2(m+n)
) ≤

2mn

(m + n)2 ⋅ (79
80
) ≤

3mn

(m + n)2
In the covariance of Zi and Zj for i ≠ j the terms of order m2n2/(m+n)2 cancel, and one can show
by similar estimates

COV [Zi, Zj] = 2 (2m
2
)(2n

2
)

3 (2m+2n
4
) −

(4mn)2
(2m+2n

2
)2 ≤

14m2n2

(m + n)5
Therefore

V [Z] = m+n

∑
i=1

V [Zi] +∑
i≠j

COV [Zi, Zj] ≤ 3mn

m + n
+

14m2n2

(m + n)3 ≤
10mn

m + n

By Chebyshev’s inequality,

P [Z ≤ min(m,n)
2

] ≤ P [Z ≤ E[Z]
2
] ≤ 4V [Z]

E[Z]2 ≤
10(m + n)

mn
≤ 20

min(m,n)
as required.
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;

Figure 4: Smoothing and taking outside the highest two strands in a petal diagram.

The proof of Theorem 5 goes by random arc swaps as well, and makes use of the notion of
smoothing. By properties of the Alexander–Conway polynomial, the effect of a crossing change
on the Casson invariant is given by the linking number of the smoothing of that crossing, which
is the 2-component link obtained from reconnecting the two strands. This can be summarized by
the relation c2( ) − c2( ) = lk(Á¹) where the rest of the diagram is the same.

Let π, τ ∈ S2n+1 where τ = (t t + 1) is an adjacent transposition. Consider the smoothed link
L(π, τ) obtained from the knot K2n+1(π) by reconnecting the two arcs at heights t and t+ 1. The
following lemma shows that L(π, τ) has a petal representation which is closely related to that of
the given knot.

For such π and τ we denote d = ⌊∣π−1(t + 1) − π−1(t)∣/2⌋. In other words, d is half the distance
between the locations of t and t + 1 in π.

Lemma 9. For any π ∈ S2n+1 and a transposition τ = (t t + 1) ∈ S2n+1, the smoothed link L(π, τ)
is given by L2m,2(n−m)(πt) for some πt ∈ S2n where m = d or n − d.

Moreover, if π is uniformly random, then the conditional distribution of the smoothed link given
the value of m is the same as L2m,2(n−m)(σ) for uniform σ ∈ S2n.

Proof. Observe that knots and links given as petal diagrams are invariant under vertical rotation,
e.g. K2n+1(π) =K2n+1(ρ ○ π) where ρ(i) = (i + 1)mod (2n + 1). Thus we may assume without loss
of generality that t = 2n, so that the smoothing takes place between the two highest arcs in R

3.
Smoothing the top two arcs might introduce new crossing points to the diagram, in addition to

the single multi-crossing point. However, since the smoothed arcs are above the rest, they can be
taken outside, to the top part of the diagram, as demonstrated in Figure 4. This operation creates
a petal diagram of the two-component link L(π, τ), with two large outer petals.

In order to study the permutation of the resulting petal link diagram, we equivalently describe
the smoothing using the two steps shown in Figure 5. First, we take outside the highest arc as
in Figure 5A. Now, the arc that is at height 2n can be any of the remaining 2n arcs above the
center. Consider the unique petal continuing that arc in the top part of the petal projection. The
smoothing by τ = (2n 2n + 1) is now performed by reconnecting this petal with the large outer
petal. These are the dotted petals in Figure 5B.

The two components have 2m and 2(n −m) petals, where m depends on which inner petal
participates in the smoothing. Starting from the outer petal in Figure 5A, we traverse the curve
until we reach the smoothing, at the inner petal adjacent to the arc at height 2n. The inner
petals are visited from left to right, and each one corresponds to two entries of π. The number of
petals in this component is hence half the distance between the locations of 2n and 2n + 1 in the
permutation π. Explicitly, m = d or n − d where d = ⌊∣π−1(2n + 1) − π−1(2n)∣/2⌋.

For example, if the heights of the original knot are given by π = (2,6,10,4,9,1,3,11,8,7,5)
and τ = (10 11), then m = ⌊∣8 − 3∣/2⌋ = 2 and the two resulting components have height sequences(4,9,1,3) and (8,7,5,2,6,10), which concatenate into π10.

Note that if the locations of 2n and 2n + 1 are adjacent in π, then d = 0 and the smoothing
takes place within the big loop in Figure 5A. This edge case yields a two-component link with 2n
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(A) 2n + 1 → 2n petals (B) 2n → (2m,2(n −m)) petals
Figure 5: Manipulations of petal diagrams. (A) The solid line is a 2n-petal
diagram. It is obtained from a diagram with 2n + 1 petals by replacing the
highest arc, marked by a dotted line, with the big outer petal. (B) The black
and gray solid lines are a petal diagram of a two-component link. It is obtained
from the 2n-petal knot diagram with the two dotted segments, having the same
multi-crossing.

and 0 petals, where the 0-petal component is a disjoint unknot. We remark that this special case
can be simplified further to 2n− 1 petals, but we regard it as a 2n-petal link, to be consistent with
the general case.

Suppose that the locations of 2n and 2n + 1 in π are fixed, while the other entries of π are
uniformly random among the (2n − 1)! possibilities. Then m is also determined, and so is the
location of 2n in the permutation π2n that describes the resulting (2m,2(n−m))-petal 2-component
link, but the other 2n − 1 entries of π2n are uniformly random.

We claim that for such π the distribution of the smoothed link L2m,2(n−m)(π2n) is the same
as L2m,2(n−m)(σ) where σ ∈ S2n is uniform. Indeed, let σ(i) = (π2n(i) + j) mod 2n, where j ∈{1,2, . . . ,2n} is uniformly random and independent of π. Such a rotation preserves the link type
as mentioned above, but the resulting permutation becomes uniform in S2n.

It follows that if π ∈ S2n+1 is uniformly random and we condition on the implied value of m,
then the smoothed (2m,2(n −m))-petal link is distributed exactly as in the Petaluma model.

The following lemma explores the effect of swapping several pairs of adjacent arcs in a petal
diagram on the Casson invariant. We successively apply the relation c2( )−c2( ) = lk(Á¹), and
we have to account for the effect of previous swaps on each linking number.

Lemma 10. Let π′ ∈ S2n+1 and let π′′ = τ1 ○ ⋅ ⋅ ⋅ ○ τk ○ π′, where τi = (ti ti + 1) are k disjoint swaps
of consecutive numbers. Then

c2(K2n+1(π′′)) − c2(K2n+1(π′)) = k

∑
i=1

ε(π′, τi) lk(L(π′, τi)) + ∑
1≤i<j≤k

δ(π′, τi, τj)
where ε(π′, τi) = ±1 and ∣δ(π′, τi, τj)∣ ≤ 1.
Proof. Since the variation of the Casson invariant with respect to a crossing change is the linking
number of its smoothing,

c2(K2n+1(τ1 ○ π′)) − c2(K2n+1(π′)) = ±lk(L(π′, τ1))

10



where the sign is determined by the relative orientations of the swapped arcs. Observe that the
linking number corresponding to the next swap might depend on whether the current one takes
place or not, even though the swaps are disjoint,

lk(L(τ1 ○ π′, τ2)) − lk(L(π′, τ2)) ∈ {−1,0,1} .
Indeed, the effect of one crossing change on the linking number of a future smoothing is ±1 or 0
depending on whether one or two branches of the smoothing occur at the crossing. Two successive
swaps yield

c2(K2n+1(τ1 ○ τ2 ○ π′)) − c2(K2n+1(π′)) = ±lk(L(π′, τ1)) ± lk(L(π′, τ2)) + δ(π′, τ1, τ2)
and the general case of k swaps follows by iteration.

Lemma 10 will be applied in the proof of Theorem 5 with a random permutation and a random
set of swaps. Similar to the linking number in Theorem 6, we will show that for almost all
permutations, the Casson invariant avoids any particular value for almost all swap sets. In order
to track the effect of potential swaps, the terms in the first sum of Lemma 10 will have to be larger
than the second sum. The following lemma will supply us with many such potential swaps with
large linking numbers.

Lemma 11. Let π ∈ S2n+1 be uniformly random, and let k ≤ n/8. Then, the probability that∣lk (L (π, τ))∣ < 2k2 for more than 7k of the following 8k swaps

τ ∈ {(1 2), (3 4), . . . , (16k−1 16k)}
is at most 3/k + 96k2/√n.
Proof. Denote τi = (2i − 1 2i) for i ∈ {1, . . . ,8k}. By Lemma 9, the two components of L(π, τi)
have 2mi and 2(n−mi) petals, where either mi or n−mi is half the distance ∣π−1(2i)−π−1(2i−1)∣.
By Lemma 12 below, applied with N = 2n+ 1 and K = 8k, the probability that n/4 ≤mi ≤ 3n/4 for
less than 2k swaps is at most 3/k. We hence proceed assuming at least 2k balanced links, with the
number of petals for each component bounded below by min(mi, n −mi) ≥ n/4.

For each balanced link, we apply Theorem 6 and conclude that the probability of lk(L(π, τi))
attaining any particular value is at most 6/√n/4 = 12/√n. Therefore, the probability of having a
small link, with ∣lk(L(π, τi))∣ < 2k2, is at most 48k2/√n.

We need to show that with high enough probability no more than k of these 2k links are
small. Note that these linking numbers might be strongly correlated. However, Markov’s in-
equality [Ros09] guarantees that if each of 2k events occurs with probability at most p, then the
probability that more than k of them occur is at most 2p. This implies that ∣lk(L(π, τi))∣ < 2k2 for
more than k of the 2k links with probability at most 96k2/√n.

The lemma follows by the union bound on having less than 2k balanced smoothed links and
having more than k small links. In the complementary case, we have k swaps as desired.

Lemma 12. Let π ∈ SN be uniformly random, and K ≤ N/2. The following event holds with
probability at most 24/K:

#{i ∈ {1, . . . ,K} ∶ N
4
≤ ∣π−1(2i)− π−1(2i − 1)∣ ≤ 3N

4
} < K

4

Proof. Let Z be the quantity counted in the lemma. As in the proof of Lemma 8, we can use
Chebyshev’s inequality for Z. Denote Z = Z1+⋅ ⋅ ⋅+ZK where Zi = 1 if i is counted and 0 otherwise.

Note that the interval [N/4,3N/4] contains between (N − 1)/2 and (N + 2)/2 integers, and
includes ∣π−1(2i) − π−1(2i − 1)∣ with probability at least half. Therefore E[Zi] ≥ 1/2 so that
E[Z] ≥K/2. Trivially V [Zi] ≤ 1/4. By similar counting arguments we estimate for i ≠ j,

COV [Zi, Zj] ≤ (N + 2)/2
N − 1

⋅
(N + 2)/2
N − 3

− (1
2
)2 ≤ 2.5

N
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where we used the fact that for N ≤ 48 the lemma clearly holds. In conclusion,

V [Z] ≤ K ⋅
1

4
+K2 ⋅

2.5

N
≤ 3K

2

and by Chebyshev’s inequality,

P [Z ≤ K

4
] ≤ P [Z ≤ E[Z]

2
] ≤ 4V [Z]

E[Z]2 ≤
24

K

as required.

Finally, we prove Theorem 5, establishing P [c2 = v] ≤ 8/ 10
√
n. As mentioned above, the main

idea of the proof is swapping certain entries of π ∈ S2n+1, such that with high enough probability
many of the potential swaps change c2 significantly. Performing a random subset of such swaps,
we use the Littlewood–Offord bound on the probability that these changes add up to a value close
to v. If they don’t then we show that c2 ≠ v even after taking into account the error term coming
from pairwise dependencies.

Proof of Theorem 5. Let π ∈ S2n+1 be uniformly random. Consider the 8k swaps (1 2), (3 4),(5 6), . . . , (16k−1 16k) where k = ⌈ 5
√
n/8⌉. We modify π by a random subset of these swaps,

uniformly picked from all 28k subsets. Clearly, the resulting permutation, denoted π′′, is still
uniformly random.

To analyze this procedure, it is convenient to perform/ the swaps in a certain order. A swap τ

is called big if ∣lk(L(π, τ))∣ ≥ 2k2. We perform big swaps after the other ones. Lemma 11 shows
that only with probability smaller than 3/k + 96k2/√n we wouldn’t have at least k big swaps.

Denote by π′ the intermediate permutation after the first 7k potential swaps for π, and before
the last k potential big ones τ1, . . . , τk that will eventually yield π′′. As we have made at most 7k
crossing changes since we identified the big swaps, ∣lk(L(π′, τi))∣ ≥ ∣lk(L(π, τi))∣ − 7k. Assuming
k ≥ 7, this means ∣lk(L(π′, τi))∣ ≥ k2 for all big swaps. Note that if k < 7 then 8/ 10

√
n is larger than

one, and the theorem is trivially true.
We apply Lemma 10 to the last k potential swaps, that yield π′′ from π′:

c2(K2n+1(π′′)) = c2(K2n+1(π′)) + k

∑
i=1

Xiε(π′, τi) lk(L(π′, τi)) + ∑
1≤i<j≤k

XiXjδ(π′, τi, τj)
where Xi = 1 if the i-th big swap took place, and 0 otherwise. Here c2(K2n+1(π′)) is some
constant that doesn’t depend on the last k swaps. We then apply Theorem 7 to the first sum,
with ∣ai∣ ≥ k2. After adding this sum, c2 falls in any interval (v − k2/2, v + k2/2) with probability
smaller than 1/√k. The magnitude of the second sum is at most k(k − 1)/2 < k2/2. Hence v is still
attained with probability at most 1/√k.

To conclude, P [c2 (K2n+1) = v] is bounded by the union of two events: having less than k big
swaps, and otherwise actually attaining v for the value of c2 after swapping. With n ≥ 810 and
k = ⌈ 5

√
n/8⌉ ≥ 10

√
n, the probabilities add up to at most

P [c2 (K2n+1) = v] ≤ 3

k
+
96k2√

n
+

1√
k
≤ 3 + 96 /72 + √8

10
√
n

≤ 8
10
√
n

as promised.

Discussion and Questions.

1. The results in [EHLN16] and further numerical experiments [Eve17] indicate that our upper
bound on P [c2(K2n+1) = v] is not expected to be tight. It remains desirable to establish a
bound of O(n−2) in Theorem 5. It is plausible that these bounds can be extended to other
finite type invariants.

2. As for the probability mass function P [K2n+1 =K], we conjecture that for every K it decays
at least exponentially fast in n. Even the special case where K is the unknot is interesting.
Of course, proving it would require the investigation of more invariants.

12



3. Although we couldn’t show that K2n+1 is non-trivial by finding small summands in its de-
composition, we wonder at what probability K2n+1 contains, say, a trefoil summand? We can
show Ω(n−3) but conjecture it’s o(1).
In fact, the above-mentioned experiments by Adams and Kehne [AK16, Keh16] indicate that
K2n+1 is prime with high probability. Why is this? Note that random knots are not prime
in most of the considered random models.
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