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ABSTRACT We investigate the space of all pro-
tein sequences in search of clusters of related pro-
teins. Our aim is to automatically detect these sets,
and thus obtain a classification of all protein se-
quences. Our analysis, which uses standard mea-
sures of sequence similarity as applied to an all-vs.-
all comparison of SWISSPROT, gives a very
conservative initial classification based on the high-
est scoring pairs. The many classes in this classifica-
tion correspond to protein subfamilies. Subse-
quently we merge the subclasses using the weaker
pairs in a two-phase clustering algorithm. The algo-
rithm makes use of transitivity to identify homolo-
gous proteins; however, transitivity is applied re-
strictively in an attempt to prevent unrelated
proteins from clustering together. This process is
repeated at varying levels of statistical significance.
Consequently, a hierarchical organization of all pro-
teins is obtained.

The resulting classification splits the protein space
into well-defined groups of proteins, which are
closely correlated with natural biological families
and superfamilies. Different indices of validity were
applied to assess the quality of our classification
and compare it with the protein families in the
PROSITE and Pfam databases. Our classification
agrees with these domain-based classifications for
between 64.8% and 88.5% of the proteins. It also finds
many new clusters of protein sequences which were
not classified by these databases. The hierarchical
organization suggested by our analysis reveals finer
subfamilies in families of known proteins as well as
many novel relations between protein families. Pro-
teins 1999;37:360–378. r 1999 Wiley-Liss, Inc.
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INTRODUCTION

In recent years we have witnessed a massive flow of new
biological data. Large-scale, world-wide sequencing projects
reveal new sequences, and many sequences that are added
to the databases are unannotated and await analysis.
Currently, 15 complete genomes (yeast, C. elegans, Esch-
erichia coli, other eubacteria, and several archaea) are

known. Between 35% and 50% of their proteins have not
been assigned a function yet.1,2 In the absence of structural
data, analysis necessarily starts with the sequence. The
most effective analyses compare the sequence under study
with all known sequences, in search for close relatives that
may have been assigned a function. In this way, properties
of a new protein sequence are extrapolated from those of
its neighbors.

Since the early 1970s, algorithms were developed for
comparing protein sequences efficiently and reliably.3–7

But even with the best alignment of two protein sequences,
the basic question remains: Do they share the same biological
function or not? It is generally accepted that two sequences
with over 30% identity along much of the sequences are likely
to have the same three-dimensional structure or fold.8–11

Proteins of the same fold often have similar biological func-
tions. Nevertheless, one encounters many cases of high
similarity both in fold and function that is not reflected in
sequence similarity.11–13 Such cases are missed by current
search methods that just compare sequences.

Detecting homology may often help in determining the
function of new proteins. By definition, homologous pro-
teins have evolved from the same ancestor protein. The
degree of sequence conservation varies among protein
families. However, homologous proteins almost always
have the same fold.14 Homology is, by definition, a transi-
tive relation: If A is homologous to B, and B is homologous
to C, then A is homologous to C. This simple observation
can be very effective in discovering homology. However,
when applied simple-mindedly, this observation leads to
many pitfalls. Although the common evolutionary origin of
two proteins is almost never directly observed, we can
deduce homology, with a high statistical confidence, given
that the sequence similarity is significant. This is particu-
larly useful in the so-called twilight zone,15 where se-
quences are identical with, say, 10–25%. Transitivity can
be used to detect related proteins, beyond the power of a
direct search.

Although transitivity is an attractive concept, it has its
perils: Similarity is not transitive, and similarity does not
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necessarily imply homology.† Therefore, similarity should
be used carefully in attempting to deduce homology. Mul-
tidomain proteins make the deduction of homology particu-
larly difficult: If protein 1 contains domains A and B,
protein 2 contains domains B and C, protein 3 contains
domains C and D, then should proteins 1 and 3 be
considered homologous? This simple example indicates the
inadequacy of single-linkage clustering for the purpose of
identifying protein families within the sequence space.

Expert biologists can distinguish significant from insig-
nificant similarities. However, the sheer size of current
databases rules out an exhaustive manual examination of
all potential homologies. Our goal here is to develop an
automatic method for classification of protein sequences
based on sequence similarity, through the detection of
groups of homologous proteins (clusters) and high-level
structures (groups of related clusters that are connected by
weak but consistent sequence similarities) within the
sequence space. Such organization would reveal relation-
ships among protein families and yield deeper insights
into the nature of newly discovered sequences.

Related Works—Large-Scale Analyses
of Protein Sequences

Transitivity of homology has been used before, and the
power of transitivity in inferring homology among dis-
tantly related proteins has been demonstrated in refs. 13
and 16–23. Some of these works have also addressed the
perils of transitivity.17,18,21

To properly evaluate the present study, it is important to
place it in the context of other large-scale analyses of
protein sequences. This has been an active research field
since the early 1990s. Several different approaches have
been tested. In general, these studies are divided into two
categories: those focused on finding significant motifs,
patterns, and domains within protein sequences and those
that apply to complete proteins.

Motif- and domain-based analyses

Most of these studies yielded databases of protein motifs
and domains. Such databases have become an important
tool in the analysis of newly discovered protein sequences.
Among these are ProDom,18 Pfam,23 PROSITE,24

PRINTS,25 Blocks,26 Domo,27 and SMART.28 The manually
defined patterns in PROSITE have served as an excellent
seed for several such studies.

There are several aspects in which these studies differ
from each other. Some are based on manual or semi-
manual procedures (e.g., PROSITE, PRINTS), others are
generated semiautomatically (Pfam), and the rest are
generated fully automatically (e.g., ProDom, Blocks, Domo).
Some focus on short motifs (PROSITE, PRINTS, Blocks),
whereas others seek whole domains and try to infer
domain boundaries (Pfam, ProDom, Domo). Most data-

bases also give the domain/motif structure of proteins. Two
databases make use of transitivity to enhance sensitivity.
ProDom applies the transitive closure of high-scoring
segments pairs obtained by BLAST (when the common
segments overlap above a minimum overlap parameter).
In the Pfam database, the construction of new families
starts from an HMM model derived from multiple align-
ment of related proteins, which is then improved itera-
tively by searching for further related sequences in the
database. These sequences are iteratively incorporated
into the model, until the process converges. After each
iteration the alignment is checked manually to avoid
misalignments.

Protein-based analyses

Most studies in this category draw directly on pairwise
comparison.16,17,19,20,29–31 All these works cluster the input
database, using transitive closure of similarity scores (i.e.,
single linkage clustering). Among these works, three17,29,30

have addressed the problem of multidomain proteins.
Harris et al.17 allow groups to merge only if they share k
overlapping regions. However, they concluded that k 5 1 is
the best choice for highest accuracy. Thus, their clustering
procedure essentially remains a single-linkage clustering
(in multidomain proteins, regions are classified to multiple
classes). In the second study,29 clusters are created start-
ing from triangles formed by three homologous proteins
from different species. Triangles which share an edge are
merged (this requirement reduces the probability that
unrelated clusters merge). An additional (manual) step is
carried to split clusters that are incorrectly merged owing
to multidomain proteins. The third study30 classifies pro-
teins into families based on global similarities and into
homology domains based on local similarities. In this
study sequences are classified into families and superfami-
lies based on similar overall architecture (same domains in
the same order if the sequences belong to the same family;
more flexibility is allowed if the sequences belong to
different families within the same superfamily). Homology
domains are defined using multiple alignments of homolo-
gous segments (identified based on local similarities). Both
classifications depend on semiautomatic procedures and
careful manual inspection.

Several other studies of complete proteins employed
alternative representations of protein sequences, e.g., their
dipeptide composition32,33 or combination of compositional
properties and other physical/chemical properties.34 These
representations induced measures of similarity/dissimilar-
ity between complete protein sequences, which were used
to classify the sequences into a fixed number of clus-
ters,32,33 or to search for close relatives.34

Our approach

The important role of motifs and domains in defining a
protein’s function is unquestionable: Detecting a known
motif within a new protein sequence can help reveal its
function and lead to the correct assignment of the new
sequence to an existing protein family. Indeed, domain-
based studies have added much to our knowledge. The

†Similarity may be quantified, whereas homology is a relation that
either holds or does not hold. Significant similarities can be used to
infer homology, with a level of confidence that depends on the
statistical significance (see ref. 14).
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domain-based databases usually offer much biologically
valuable information about domains and the domain struc-
ture of proteins, through multiple alignments and sche-
matic representations of proteins. Therefore, function pre-
diction procedures should include a domain-based protocol,
in which the sequence is scanned first for known domains.

However, in many cases, characterizing a new protein
only by its domain content is insufficient. This happens, for
example, when no known domains are apparent in the new
protein. In some instances, only a few related sequences
are available, too few to define a reliable prototype signa-
ture or a profile of the common domains. Therefore, a
proper analysis of a new protein sequence should incorpo-
rate comparisons against domain-based databases, as well
as sequence databases. In this view, an analysis which
identifies groups of related proteins in databases of protein
sequences is invaluable. It may amplify the outcomes of a
database search. When close hits are already grouped
together based on mutual similarity, this may highlight a
similarity with a group which could otherwise be missed
by a simple manual scanning. Moreover, if several groups
are found related to the query sequence, this may indicate
the existence of several distinct functional/structural do-
mains. If all groups share the same region of similarity,
this adds insights about the relations between the differ-
ent groups. In some cases, this may suggest that the
groups belong to the same family or superfamily. Hence,
protein-based analyses are important as a complementary
tool for sequence analysis.

Our study attempts to define a classification of whole
protein sequences. It draws on pairwise similarities and
seeks strongly connected sets of proteins. It applies a
moderate version of transitive closure, in an attempt to
eliminate chance similarities and avoid indirect multiple-
domain–based connections.

In our analysis, the protein space is represented as a
weighted graph whose vertices are the sequences. The
weight of an edge between two sequences corresponds to
their degree of similarity. Clusters of related proteins
correspond to strongly connected sets of vertices in this
graph. To detect these sets, we begin with a very strict,
high-resolution classification that employs only connec-
tions of very high statistical significance. The resulting
clusters are then merged to form bigger and more diverse
clusters. The algorithm operates hierarchically: Each step
adds new weaker connections to the previously considered
connections. A statistical test is applied in order to identify
and eliminate problematic connections as well as possibly
false connections between unrelated proteins. The result
of our study is thus a hierarchical organization of all
known protein sequences. The classification uses only
standard similarity scores and does not depend on further
biological information.

The method described here is applied to the set of all
SWISSPROT35 sequences and yields an exhaustive classi-
fication. This leads to the definition of a new pseudo-metric
on the space of all protein sequences. In most cases, this
measure turns out to be more sensitive than the existing
measures from which it was derived. Such measures are

important for a global self-organization of all protein
sequences, as discussed in refs. 36 and 37.

METHODS

This section contains a description of our computational
procedure. The procedure was carried out on the SWISS-
PROT database35 release 33, with a total of 52,205 proteins
and 18,531,385 amino acids.

The Graph

We represent the space of protein sequences as a di-
rected graph, whose vertices are the protein sequences. An
edge between two vertices is weighted to reflect the
dissimilarity between the corresponding pair of sequences,
i.e., a high similarity translates to a small weight. To
compute the weight of the directed edge from A to B, one
compares sequence A against all sequences in the SWISS-
PROT database including sequence B and obtains a distri-
bution of scores. The weight is taken as the expectation
value (e-value) of the similarity score found for A and B,
based on this distribution.38 This is an estimate for the
number of occurrences that the appropriate score could
have been obtained by chance, i.e., when compared with
random sequences drawn from the same background distri-
bution (usually defined as the distribution of amino acids
overall the database). A low expectation value reflects a
significant, strong connection, whereas a high expectation
value reflects an insignificant, weak connection. Not all
edges are retained in the graph as edges of statistically
insignificant similarity scores are discarded (details be-
low). In other words, in the final graph, an edge between
sequences A and B indicates that the corresponding pro-
teins are likely to be related.‡

This graph is constructed using the common algorithms
for protein sequence comparison: Smith-Waterman dy-
namic programming method (SW),4 FASTA,5 and BLAST.6

The SW algorithm was run with the BLOSUM62 matrix39

and gap penalties of 212,22 using either the Bioccelerator
hardware40 or the ssearch program which is part of the W.
Pearson’s FASTA 2 package. FASTA was run using the
fasta program with the BLOSUM50 matrix39 and gap
penalties 212,22 (the default setting). Both ssearch and
fasta calculate expectation values based on empirically
derived distribution of scores41 (the Bioccelerator applies
the same procedure for assessing the significance of results
as in ssearch). The BLAST algorithm was also run with
the BLOSUM62 matrix using the blastp 1.4.9 program
available from the NCBI ftp site.* The program reports
similarity scores along with the probability (P value) that

‡Within the scope of this work we used the expectation values as are,
and weights reflect statistical significance rather than distance (intu-
itively, the term distance can be used instead of expectation value, to
indicate that two proteins are either close or far, but practically, no
metric is defined).

*We are aware of the new version of BLAST which also accounts for
gaps and gives a very good approximation to the SW algorithm, while
being much faster.7 However, the old version of BLAST occasionally
detects similarities that are missed by SW (e.g., for the Glucagon
precursor family, and the H1-transporting ATP synthase42). We have
not yet tested whether the new version of BLAST preserves this merit.

362 G. YONA ET AL.



the scores could have occurred by chance. Blastp probabili-
ties are transformed to expectation values by the formula
e-value 5 log 1/12P value (see manual). All these methods
are in daily use by biologists for comparing sequences
against the databases. Though SW tends to give the best
results on average, it is not uncommon that FASTA or
BLAST are more informative, especially when combined
with different scoring matrices.42 Therefore we chose to
incorporate all three methods into our graph to achieve
maximum sensitivity (indeed, many similarities were re-
ported exclusively by only one of the three methods—in
some cases as many as tens of hits per sequence, which
were not detected by the other methods).

The following sections contain a detailed description of
the procedure of assigning weights to edges. The procedure
starts by creating a list of neighbors for each sequence,
based on all three methods. In order to place the expecta-
tion values for all three methods on comparable scales, a
numerical normalization is determined and applied. Then,
only statistically significant similarities are maintained in
these lists. Finally, the weight of an edge is defined as the
minimum expectation value associated to it by any of the
three methods, so as to capture the strongest relationship
(recall that edge weights represent expectation values, so
small values indicate high similarity).

Placing all Methods on a Common Numerical Scale

It is relatively easy to compare scores that a particular
method assigns to different comparisons. However, how
does one compare scores that are assigned by different
methods? We performed the following calculation: Pick
any protein, carry out an exhaustive comparison against
the whole database, and consider the highest scores in
each of the methods. Now plot these values against one
another for two methods at a time. These scores show a
remarkably strong linear relation on a log–log scale (Fig.
1); therefore, by introducing a (usually small) correction
factor, per each protein and per method, the three methods
get scaled to a single reference line. Because SW e-values
tend to be more reliable (see next section), they were
chosen as a baseline. FASTA e-values and BLAST e-values
were correlated with the SW e-values, and were corrected
accordingly.

The differences between FASTA and SW are mostly due
to the different scoring matrices that are being used, and
can be corrected by multiplying the original score by the
relative entropy of the two matrices.43 This resulted in
decreasing the expectation values (increasing significance)
reported by FASTA. The differences between SW and
BLAST may be due to approximations in estimating the
parameters l and K.44 In general, our procedure resulted
in increasing the expectation values (decreasing signifi-
cance) of hits reported by BLAST.

Neighbors’ Lists

It is, of course, very difficult to set a clear dividing line
between true homology and chance similarity. An expecta-
tion value below 1025 indicates that a false match would
occur once in 100,000 searches and can be safely consid-

ered significant. On the other hand, an expectation value
above 10 reflects mostly pure chance similarities. How-
ever, the mid-range is more difficult to characterize, and
homologous proteins can have expectation values around
1. An overly strict threshold will miss important similari-
ties within this ‘‘twilight zone,’’ whereas an excessively
liberal criterion will create many false connections. The
exact threshold for each pairwise comparison method was
set to best discriminate among related and unrelated
proteins. Our choice is based on the overall distribution of
expectation values over the entire protein space, as given
by each of the three methods (Fig. 2).

The distribution shown may be thought of as the aver-
age distribution of expectation values for a ‘‘typical’’ pro-
tein sequence as a query. The distribution drawn on a
log–log scale is nearly linear at low expectation values
(where pairs of related sequences dominate), but starts to
rise rapidly at a certain value. The steep slope at high

Fig. 1. Correlation of BLAST e-values and Smith-Waterman e-values.
(a): BLAST e-values of neighboring sequences of 1431_lyces (P42651)
vs. the SW e-values of the same neighbors. The graph is plotted in log–log
scale. Note the strong linear correlation between the scores assigned by
the two methods, where the slope is 1.16, i.e., evalueBLAST 5 (eval-
ueSW)1.16. (b): BLAST e-values of neighboring sequences of 1a03_human
(P04439) vs. the SW e-values of the same neighbors. The slope is 1.3 in
this case.
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expectation values indicates a rapid growth in the number
of sequences that are unrelated to the query sequence.
Although the distribution may differ from one sequence to
another, there is not enough data to deduce a reliable
threshold for each sequence. Only when the distributions
are averaged is the derived threshold reliable.

In this view, we set the threshold at the value at which
the slope rapidly changes. The thresholds for SW, FASTA,
and BLAST are set at 0.1, 0.1, and 1023 respectively. An
edge from vertex A to vertex B is maintained only if a
significant score is obtained by any of the three methods
used to compare the corresponding sequences—namely, if
either SW or FASTA yields an expectation value of #0.1 or
BLAST’s expectation value is #1023.

Although the self-normalized statistical estimates of
FASTA and SW41 are quite reliable (see also ref. 11), the
statistical estimates of BLAST may be effected by the
amino acid composition of the query sequence, and an
unusual composition (e.g., low-complexity segments within
the sequence) may bias the results of a search.38 Therefore,
we also generated the results using BLAST following a
filtering of the query sequence, to exclude low-complexity
segments (filtering was carried out with the SEG pro-
gram45). On the other hand, many relations of biological
significance can be missed if only sequences that pass the
filter are to be considered. Therefore, this was handled
with the more stringent BLAST threshold of 1026.

A major difference between BLAST and SW/FASTA is
that BLAST does not include gaps in the alignments.
BLAST detects similarities based on one or more high-
scoring segment pairs (ungapped local alignments). Signifi-
cance is assessed by applying Poisson or sum statistics.38

Consequently, since gaps are ignored, BLAST tends to
overestimate the statistical significance of fragmented
alignments. We counter this behavior of BLAST by the
above asymmetry in selecting the thresholds (Fig. 2).
Although this property may help BLAST reveal significant
similarities that the other methods miss (e.g., Pearson
199542), we have to beware of highly fragmented align-
ments that cannot be considered biologically meaningful.
Therefore, we ignore those BLAST scores that come from a
large number of HSPs (high scoring pairs), when the MSP
(maximal segment pair) is insignificant.

Finally, even if the comparisons between proteins A and
B fail to satisfy the previous criteria, the edge from A to B
is maintained when all three methods yield an expectation
value of #1.

This procedure is designed to screen most of the chance
similarities in the neighbors list of each protein sequence.
Unfortunately, chance similarities may occasionally pass
our criteria. A major goal of the algorithm that is described
next is to detect such similarities and eliminate them.

Exploring the Connectivity

We now turn to explore this graph. We seek clusters of
related sequences which hopefully have a characteristic
biological function. There are two major obstacles which
should be considered: 1) Multidomain proteins can create
undesired connection among unrelated groups; 2) Overes-

Fig. 2. Overall distribution of e-values according to the three main
algorithms for sequence comparison. (a): SW. (b): FASTA. (c): BLAST.
The distributions are based on the neighbors lists of all protein sequences
in the SWISSPROT database and are plotted in a log–log scale.
Frequency is the relative number of pairwise similarity scores with e-value
that is equal to the value shown on the x-axis. Note that the deviation from
straight line starts earlier in BLAST, around 1023, whereas in FASTA and
SW it starts only around 1021.
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timates of the statistical significance of similarity scores
may bias our decisions; chance similarities become more
abundant as significance levels decrease. Therefore, tran-
sitivity should be applied restrictively. If transitivity is to
be viewed as a force that attracts sequences, then it should
be countered by some ‘‘repulsive force’’ to keep unrelated
clusters apart and prevent collapse of the protein space.

Our approach

Our clustering procedure starts by eliminating all edges
of significance below a certain, very high, significance
threshold (i.e., very low expectation value). This operation
splits the graph to many small components. In biological
terms, we split the set of all proteins into numerous small
groups of closely related proteins, which correspond to
highly conserved subfamilies. To proceed from this basic
highly restrictive classification, we lower the significance
threshold (increase the expectation value) in a stepwise
manner and gradually take into account similarities of
lower statistical significance. In so doing, several clusters
of a given threshold may merge. The process is closely
monitored, and a merge is allowed only when strong
statistical evidence is found for a true connection among
the proteins in the resulting set. Detailed description of
these two main steps follows.

Note that the graph is directed, and hence is not
necessarily symmetric. Specifically, it may and does hap-
pen that there is an edge from protein A to protein B, but
none in the reverse direction. Furthermore, even if both
edges exist, their weights usually differ. Therefore, in a
preliminary step, this graph is transformed into an undi-
rected graph, by replacing the directed edges from A to B
(with weight v1) and from B to A (with weight v2), with one
undirected edge whose weight is defined as the maximum
of v1 and v2. If there is only one directed edge, then in the
new graph it is discarded.

Basic classification. If all edges of significance below
a certain threshold are eliminated, the transitive closure
of the similarity relation among proteins splits the space of
all protein sequences into connected components or clus-
ters. The transitive closure is equivalent to a single-
linkage clustering and the resulting clusters are proper
subsets of the whole database wherein every two members
are either directly or transitively related. These sets are
maximal in this respect and cannot be expanded. Thus,
they offer a self-organized classification of all protein
sequences in the database. We initially set the threshold at
the very stringent significance level of 102100, and all edges
with e-value .102100 are discarded. The remaining edges
reflect similarities which correspond to highly conserved
and relatively long regions (e.g., over 95% identity along at
least 150 amino acids). Thus, neither chance similarities
nor transitive chaining based on distinct common domains
in multidomain proteins occur at this level. The resulting
connected components can be safely expected to correlate
with known highly conserved biological subfamilies.

The clustering algorithm. Our procedure is recur-
sive. That is, given the classification at threshold T, we

give a method for deriving the classification at the next
more permissive level, that is 105 3 T.

The algorithm runs in two phases. First we identify and
mark groups (‘‘pools’’) of clusters that are considered as
candidates for merging (see Fig. 3). A local test is per-
formed in which each candidate cluster is tested with
respect to the cluster which ‘‘dragged’’ it to the pool, to
check their degree of similarity.

To quantify the similarity of two clusters P and Q, we
calculate the geometric mean of all pairwise scores be-
tween sequences in P and Q. Unrelated pairs are assigned
the default (insignificant) e-value of 1. The geometric
mean considers the distribution of all pairwise connections
between the two clusters, so that random or unusual
connections have little effect. The geometric averaging
may equivalently be considered as (arithmetically) averag-
ing the logarithms of the similarity scores. When the
geometric mean of the e-values is below ÎT (more signifi-
cant) our interpretation is that P and Q are indeed related
and that their connection reflects a genuine similarity.
This threshold was chosen to obtain a sublinear decrease
(since pairwise similarities are more frequent as confi-
dence level decreases). It gave better results than other
schemes and prevented a quick collapse of the whole space
into a few huge clusters. The level of confidence in the
reliability of the connection clearly decreases as T in-
creases. We define the Quality of the P to Q connection as
minus the log of the geometric mean. This quantity ranges
between 0 and 100 and is higher for more significant
connections.

In the second phase we carry out a variant of a pairwise
clustering algorithm. This algorithm successively merges
only pairs of clusters that pass the above test (and are thus
not suspected of representing chance similarities). At each
step the two closest clusters are chosen on the basis of the

Fig. 3. The clustering algorithm. Phase I: Identify pairs of clusters that
are considered as candidates for merging. Decisions are made based on
the geometric mean of the pairwise scores of the connections between
the two clusters. If this mean exceeds a specific threshold then the cluster
is accepted as a candidate and enters a pool of candidates. Otherwise it is
rejected (denoted in the figure by ‘‘X’’). Phase II: Pairwise clustering is
applied to identify groups of clusters which are strongly connected. At
each step the two closest groups are chosen from the pool and merged
provided that the quality of the connection exceeds the threshold (see
text). Otherwise they stay apart (denoted by dashed line).
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quality of their connection and merged if their similarity
(as quantified above, and based on all pairwise similarities
between sequences within the new formed clusters) is
more significant than the threshold. The process stops
when the similarity of the next closest clusters do not pass
the threshold (Fig. 3).

Any rejected merge is marked for further biological
analysis. We refer to these rejected merges as possibly
related clusters, and we comment on them in the next
sections.

This analysis is performed at different thresholds, or
confidence levels, to obtain a hierarchical organization.
The analysis starts at the 102100 threshold. Subsequent
runs are carried out at levels 10295, 10290, 10285, 10280. . . .
The process terminates at the threshold of 1020 5 1. Above
the threshold of 1 almost all similarities are in fact chance
similarities (see previous section).§

RESULTS

In the following sections we give brief general informa-
tion about clusters and the results of the overall assess-
ment of our classification in comparison with several
well-known domain-based databases. We also offer a
glimpse of our classification, through a few specific ex-
amples. Needless to say, the overwhelming body of informa-
tion provided by our classification cannot be properly
surveyed in a single report. We have constructed an
interactive web site that contains the results of our
analysis (http://www.protomap.cs.huji.ac.il), where users
can get acquainted with this ‘‘map’’ of the protein space.

General Information

Table I shows the distribution of cluster sizes at various
confidence levels. At each level, the set of all proteins splits
into clusters, which merge to form larger and coarser
clusters as the confidence level decreases. In particular,
the number of isolated proteins (clusters of size 1) dimin-
ishes as well. At the lowest significance level (1020 5 1) we
have 10,602 clusters, of which 4435 contain at least two
members. One thousand six clusters have size 10 and
above.

The number of clusters (of size bigger than 1) at each
level of confidence ranges between 4,228 and 5,543. In the
attempt to evaluate these results, we ask: How many
clusters should there be in the ‘‘ultimate’’ classification of
all proteins? Are the numbers that we see here are close to
this figure? A lower bound for this number is provided by
the number of different folds, since we expect members of
the same cluster to have similar folds. The current esti-
mates place the total number of folds (known and un-

known) between several hundreds and few thou-
sands.16,46–48 However, the same fold is usually adopted by
few different superfamilies which share little or no signifi-
cant sequence similarity. Therefore, a sequence-based
classification would probably place these superfamilies in
different (although possibly related) clusters. Moreover,
superfamilies may consist of several families, sometimes
with only a few percent sequence identity. Consequently,
these families may be classified into different clusters,
depending on the sensitivity of the method. On the aver-
age, each fold is adopted by two to three protein families.49

Thus the total number of clusters is expected to exceed the
number of folds, but it is likely to be less than an order of
magnitude bigger. A number of clusters in the 4,000–5,000
range seems consistent with this estimation.#

Most of these clusters are biologically meaningful. Table
II shows only the 50 largest clusters at the lowest confi-
dence level (1020). The description attached in Table II to
each cluster is based mainly on SWISSPROT annotations.
[We do not have a fully automatic method for annotating
all the clusters. A proper biological interpretation requires
a substantial degree of biological sophistication and in-
sight. However, a simple census of proteins based on
SWISSPROT definition usually gives a good indication of
the cluster’s nature.] The table should be viewed only as a
sample. For further information, the reader is referred to
our web site. Henceforth, unless otherwise stated, cluster
numbers refer to significance level 1020.

It should be noted that since our analysis concerns
complete proteins, and it is not limited only to those
subsequences which are identified as functionally or struc-
turally important motifs and domains, not all the emerg-
ing clusters are correlated with a specific domain (e.g.,
clusters 23, 33). However, many of the clusters we encoun-
ter are characterized by a domain that is common to many
or all member proteins, e.g., cluster 6 (homeobox domain)
and cluster 9 (zinc finger). Some clusters exclusively
consist of unknown proteins or hypothetical proteins (e.g.,
clusters 563, 606).

Performance Evaluation

It is very hard to evaluate the validity of classifications
that emerge from a large-scale study of protein sequences,
in that no generally accepted standards have been set yet
in this field. Thus, new classifications are traditionally
compared with what is considered a state of the art
characterization of protein sequences, namely, the
PROSITE dictionary of signature patterns, motifs, and
domains.24 For domain-based studies, a comparison with
the manually derived PROSITE dictionary is inevitable
and is essential for testing the biological significance of the

§The expectation values that we used are taken from the output of
fasta, ssearch, and blastp, and are defined in the context of a single
search against the database. Because we repeated this procedure
52,205 times (the number of proteins in the SWISSPROT 33 data-
base), one may suggest correcting the expectation values and dividing
them by 52,205. However, because hits were already screened to
exclude most chance similarities (see ‘‘Neighbors’ lists’’) and thresh-
olds were defined based on the original e-values, and in order to fit the
output of search programs such as fasta, ssearch, and blastp, the
original e-values were kept.

#In protein-based analyses, further aggregation may be observed
due to coupling of different structural units in the same class.
However, the estimated number of clusters is not expected to change
much: Out of 2984 ProtoMap clusters with at least three proteins,
1,128 clusters include at least one PROSITE domain and are associ-
ated with 1.6 PROSITE domain types on the average (the other 1,856
clusters do not contain PROSITE domains). Therefore, the estimated
numbers of protein-based clusters and domain/fold based clusters are
expected to agree up to a factor of 2.
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results. However, when the analysis extends beyond re-
gions which are known or suspected as domains, no
standard benchmark exists to assess the quality of the
results. One may then resort to comparisons against
domain-based databases. Obviously, this may bias the
assessment, a fact that should be kept in mind when
evaluating the results.

To estimate the quality of our classification, we com-
pared it with two well-established domain-based data-
bases: PROSITE and Pfam.

The evaluation methodology

Given a reference classification A and a new classifica-
tion B of the same set X, we evaluate the quality of the
classification B in terms of the reference classification A,
as reflected by their mutual agreement.¶ We consider four
such indices of quality.

Gracy and Argos27 have proposed a procedure for such a
performance evaluation: Each class a [ A is associated
with the group b [ B which maximizes the quantity tp 2
fp 2 fn. Here the number of true-positives (tp) is given by
0a > b 0 2 1, that of false-positives (fp) is given by 0b\a 0 ,
and that of false-negatives (fn) is given by 0a\b 0 . Quality is
defined by the percentage of the true positives 100 · tp/
tp1fp1fn. In the same way, the percentage of false-
positives and false-negatives are calculated. We call this
index Qsingle.

What if B is a further refinement of classification A (i.e.,
each group in A splits perfectly into several groups in B)?

The Qsingle parameter will be very small, since for each
group in A only one group in B will be counted for. In order
to counter this, we introduce the following modification.
Now each group a [ A is associated with all those groups b
from B, for which tp . fp. Specifically, we say that a group
b [ B is a relative of a group a [ A if more than 50% of b’s
members are also members of a (see Fig. 4). For each group
a [ A we identify all its relative groups b in B. The union of
all the relatives of a is denoted by ba. A protein is
misclassified by classification B if it is a member of a
missed by ba (false-negative), or is a member of ba, but not
a member of a itself (false-positive). The intersection of ba

and a defines the group of correctly classified proteins.
We define the quality Qset of the classification for the

group a by the percentages of the true positives in the
union a < ba. Namely,

Qset
(a) 5 100 ·

0a > ba 0

0a < ba 0

which accounts for both false-positives and false-negatives
errors. This procedure is repeated for every group a [ A,
and the total percentage of true-positives is given by the
average over all groups a [ A.

As observed above, Qset gives more favorable evaluations
when B is a refinement of the partition A. This however,
may lead to another problem, because dividing each group
a [ A into many small clusters (and in the extreme, to
singletons clusters) is not desirable. Therefore, we also
define another quality index, which accounts for the
number of clusters which are relatives of a, and penalizes
for excess in this number. This is done by first subtracting
the number of relatives of a from the number of true-

¶The two classifications can be either ‘‘hard,’’ i.e., each protein is
classified to exactly one group, or ‘‘soft,’’ in which each protein can be
classified to more than one group. In our case, Pfam and PROSITE are
soft, whereas (the current version of) ProtoMap is a hard classification.

TABLE I. Distribution of Clusters by Their Size at Each Confidence Level

Confidence
level

Cluster size Total number
of clusters.100 51–100 21–50 11–20 6–10 2–5 1

102100 8 18 90 234 528 3727 29870 34,475
10295 8 19 100 240 537 3806 29086 33,796
10290 8 20 111 256 545 3871 28224 33,035
10285 8 23 119 262 563 4004 27189 32,168
10280 8 25 133 264 594 4071 26140 31,235
10275 9 31 132 275 623 4131 25051 30,252
10270 10 34 138 293 653 4136 23943 29,207
10265 11 32 156 309 660 4180 22911 28,259
10260 13 34 171 319 677 4170 21772 27,156
10255 15 40 178 334 676 4194 20646 26,083
10250 15 51 184 350 676 4188 19463 24,927
10245 17 53 197 362 696 4181 18282 23,788
10240 21 54 203 383 714 4109 17129 22,613
10235 23 53 213 393 760 4101 15801 21,344
10230 26 53 232 415 774 4014 14428 19,942
10225 29 57 252 421 788 3897 13191 18,635
10220 32 64 263 436 779 3775 11839 17,188
10215 35 64 270 464 808 3645 10620 15,906
10210 38 76 293 457 802 3231 9112 14,009
1025 51 92 315 431 684 2655 7169 11,397
1020 51 94 315 456 703 2816 6167 10,602
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positives, then calculating the percentages of the total
number of proteins in the union a < ba, i.e.,

Qset2relatives
(a) 5 100 ·

0a > ba 2 number of relatives of a 1 1 0

0a < ba 0

This way, a class with N elements which has a single
identical relative cluster in classification B has quality of 1
(or 100%). On the other hand, if the relatives are N
singletons in classification B, the corresponding quality is
close to zero.

TABLE II. Largest Clusters at the Lowest Confidence Level 1020†

Cluster number Size Order of transitivity Family

1 718 2 Protein kinases
2 593 2 Globins
3 514 2 G-protein–coupled receptors
4 330 2 Immunoglobulin V region
5 326 2 Immunoglobulins and major histocompatibility complex
6 318 2 Homeobox
7 315 2 Ribulose bisphosphate carboxylase large chain
8 284 2 ABC transporters
9 260 1 Zinc-finger C2H2 type

10 256 2 Calcium-binding proteins
11 252 2 Serine proteases, trypsin family
12 229 2 GTP-binding proteins—ras/ras-like family
13 221 2 Myosin heavy chain, tropomyosin, kinesins
14 208 3 Collagens, structural proteins
15 206 2 Cytochrome P-450
16 198 2 GTP-binding elongation factors
17 196 2 Tubulins
18 190 1 Cytochrome b/b6
19 187 2 ATP synthases
20 172 2 Heat-shock proteins
21 171 2 Alcohol dehydrogenases (short-chain)
22 171 2 Snake toxins
23 152 2 NADH-ubiquinone oxidoreductase
24 142 2 Bacterial regulatory components of signal transduction
25 141 3 DNA-binding proteins of HMG
26 140 1 Nuclear hormones receptors
27 139 1 Actins
28 139 1 Intermediate filaments
29 138 2 GTP-binding, ADP-ribosylation factors family
30 136 1 Neurotransmitter-gated ion-channels
31 133 2 Zinc-containing alcohol dehydrogenases
32 133 2 Cellular receptors, EGF-family
33 130 3 Amylases
34 130 1 Hemagglutinin
35 129 2 RNA-directed DNA polymerase
36 125 1 Chaperones, chaperonins
37 122 2 Phospholipase A2
38 120 2 Insulins
39 115 1 Cytochrome c
40 115 3 Ketoacyl synthase
41 114 2 Growth hormones (somatotropin, prolactin, and related hormones)
42 113 1 Glyceraldehyde 3-phosphate dehydrogenase
43 113 3 Nuclear proteins, hn-RNP and sn-RNP, RNA-processing proteins
44 110 1 Viral nucleoprotein
45 109 1 Cytochrome c oxidase subunit II
46 108 3 Kazal serine protease inhibitors, secreted SPARC proteins
47 102 3 2Fe-2S ferredoxins, flavohemoproteins
48 102 2 Viral genome polyproteins
49 102 1 Developmental regulators—WNT family
50 101 1 Cation transport ATPases

†Clusters are ordered in decreasing order of size. The order of transitivity within each cluster is defined as follows: select the protein
with the maximum number of neighbors and define it as the cluster’s seed. The seed’s order of transitivity is 0. Its neighbors are of
order 1. Additional proteins that are neighbors of 1st order proteins, are of order 2, etc. The family description states the feature
common to most of the member proteins.
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The fourth index of quality is given by the quantity
tp/(tp 1 fn), which is the fraction of the reference family a
which is in the set ba. This measure does not take into
account the false positives; the reference classifications
may have not detected all homologies, and therefore not all
seemingly false-positives are indeed such (see ‘‘Critique of
the evaluation methodology’’ below). This index is based on
the (overly generous) assumption that all false-positives
are in fact potential related sequences. Obviously, this is
not true, and we should be extra cautious in using it in
automatic assignments of protein sequences. This esti-
mate still provides a useful upper bound on the quality of
the classification, because typically some of the false-
positives are indeed related sequences. We denote this
quantity by Qupper-bound.

The consistency test proposed by Krause and Vingron31

can be used for rough self-validation, but it is less useful
for assessing the quality of a new classification with
respect to a reference classification.

The reference databases

We compared our classification with two domain-based
classifications: PROSITE and Pfam. Our classification
contains 52,205 proteins of the SWISSPROT database,
release 33, classified to 10,602 clusters, of which 1,006
have size 10 and above (see Table I). The PROSITE
database, release 13 (released with the SWISSPROT 33
database), contains 24,156 proteins, characterized by 1,151
different signature patterns. PROSITE often associates
the same family with two or more signature patterns.
Therefore, sequences with different PROSITE patterns
documented as the same PROSITE family are considered
to belong to the same family. For example, all proteins that
have either the ACTINS_1, the ACTINS_2, or the ACTINS
_ACT_LIKE signature belong to the actins family. The
exceptions are those patterns that never appear together
in the same protein although they are documented the
same (e.g., ANTENNA_COMP_ALPHA and ANTENNA-
_COMP_BETA). Patterns that are always associated with
other patterns (e.g., INTEGRIN_BETA with EGF, POU_1

and POU_2 with HOMEOBOX) are ignored. Overall,
within these terms, the 1,151 signatures characterize 874
protein families and domains, of which 600 are of size 10
and above. The Pfam database (release 1.0, associated
with SWISSPROT 33) contains 15,604 proteins, classified
to 175 families, of which 172 are of size 10 and above.

Recently, our clustering procedure was applied to a
newer release of SWISSPROT (release 35 with updates up
to May 6th 1998, with a total of 72,623 proteins). Because
this was not one of the main releases, it complicated the
assessment procedure, especially in comparisons with the
PROSITE and Pfam classifications. Therefore, we applied
the assessment procedure to ProtoMap, PROSITE, and
Pfam releases associated with the SWISSPROT 33 data-
base. The latest releases of PROSITE and Pfam are
associated with SWISSPROT 35 database. This database
includes 69,113 sequences, 43,053 (62%) of which are
included in the 1,390 families of the Pfam database release
3.3, and 35,340 (51%) are included in the PROSITE 14
database. The results of the analysis of both SWISSPROT
releases are available at the ProtoMap web site. In Appen-
dix A we give the mutual correspondence/correlation of
both releases.

Evaluation results

The results of the evaluation procedure for these refer-
ence databases are given in Table III. The evaluation is
based on all families with at least ten members (the same
analysis with all families with at least five members gave
the same results up to within 1.5%).

Gracy and Argos27 used a similar procedure (using the
Qsingle parameter) with respect to a reference classification
that was a combination of PROSITE and PIR.50 The
assessment resulted in 96.6% true-positives (1.8% false-
positives) for PROSITE, 93.2% true-positives for DOMO
(0.3% false-positives), and 65.1% true-positives for Pro-
Dom (0.9% false-positives). All three are domain-based
classifications. The high percentage of true-positives in
PROSITE with respect to this reference classification
indicates that the combined database is not much different

Fig. 4. Association of groups in classification
B with groups in the reference classification A.
Groups B1–B4 are relatives of the red ellipse
(group of A), while groups B5 and B6 are not,
as the overlap is too small. The set ba is defined
as ba 5 B1 < B2 < B3 < B4, and the quality
Qset is given by Q set

(a) 5 100 · 0A > ba 0 / 0a < ba 0.
For comparison, Qsingle is given by Q single

(a) 5 100 ·
0a > B2 0 / 0a < B2 0.
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from the PROSITE database. The first three columns in
Table III assess the performance of ProtoMap in the same
way as Gracy and Argos27 with respect to PROSITE. With
68.4% true-positives, our work compares favorably with
ProDom, although we find many more false-positives.
However, as we note in the next section, not all these
false-positives should be counted as such.

Because ours is a hard classification, we find the second
measure Qset more appropriate than Qsingle. This means
that no single cluster is associated with one domain family.
Consider, for example, the PROSITE’s AA_TRNA_LIGASE
_I family. Seven different clusters form the cover of this
family corresponding to the subfamilies: leucyl/isoleucyl/
valyl/methionyl-trna synthetase (cluster 152), glutamyl/
prolyl-trna synthetase (cluster 429), tryptophanyl-trna
synthetase (cluster 758), arginyl-trna synthetase (cluster
988), tyrosyl-trna synthetase (cluster 904), cysteinyl-trna
synthetase (cluster 1216), and a singleton (cluster 6647)
arginyl-trna synthetase (a very short fragment).

Although most of PROSITE families have only one
relative in our classification (see Table IV), many families
are associated with more than one cluster, where different
clusters may correspond to different subfamilies (belong-
ing to the same family is still detectable through connec-
tions between clusters, as discussed in section ‘‘possibly
related clusters’’). Consequently, with the Qset index, the
quality of performance reaches 77.8%.

Critique of the evaluation methodology

The above procedure may result in an over-strict mea-
sure. False-positives may be overcounted, because often
supposedly false-positives with respect to the reference
database are actually true-positives. For example, short
fragments which surely belong to a specific family may be
considered false-positive simply because they are too short
to completely include the domain which is common to all
other members in the family. Similarly, hypothetical pro-
teins with a significant sequence similarity with a family
are not necessarily false-positives. Even proteins which
are documented as members of a family may be counted as
false-positives simply because they do not have the exact
family signature pattern, but rather a slightly modified
one. For example, cluster 27 has 139 proteins of which 132
have the actin and actin-like signature. Five of the other
seven proteins are documented as actins (and indeed show
a remarkable similarity with other actins), and two are
hypothetical proteins (again, with a strong similarity to
actins). However, these seven proteins do not have the
actin and actin-like PROSITE signature and therefore are
counted, unjustifiedly perhaps, as false-positives. Simi-
larly, cluster 7 has 46 proteins which do not have the
rubisco_large PROSITE signature, and are thus counted
as false-positives. They are all, however, annotated in
SWISSPROT as ribulose bisphosphate carboxylase large

TABLE III. Performance Evaluation at Selected Confidence Levels†

ProtoMap
confidence
level

Reference
database

Qsingle (%) Qset (%) Qset-relatives

true-
positives

(%)
Qupper-bound

(%)
True-

positives
False-

positives
False-

negatives
True-

positives
False-

positives
False-

negatives

102100 PROSITE 13.3 0.9 85.8 95.2 3.7 1.1 43.4 98.9
Pfam 14.8 1.7 83.5 96.4 2.2 1.4 53 98.5

10250 PROSITE 34.3 2.5 63.2 92.1 5.3 2.6 61.8 97.3
Pfam 35.0 2.5 62.5 92.0 3.0 5.0 68.9 94.7

10210 PROSITE 65.9 6.4 27.7 85.7 8.3 6.0 78.5 93.8
Pfam 60.5 5.4 34.1 84.6 4.9 10.5 79.6 89.1

1020 PROSITE 68.4 9.5 22.1 77.8 11.1 11.1 75 88.5
Pfam 64.8 7.3 27.9 76.7 6.9 16.4 75 83.1

†At the level of 102100 most ProtoMap clusters are small (what explains the low Qsingle value), but highly specific (what explains the high Qset value).
As the e-value threshold is increased, and more permissive similarities are taken into account, ProtoMap clusters merge to form bigger clusters
(Qsingle increases), which are more diverged (Qset decreases). Qset-relatives is a compromise between these two measures. At the level of 102100 its value
is low, in spite of the high value of Qset, because each PROSITE and Pfam family is matched with several small clusters of ProtoMap. At more
permissive levels the value of Qset-relatives increases, because most families are matched with a single cluster (see Table IV). It reaches its maximum
at 10210.

TABLE IV. Distribution of the Number of Relative Clusters†

Number of relative clusters in ProtoMap
0 1 2 3 4 5 6–10 .10

Number of PROSITE families 73 525 131 62 24 18 30 11 874 (total)
Number of Pfam families 15 76 33 18 10 1 15 7 175 (total)
†The majority of PROSITE and Pfam families are associated with a single cluster in ProtoMap. Out of the 73 PROSITE families which
have no relative cluster in ProtoMap (see ‘‘The evaluation methodology’’ for a definition of ‘‘relative cluster’’) 62 are mapped
exhaustively to a single cluster in ProtoMap. Most of these families are subfamilies of larger families, each of which is mapped to a
single cluster, e.g., RAN (see ‘‘Critique of the evaluation methodology’’ for details). Some are classified to clusters that still need to be
refined (see Discussion).
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chain (some are fragments). Similarly, cluster 15 has 13
proteins which do not have the cytochrome P-450 signa-
ture; ten of these are variants of cytochrome P-450, two
proteins are thromboxane-a synthase, and one is trans-
cinnamate 4-monooxygenase. All of these are documented
to be part of the cytochrome P-450 family, and indeed,
show a strong similarity with cytochromes P-450.

Such ‘‘false-positives’’ are very common in our clusters,
but should they count as false-positives? Obviously, some-
times they are, but we have no automatic way to discern
those that are indeed biologically meaningful. At present
we can only say with confidence that some false-positives
should not count as such. Consequently, the true value of
performance quality lies somewhere between Qset 5 77.8%
and Qupper-bound 5 88.5% of true-positives.

Here is another factor which limits the agreement: Some
families have subfamilies, the members of which share a
well-defined domain which other members in the family do
not have. In the evaluation procedure these will be consid-
ered as false-positives, and if the latter are a majority, then
no cluster will be matched with the subfamily. A case in
point is the ran family, a subfamily of the small G-proteins.
The ran proteins are classified to the same cluster as the
ras/ras-like/rab proteins (cluster 12). However, because
the ras/ras-like/rab proteins are not characterized by the
same signature pattern (nor by any other signature pat-
tern in release 13.0 of PROSITE), they count as false-
positives. The functional relationship of the proteins in
this cluster points to the problem of assessing a new
classification by means of another, human-made classifica-
tion.

Families for which our analysis performed worst, with
less than 50% true-positives, are dominated by short/local
domains (e.g., PH domain, EGF, ER_TARGET, C1Q, KRIN-
GLE, C2 domain, SH2, SH3) or domains that are paired
with other, more abundant domains (e.g., opsin paired
with G-protein receptor). This is to be expected, because
our analysis is not a domain-based.

The results of the evaluation procedure with Pfam as the
reference database lead to similar conclusions: good perfor-
mance for protein families, but short motifs are not
detected well. The quality of the classification increased as
the Pfam coverage (the total portion of the sequences
which was included in the multiple alignment used to
define the domain or the family in the Pfam database)
increased: for coverage .0.3 (134 families) the quality
raised to Qsingle 5 76.9% (6.1% false-positives), Qset 5 84.9%
(6.2% false-positives), and Qupper-bound 5 90.9%; for cover-
age .0.5 (109 families) the quality increased to Qsingle 5
80.6% (5% false-positives), Qset 5 88.3% (5% false-
positives) and Qupper-bound 5 93.3%.

New clusters

The above evaluation procedure is oblivious to the many
new clusters in our classification that have no counterpart
cluster in PROSITE, nor in Pfam. Our definition of a
counterpart is very strict. A cluster has no counterpart
family in the reference database if NONE of its members
are associated with ANY reference family. Of the 1,006

clusters with over 10 members (total of 33,682 proteins),
308 clusters (6,989 proteins, which comprise 20.8%) have
no counterpart family in PROSITE, 734 clusters (15,586
proteins 46.3%) do not have a counterpart in Pfam A, and
281 clusters are missing from both.

The largest 20 unannotated clusters (both by PROSITE
and Pfam) are listed in Table V. They are documented
based on their SWISSPROT definition. The purity of these
clusters (in terms of definition consensus) is very high.
Still proteins in these clusters are not characterized in
PROSITE 13 or in Pfam 1.0. It should be noted that both
databases have been extended since then (as did Proto-
Map). Yet, many proteins in the updated SWISSPROT
database are not classified by the latest releases of these
databases (see ‘‘The reference databases’’ above).

ProtoMap as a Tool for Analysis

Aside of the direct use of ProtoMap as an automatic
classification of protein sequences in the SWISSPROT
database, ProtoMap offers additional information, which
is available interactively in the web site.

Tracing the formation of clusters

A major aspect of the hierarchical organization is that
separate clusters at a given threshold may merge at a
more permissive threshold. This reflects the existence of
subfamilies within a family, or families within a superfam-
ily.

By moving from one level to a more restrictive one, we
obtain a subdivision of clusters into smaller subsets. These
subsets suggest a natural division of the corresponding
family, as illustrated in the following example for the
transport system permease proteins.

TABLE V. Largest Clusters With No Corresponding
Family in PROSITE 13 or Pfam 1.0

Cluster
number Size Family

23 152 NADH-Ubiquinone reductase (chains 2, 4, 5)
34 130 Hemagglutinin (virus)
44 110 Nucleoprotein (virus)
60 92 Phycocyanin (algae)
67 86 Histone H1
79 77 Envelope protein (virus)
85 74 Chlorophyll A-B binding protein (plants)

102 69 NADH-Ubiquinone oxidoreductase (chain 6)
110 64 60S ribosomal protein (P0, P1, P2)
114 61 Envelope protein (virus)
120 58 E6 (viral protein)
129 56 Neurotoxins (insect)
132 55 NADH-Ubiquinone oxidoreductase (chain 3)
133 55 RNA polymerase B
135 54 Probable L1 protein (virus)
137 53 E1, helicase (virus)
138 53 E2, transactivator (virus)
139 53 Probable L2 protein (virus)
142 52 TAT protein, transactivator (virus)
145 51 E7, transforming (virus)

371PROTOMAP



Cluster 170 at level 1020 with 46 proteins consists of
transport system permease proteins. These proteins par-
ticipate in multicomponent transport systems in bacteria.
Specifically, they are the integral inner-membrane pro-
teins which translocate the substrate across the mem-
brane.

The cluster decomposes into four subclusters at level
10210, which form a clique (Fig. 5). These smaller subclus-
ters correspond to the lactose/maltose transport system
lacG/malG, the lactose/maltose transport system lacF/
malF, the phosphate transport system, and other trans-
port systems (of sulfate, molybdenum, spermidine, and
putrescine). The subgroups of lacG/malG and lacF/malF
form already at level 10225. Some proteins that combine
features from F and G subtypes are denoted in SWISS-
PROT as malGF proteins. However, based on this subclas-
sification and the fact that the malG group and the malF
group form at such high levels of significance, these
proteins may be classified either to malG or to malF.

Hierarchical organization within protein families
and superfamilies

The hierarchical organization also suggests classifica-
tion within known families. This classification is suggested
by scanning the hierarchy over all levels, as illustrated for
the small G-protein/Ras superfamily (Fig. 6).

The ras gene is a member of a family that has been found
in tumor virus genomes and that is responsible for the
viruses’ carcinogenic effect. In most cases this viral onco-
gene is closely related to a cellular counterpart, called a
proto-oncogene. Infection by a retrovirus that carries a
mutant form of the ras gene (ras oncogene), or mutations,
can cause cell transformation. Indeed, mutations in ras
gene are linked to many human cancers.

The cellular ras protein binds guanine nucleotide and
exhibits a GTPase activity. It participates in the regulation
of cellular metabolism, survival, and differentiation. In the
last decade many additional proteins that are related to
ras were discovered, all of which share the guanine
nucleotide-binding site. They are referred to as the small
G-protein superfamily.51 This family of proteins has sev-
eral subfamilies: ras, rab, ran, rho, ral, and smaller
subfamilies. Like ras, these proteins participate in regula-

tory processes, such as vesicle trafficking (rab) and cytoskel-
eton organization (rho).

In Figure 6 we depict the relations within this family,
based on our hierarchical organization. A total of 229
proteins, all from the small G-protein superfamily, are
presented. All were clustered into cluster 12 at the lowest
level of significance 1020. Small clusters, which correspond
to subfamilies, are formed at higher confidence levels, and
fuse to larger clusters when the threshold is lowered. The
four main branches coincide with (I) rab subtypes; (II) ras,
ral, and rap; (III) rac, rho, and cdc (cell division control
proteins); (IV) ran. Interestingly, the linkage of rac to cdc
and rho seems stronger than that between ran and rho or
rab and rho. This proposed subdivision suggests a common
root for all the subtypes, but splits them in a way that
resembles the evolutionary tree of the small G-protein
superfamily.52

As we proceed to include weaker similarities, we identify
other families which are related to the small G-protein
family. According to our map, the clusters which are
detected as related clusters include cluster 29 (138 pro-
teins), cluster 646 (14 proteins) cluster 461 (20 proteins),
and cluster 1400 (7 proteins). All these clusters are possi-
bly related clusters (rejected merges) of cluster 12 (see next
section for a discussion of possibly related clusters). Clus-
ter 29 consists of ADP-ribosylation factors family (ARF)
that are involved in vesicle budding and of guanine
nucleotide-binding proteins from the sar subfamily, whose
members participate in a different type of vesicle budding.
Another family which is classified to this cluster is Ga

proteins of heterotrimeric G proteins. The connection
between this cluster and cluster 12 is based on similarity
of the ARFs and the rab subfamily, as shown in Figure 6.
Cluster 646 consists of the GTP-binding protein ERA and
of thiophene/furan oxidation proteins (both being groups of
GTP-binding proteins). This cluster and cluster 12 are
related through the similarity of the thiophene/furan
oxidation proteins and the ras subfamily. Cluster 461
(GTP-binding proteins of the OBG family) and cluster
1400 (hypothetical small G-proteins) are not directly re-
lated to cluster 12. However, these clusters are related to
clusters 29 and 646, as well as to each other (see Fig. 6).

Fig. 5. Tracing the formation of
cluster 170 (at level 1020)—the trans-
port system permease proteins. As we
move on to level 1025 and further to
level 10210 the cluster splits into sev-
eral subclusters. Each circle stands for
a cluster at threshold 5 10210. Radii of
the circles are proportionate to the
sizes of the clusters (numbers indicate
sizes of clusters). The drawn edges
appear upon changing the threshold
from 10210 to the more permissive
1025. Edge widths are proportionate to
the number of connections between
the corresponding clusters.
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Possibly related clusters and local maps

Recall that our clustering algorithm differs from a single
linkage algorithm. First, the algorithm identifies groups of
possibly related clusters using ‘‘local considerations’’ (strong
connections between pairs of clusters). Then, a ‘‘global
test’’ is applied to identify nuclei of strong relationships
within these groups of clusters, and clusters are merged
accordingly. During this process, the algorithm automati-
cally rejects many possible connections among clusters.
This happens whenever the quality associated with a
connection falls below a certain threshold (see Fig. 3).
Many of these rejected connections are nevertheless mean-
ingful and reflect genuine though distant homologies. We
refer to the rejected mergers as possibly related clusters.

For almost all clusters, much insight can be gained by
observing their possibly related clusters. On average,
there are three possibly related clusters per cluster (at the
level of 1020). Even though some of these connections are
justifiably rejected, in particular at the lowest level of
confidence we consider (1020), many others do reflect
structural and functional similarities, despite a weak
sequence similarity. At this stage it is hard to give exact
rules for evaluating these relations, and one’s judgment
must be used. Such judgment can also take into account
pairwise alignments of protein pairs, one from the cluster
under study and one from a possibly related cluster (the
alignments are shown in the web site).

Based on the connections with possibly related clusters
we can plot local maps (at this stage, mostly schematic) for

the neighborhoods of protein families. These schematic
maps can expose interesting relationships between protein
families. Here we present a map for the immunoglobulins
superfamily. Two of the big clusters in Table II belong to
this superfamily. These are cluster 4 (immunoglobulin V
region) and cluster 5 (immunoglobulins C region).

Table VI shows those clusters which are possibly related
to cluster 4, ordered by their quality value. These clusters
include proteins which are involved in aspects of recogni-
tion at the immune system via the variable regions.

Likewise, Table VII shows the clusters which are possi-
bly related to cluster 5. These clusters, unlike the clusters
related to cluster 4, consist mostly of proteins that adopted
the immunoglobulin fold of the Ig constant region. Clus-
ters which we suspect to be unrelated appear in italics (one
can validate the significance of possibly related clusters
using the quality of their relation and the alignments, and
insignificant connections can be easily traced and ignored
by a manual examination of the alignments in the web
site).

The two sets of clusters are mostly disjoint, with the
exception of cluster 1796. Members of this cluster contain
both regions, whence the cluster is related to both clusters
4 and 5. The different parts of the proteins account for the
appropriate relationships.

There is also a direct connection between cluster 4 and
cluster 5. The connection is based on 226 pairwise similari-
ties between cluster 4 and 5. However, all the similarities
are due to a single protein in cluster 5, a T-cell receptor

Fig. 6. The small G-protein family. This family is composed of several
subfamilies. A total of 229 proteins, combined in cluster 12 (level 1020),
were grouped together into isolated sets at different levels of confidence,

to form a natural subclassification of the family. This hierarchical organiza-
tion is much enriched by combining possibly related clusters (see text).
The related clusters are connected by dashed lines.
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beta chain (P11364). This protein has one V region aside
from a C region, and the similarity with the 226 proteins in
cluster 4 is limited to the V region. No other protein in

cluster 5 has a V region. Note that despite these similari-
ties, clusters 4 and 5 did not merge, and the connection
was automatically rejected by our clustering algorithm.

This information depicts the ‘‘geometry’’ of the protein
space in the vicinity of the immunoglobulin superfamily as
in Figure 7. In this map we include also indirectly related
clusters, i.e., possibly related clusters of order 2 and above
(related clusters of related clusters, etc). The map includes
almost all protein families which belong or are related to
the immunoglobulin superfamily defined by the SWISS-
PROT database (see Table VIII for details), except for
three clusters: cluster 373 (isolated cluster of periplasmic
pilus chaperones), cluster 2172 (isolated cluster of THY-1
membrane glycoproteins), and cluster 2363 (B-lymphocyte
antigen cd19).

DISCUSSION

This study addresses the problem of identifying high-
order features and organization within the space of all
protein sequences. Our aim is to exhaustively ‘‘chart’’ all
proteins and to automatically classify them into families,
based on pairwise similarities.

A complete charting of the protein space is a daunting
task, and many difficulties are encountered. One must
begin from well-established statistical measures, in order
to identify significant similarities. Great caution and
biological expertise are needed to exclude connections
which are unacceptable or misleading. The main difficul-
ties stem from chance similarities among sequences and
multi-domain–based connections. Semi-automatic proce-
dures were developed mainly for domain-based family
identification (see Introduction). However, the sheer vol-
ume of data makes it necessary to develop automatic
methods to complement such attempts.

The work we present here addresses these major prob-
lems. We start by creating, for each protein sequence, an
exhaustive list of neighboring sequences. These lists take
into account the scores of the three major methods for
pairwise sequence comparisons. These three types of scores
are jointly normalized and the lists are filtered. The link is
maintained in the lists only when a significant relation-
ship seems to exist. A two-phase clustering algorithm is
then applied to identify groups of related sequences. There
are two pitfalls to avoid here: 1) It is very easy to follow a
very strict rule and generate many small clusters, within
each of which the proteins are very closely related. This
approach safely avoids the creation of false connections,
but adds little to our understanding of the protein space,
because it includes only fairly obvious and well-known
connections. 2) A procedure that declares a connection
without sufficient scrutiny does not miss interesting con-
nections. Instead it generates so many false connections
that it becomes impossible to recognize significant rela-
tions. In other words, such a permissive method quickly
collapses the whole space into a small number of gigantic
but biologically meaningless clusters. The problem is to
find a golden path where nonobvious relationships are
discovered without ‘‘littering’’ the classification with too
many false connections.

TABLE VI. Clusters Possibly Related to Cluster 4
(Level: 1e-0)†

Cluster
number Size

Connection
quality

Number
of edges Family

1,643 5 0.29 219 B-cell antigen receptor
complex–associated
protein

927 10 0.11 193 T-cell surface glycoprotein
CD4

2,613 3 0.03 20 Polymeric-immunoglobu-
lin receptor

5 326 0.01 226 Immunoglobulins and
major histocompat-
ibility complex

1,137 8 0.01 18 T-cell–specific surface
glycoprotein CD28,
cytotoxic T-lymphocyte
protein

1,189 8 0.01 9 Myelin P0 protein pre-
cursor

1,796 5 0.01 9 Poliovirus receptor pre-
cursor

†Clusters are sorted by quality (i.e., minus the log of the geometric
mean of similarity scores). Note that all clusters belong to the
superfamily of immunoglobulins.

TABLE VII. Clusters Possibly Related to Cluster 5
(Level: 1e-0)†

Cluster
number Size

Connection
quality

Number
of edges Family

1,831 5 0.38 248 T-cell receptor gamma
chain C region

4 330 0.01 226 Immunoglobulin V region
104 66 0.01 64 Cell adhesion molecules,

myelin-associated gly-
coprotein precursor
axonin-1 precursor,
B-cell receptor CD22-b
precursor, and more

578 16 0.01 28 High/low-affinity immu-
noglobulin e/g FC
receptor

596 16 0.01 33 Recombination-activating
proteins, zinc finger,
c3hc4 type

856 11 0.01 11 Cornifin (small proline-
rich protein)

1,262 7 0.01 21 T-lymphocyte activation
antigen CD80/CD86
precursor

1,636 5 0.01 8 Basigin precursor
1,796 5 0.01 7 Poliovirus receptor pre-

cursor
†Only clusters with two members or more are shown, and are sorted by
quality. Almost all clusters belong to the superfamily of immunoglobu-
lins. Clusters 596 and 856 are probably unrelated (in italic).
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Our algorithm can be described as a moderate version of
the transitive closure algorithm. At each round of this
process we gain statistical information on the relation-
ships among current clusters. This information is then
used to merge certain clusters, thus forming the next
round of larger, coarser clusters. The algorithm starts from
a very conservative classification, and is repeatedly ap-
plied, at varying levels of confidence, the input for each
stage being the classification output at the previous stage.
Finally, a hierarchical organization of all protein se-
quences is obtained, strongly correlated with a functional

partitioning of all proteins. This data structure reveals
interesting relations between and within protein families,
and provides a global view (‘‘map’’) of the space of all
proteins.

The classification consists of several thousand clusters,
the largest of which contain several hundred members
each. It is interesting to assess the effect of slowing down
the transitive closure algorithm. Indeed, a straightforward
application of the transitive closure algorithm (a.k.a.
single-linkage clustering) leads to an avalanche as dis-
cussed above (details not shown). Already at a confidence
level 10220, most of the space is made up of a small number
of very large clusters. This avalanche is caused by chance
similarities and chains of domain-based connections that
cause unrelated families to merge into few giant clusters. A
major ingredient of our new algorithm is the choice of rules
for avoiding such undesirable connections.

We should note that some connections found in our
analysis are still questionable. Some domain-based connec-
tions did escape our filters and caused unrelated clusters
to merge (e.g., cluster 122 which contains the pancreatic
trypsin inhibitor [Kunitz] family as well as the amyloido-
genic glycoprotein intracellular/extracellular domains).
Also, high-scoring low-complexity segments that may be
biologically meaningless can lead to false connections and
to the formation of nonhomogeneous clusters (e.g., cluster
14 of collagens and other structural proteins). Although we
did take into account the effect of these segments, not all of
them were filtered out. Because our goal was to detect
many remote homologies we used weak filters in this case
and considered many similarities at very low levels of
confidence. We are currently testing more stringent filtra-
tion criteria and improving our algorithm to handle domain-
based connections better. At the moment, such connections
can be easily traced manually, by observing the alignments
(at the web site). Multiple alignments will be available as
well in the next release.

It is very difficult or even impossible to properly classify
all proteins. The space of proteins has many different
facets, all of which should be considered in future, more
thorough classification: 3D structure/fold, biological func-
tion, domain content, cellular location, tissue specificity,
organism (source), metabolic pathways, etc. This work
differs from previous large-scale analyses in several ways:
1) We do not attempt to identify protein domains or motifs.
2) No predefined groups or other classification are being
employed in our analysis. Moreover, no multiple align-
ments of the proteins are needed. 3) We chart the space of
all protein sequences in SWISSPROT, not just particular
families. 4) We offer a global organization of all protein
sequences. In the ideal scheme, a combined strategy
should be developed which includes protein-based consid-
erations as well as domain-based considerations and struc-
tural information in a more rigorous way. Such a scheme is
currently being developed (Yona and Levitt, unpublished
observations).

Our algorithm has turned out well-defined groups which
are strongly correlated with protein families and subfami-

TABLE VIII. Clusters Belonging to the
Immunoglobulin Superfamily†

Cluster
number Size Family

4 330 Immunoglobulin V region
5 326 Immunoglobulins and major histocompatibility

complex (MHC)
104 66 Cell adhesion molecules (CAM, n-CAM,

ng-CAM, v-CAM, contactin, fascilin II),
myelin-associated glycoprotein, axonin-1 pre-
cursor, B-cell receptor CD22-b precursor

373* 25 Periplasmic pilus chaperones
578 16 High/low-affinity immunoglobulin e/g FC

receptor
621 15 Interleukin-1 receptor, interleukin-1 binding

protein, surface antigen
854 11 T-cell surface glycoprotein CD3 d/e/g chain pre-

cursor
927 10 T-cell surface glycoprotein CD4

1,075 9 MHC class I NK cell receptor precursor
1,137 8 T-cell–specific surface glycoprotein CD28, cyto-

toxic T-lymphocyte protein 4
1,189 8 Myelin P0 protein
1,262 7 T-lymphocyte activation antigen CD80/CD86

precursor
1,301 7 Intercellular adhesion molecule precursor

(ICAM)
1,468 6 Hemagglutinin precursor
1,636 5 Basigin precursor
1,637 5 Proable cell adhesion molecule involved in regu-

lating T-cell activation
1,643 5 B-cell antigen receptor complex–associated pro-

tein
1,727 5 Interleukin-12 beta chain precursor
1,796 5 Poliovirus receptor, ox-2 membrane glycoprotein
1,831 5 T-cell receptor g chain C region
1,938 4 T-cell surface antigen CD2 precursor
2,172* 4 THY-1 membrane glycoproteins
2,363* 3 B-lymphocyte antigen cd19
2,294 3 a-1b-glycoprotein
2,613 3 Olymeric-immunoglobulin receptor
4,622 1 b-2-microglobulin
4,763 1 T-cell surface glycoprotein CD4
5,186 1 Fasciclin III precursor
5,583 1 Lymphocyte activation gene
5,847 1 Immunoglobulin µ chain C region membrane-

bound
†All clusters (other than those marked with an asterisk) appear in the
local map of the immunoglobulins (Fig. 7).
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lies. When compared with the well-accepted databases
PROSITE and Pfam, our classification performed well
for most of the families, although many of them were
domain based rather than protein families. Many new
clusters in our classification did not have a match from
either PROSITE nor Pfam. The hierarchical organi-
zation can indicate the existence of subfamilies within
families, and the concept of possibly related clusters
exposes distant relationships which reflect functional
similarities. These relations offer a basis for sketching
local maps near protein families. These connections can
be of biological interest and should be taken into account
in the study of protein families. For example, an overall
view of Figure 6 or Figure 7 implies that tracing the
hierarchical organization of a cluster and/or its rejected
merges can provide new information about the correspond-
ing family and reveal relationships among protein fami-
lies.

Another aspect of the possibly related clusters is that
this list can be viewed as a ‘‘soft clustering,’’ where the

same protein can participate in several different clusters.
Proteins that are composed of several domains, some of
which are shared by proteins from different families, are
naturally associated with more than one group. Therefore,
although in this version of ProtoMap a multidomain
protein is classified to a single cluster, its multitrait nature
is revealed when we examine its relations with the other
clusters as well.

The concept of soft clustering will be integrated in the
next releases of ProtoMap and is already applied for the
online classification of new protein sequences (submitted
by the user), in the newest version of ProtoMap. Each new
sequence is classified to the existing clusters based on its
distribution of connections with the existing clusters. The
sequence can be classified to more than one cluster, with
different qualities, to help in predicting its nature.

For a comprehensive view of this project the reader is
again encouraged to visit our web site
(http://www.protomap.cs.huji.ac.il).

Fig. 7. The immunoglobulin superfamily. All clusters related to clusters 4 and 5 are shown (these are referred to as directly related clusters), as well as
other clusters which are indirectly related clusters (clusters that are possibly related to directly related clusters). In this schematic map, each cluster is
represented as a circle, whose radius is proportional to the cluster’s size. Only clusters’ numbers are given. See Table VIII for more information on these
clusters. Clusters on the left (colored group) contain an Ig V-region. The group on the right has an Ig C-region. The clusters in between share both regions
(except for cluster 1468, which consists exclusively of V-region). This ‘‘local map’’ of relationships is plotted to distinguish between three main groups (this
map may change upon the accumulation of new data). The left one corresponds to the variable regions (V domains) of the immunoglobulins, the right one
to the constant regions (C domains). In the middle appear many clusters that are a mixture of the two types. The many alternative connections between
clusters whose proteins resemble V-domain to these of the C-domains indicate that adhesion molecules, fasciclin II and vascular CAM, are positioned
between the classical V and C-regions. Indeed, studies of the evolutionary pathway between the structural classes of Ig and Ig-like domains have pointed
to the important role of these non-Ig molecules, and they are considered as the I-set according to their intermediate nature.53,54
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APPENDIX A

Since the first release of ProtoMap (releases 1.0–1.2), we
have run our algorithms on a newer version of SWISS-
PROT. That is, SWISSPROT 35 with updates (dated May
6th 1998) with total of 72623 proteins (39% increase), the
corresponding release numbered 2.0. As was mentioned in
section 2, we preferred to run the evaluation procedure on
the SWISSPROT 33, since the updated version is not one
of the major releases, and therefore no corresponding
PROSITE or Pfam databases were available. However, for
reference, we checked the correlation of the old release and
the new release. Specifically, we checked: How many
clusters remained unchanged, how many clusters grew
larger due to the addition of new protein sequences, how
many clusters split, and how many clusters merged. This
procedure is used to identify those clusters which seem
‘‘stable’’ vs. ‘‘unstable’’ ones. A cluster in the first release of
ProtoMap is considered stable, if one of the following
conditions hold:

● The cluster remains the same in the new release.
● Only new protein sequences are added to the cluster in

the new release.
● Only new protein sequences and old singletons join the

cluster.
● The cluster perfectly splits into several smaller subclus-

ters.
● The cluster splits into several clusters, to which only

new sequences are added.
● The cluster splits into several clusters, each of which

augmented only by new sequences and old singletons.

Such clusters are well correlated with protein families.
All other clusters are considered unstable. Unstable clus-
ters are not necessarily ‘‘false’’ clusters. Some merges and

splits of clusters are proper responses to the new informa-
tion carried by the addition of new protein sequences. The
new clusters may in fact be better correlated with protein
families or subfamilies. Some are unfortunately improper.

The ratio between the two types of clusters can help in
assessing the stability of the ProtoMap system. The re-
sults are summarized in Table IX, based on the statistics of
1,892 clusters with more than five members in ProtoMap
1.2. This analysis shows that 89% of the clusters are
stable.
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