
Bounds on Unique-Neighbor Codes

Nati Linial∗ Idan Orzech†

Abstract

Let A be an m×n parity check matrix of a binary code of length n, rate R, and distance δn. This
means that for every δn > k > 0, every m × k submatrix of A has a row of odd weight. Message-
passing decoding algorithms require the stronger unique neighbor property. Namely, that every such
submatrix has a row of weight 1. It is well known that if δ ≥ 1

2
, then R = on(1) whereas for every

1
2
> δ there exist linear codes of length n→∞ and distance > δn with R bounded away from zero.

We believe that the unique neighbor property entails sharper upper bounds on the rate. Concretely,
we conjecture that for a proper choice of f(n) = o(n) and some constant ε0 > 0, every n× (n+ f(n))
binary matrix has an n × k submatrix with ( 1

2
− ε0)n ≥ k > 0 where no row weighs 1. We make

several contributions to the study of this conjecture.

1 Introduction

We consider here only binary codes C ⊆ {0, 1}n of length n. As usual, we denote the rate of C by
R = R(C) = 1

n log2 |C| and its distance by dist(C) = minx6=y,x,y∈C dH(x, y), where dH stands for the
Hamming distance. A fundamental open problem in coding theory seeks the best possible tradeoff
between R and 1 ≥ δ ≥ 0. We refer to this as

Problem 1.1. Determine, or estimate the real function

R(δ) = lim sup
n→∞

{R(C) | C ⊆ {0, 1}n, dist(C) ≥ δn}

A linear code is a linear subspace of the vector space Fn2 , which we identify with {0, 1}n. Such a
code is defined in terms of its parity check matrix A which is a d(1 − R)ne × n binary matrix. Namely,
C = {x | Ax = 0}.

Let S be a nonempty set of columns in a binary matrix and let z be the sum over the integers of the
columns in S. We say that the set S is 1-free if no entry of z equals 1, and we call S even, if all entries
of z are even integers. We refer to the number of 1-entries in a binary vector as its weight or sum.

Definition 1.2. Let A be a binary matrix.

• We let ε(A) be the smallest cardinality of a nonempty even set of columns in A.

• We let u(A) be the smallest cardinality of a nonempty 1-free set of columns in A.

• The maximum value of ε(A) over all binary m× n matrices is denoted ε(m,n).

• The maximum value of u(A) over all binary m× n matrices is denoted u(m,n).

With this, the question analogous to Problem 1.1 for linear codes suggests itself:
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Problem 1.3. Determine, or estimate the real function

RL(δ) := lim sup
n→∞

{R | there exists a d(1−R)ne × n binary matrix with ε(A) ≥ bδnc}

in other words, RL(δ) is the smallest real R such that

For any ρ > R and large enough n, every d(1−ρ)ne×n binary matrix has an even set of ≤ δn columns.

Message-passing algorithms offer a powerful approach to the decoding problem of linear codes C =
{x | Ax = 0}. In the analysis of such algorithms, A is viewed as the bipartite adjacency matrix of the
code’s factor graph. This is a bipartite graph (L,R;E), where L is the set of A’s columns and R its set
of rows, and edges correspond to 1-entries in A. Upon receiving a message y 6∈ C the receiver calculates
Ay 6= 0 and seeks to change y minimally so as to arrive at a word in C. We refer the reader to [1, 2] for
detailed discussion of such algorithms and only mention that the unique neighbor property plays a key
role in the analysis. Namely, the property that for some appropriate bound B, for every subset S ⊂ L of
cardinality |S| ≤ B there is a vertex v ∈ R that has exactly one neighbor in S. Equivalently, every 1-free
set of columns in A has cardinality bigger than B. For codes that satisfy such conditions, a decoding
algorithm due to Sipser and Spielman [9] can correctly decode incoming messages in linear time with not
too large error patterns. In this case (L,R;E) is a highly expanding bipartite graph. A full account of
this subject is to be found in [1].

In this view we ask:

Problem 1.4. Determine, or estimate the real function

RU (δ) := lim sup
n→∞

{R | there exists a d(1−R)ne × n binary matrix with u(A) ≥ bδnc}

in other words, RU (δ) is the smallest real R such that

For any ρ > R and large enough n, every d(1−ρ)ne×n binary matrix has a 1-free set of ≤ δn columns.

Clearly,
R(δ) ≥ RL(δ) ≥ RU (δ) for all δ ≥ 0

At present, we cannot even rule out the possibility that all these three functions are, in fact, identical. It is
easily verified that (i) All three are nonincreasing functions of δ > 0, and (ii) R(0) = RL(0) = RU (0) = 1.

It is also well known that R(δ), RL(δ) > 0 for 1
2 > δ and R(δ), RL(δ) = 0 for δ ≥ 1

2 .
We believe that the strict inequality RL(δ) > RU (δ) holds for at least some of the range 1

2 > δ > 0.
More specifically that RU vanishes already at some 1

2 > δ0. Concretely, we state

Conjecture 1.5. There is some positive function f = f(n) = o(n) and some ε0 > 0 such that every
n× (n+ f(n)) binary matrix has a 1-free set of ≤ ( 1

2 − ε0)n columns.

Let A be a parity check matrix of a linear code C ⊆ {0, 1}n. Of course C remains invariant under
elementary row operations on A. Also distances among vectors in C remain unchanged as A’s columns
get permuted. Consequently, in the study of RL(δ) as in Problem 1.3, there is no loss of generality in
assuming that A is in standard form, i.e., its first n columns form an order-n identity matrix. We pose:

Problem 1.6. Let n, k be positive integers, and let A be a binary n × (n + k) matrix A whose first n
columns form the order-n identity matrix. How large can u(A) be?

We often use the fact that u and ε are invariant under row and column permutations. The matrices
that we consider have size m× n or n× (n+ k) in different parts of the paper.
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1.1 Some Further Background

The literature on unique-neighbor codes is fascinating and yet we still know very little. In particular,
quantitative results in this area are few and far between. It is this lacuna that motivates our work. Alon
and Capalbo [7] found explicit constructions of unique-neighbor bipartite expander graphs (L,R;E) with
an even stronger property. Namely, every subset S ⊆ L of cardinality |S| ≤ ε|L| has at least α|S| unique-
neighbors in R, where ε, α > 0 are some absolute constants. This parameter α is sometimes referred to
as the graph’s unique-neighbor expansion. More recently Becker [8] showed how to construct such graphs
that are also Cayley graphs.

Let A be a parity check matrix of C := {x ∈ Fn2 | Ax = 0}. If A has bounded row and column weights
we say that C is an LDPC code. Equivalently, the above bipartite graph (L,R;E) has bounded vertex
degrees. As Sipser and Spielman [9] showed, if the expansion of this graph is high enough, then C has a
linear-time decoding algorithm, as long as the error rate is not too large. The correctness of this algorithm
crucially relies on the fact that these graphs also have a high unique-neighbor expansion. The work of
Sipser and Spielman has been subsequently improved several times. Viderman [10] proved that the same
conclusions hold as well for graphs with lower expansion rate, resp. unique-neighbor expansion rate.
Dowling and Gao [11] generalized the results to Tanner codes. They determined a range of parameters
for which linear-time decoding is possible. Namely, the (unique) expansion rate of the inner graph of
Tanner’s code, the distance of the inner code and the error rate.

Ben-Sasson and Viderman [6] used unique-neighbor expanders to construct robustly-testable codes by
taking their tensor products with another code with good distance and rate. They stress that unique-
neighbor expansion is a minimal requirement in order to argue that an expander code has a good distance.
A linear code with parity check matrix A is called smooth if its distance remains large also after a few rows
and columns are removed from A. It is called weakly-smooth if the above holds provided the removed
rows combined have a small number of nonzero entries. It is not known if unique-neighbor expander
codes are smooth. However, Ben-Sasson and Viderman showed that they are weakly-smooth, and can
therefore be used to form robustly-testable codes.

2 Our New Results

Our work addresses Problems 1.4 and 1.6. Problems 1.1 and 1.3 are mentioned here for context only.

1. We prove Conjecture 1.5 under the assumption of a lower bound on the weight of each row in A
(Theorem 3.1). In that case the statement holds in fact with f(n) = 0.

2. We show (Theorem 6.1) that Conjecture 1.5 cannot hold unless f(n) > log2(n).

3. We answer Problem 1.6 in full (Theorem 4.1).

4. Clearly ε(m,n) ≥ u(m,n) for all m and n. We find the smallest n > m for which the inequality is
strict (Theorem 7.1, Item 1).

3 The Effect of Large Row Weights

As we show next, matrices of sufficiently large row weights satisfy Conjecture 1.5. In contrast, finding
small 1-free sets in sparse matrices seems harder, and in Theorem 6.1 we use matrices with row sums 3
to derive a lower bound on f = f(n) without which the conclusion of Conjecture 1.5 fails to hold.

Theorem 3.1. 1. If A is a binary n× n matrix in which every row weighs at least 9, then it has an
n×m submatrix with m ≤ 0.49n with all row sums at least 2.

2. On the other hand, there exist binary n×n matrices where every row has weight 4, such that every
n×m submatrix with no row of weight 1 must satisfy m ≥ n/2.
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Proof. Let c be the smallest Hamming weight of the rows in such a matrix. Let us sample a random
set of columns by picking every column independently with probability ρ. We denote by X0, X1 be the
(random) sets of rows in the resulting submatrix of weight zero, resp. one. Next we correct every row
of weight zero/one by adding two/one columns to make its weight ≥ 2. This yields a set of columns as
described in the proposition of cardinality ≤ (ρ+ 2E(X0) + E(X1))n. Note that

E(X0) ≤ n(1− ρ)c + o(n) ; E(X1) ≤ ncρ(1− ρ)c−1 + o(n)

The first part now follows by observing that this expression is < 0.481n for c = 9, ρ = 0.4.
For the second part, let A be the n×n binary matrix whose rows are comprised of all n cyclic rotations

of the vector 140n−4. Given a vector x ∈ {0, 1}n \ {0}, let the vector Ax be defined by real arithmetic.
Clearly, Ax ∈ {0, 1, 2, 3, 4}n. Multiply on the left by the all-1 vector to conclude that ‖Ax‖1 = 4‖x‖1.
Note next that if (Ax)i = 0, then (Ax)i+1 mod n is either 0 or 1. Therefore, if Ax has no 1 coordinates,
then all its coordinates are ≥ 2, so that 4‖x‖1 = ‖Ax‖1 ≥ 2n and ‖x‖1 ≥ n/2, as claimed.

Part 2 of Theorem 3.1 reflects on the validity of Conjecture 1.5. It shows that to guarantee the
existence of small 1-free sets of columns, we must consider matrices with more columns than rows. This
statement is made quantitative in Theorem 6.1.

We suspect that part 1 of 3.1 remains valid even when all row weights are ≥ 5. However, this seems
to require a substantial new idea.

4 Matrices in Standard Form

We denote by uI(m,n) the maximum of u(A) for a binary m × n matrix in standard form A = [Im|B].
Answering Problem 1.6, we give an upper bound on uI(m,n) that is tight in infinitely many cases.

Theorem 4.1. For every positive integer k and n → ∞, every binary n × (n + k) matrix of the form

A = [In|B] has a 1-free set of at most n
Hk

+O(k) columns where Hk =
∑k
`=1

1
` is the k-th harmonic sum.

The bound is tight, that is uI(n, n+ k) = n
Hk

+O(k).

Proof. We denote by 〈u, v〉 the inner product of the two real vectors u and v. It is easy to describe all
1-free sets of columns in A: Start with a submatrix of B with column set S ⊂ [k] and observe the weight-1
rows in this submatrix. Then add all the corresponding columns in In to make the set 1-free. So, given
a matrix B, we can express the least size of a 1-free set of columns in A as the optimum of an integer
linear program. For a binary vector u ∈ {0, 1}k, let xu be the number of rows in B that equal u. Clearly,
xu is a nonnegative integer, and

∑
u∈{0,1}k xu = n.

If s is the indicator vector of S, then we must add at least
∑
{xu | 〈u, s〉 = 1} columns from In to

reach a 1-free set of columns. So, let M be the 2k × 2k binary matrix that is indexed by {0, 1}k. The
(u, v) entry of M equals 1 iff 〈u, v〉 = 1 (integer arithmetic), and conclude that

m+ k ≥ uI(n, n+ k) ≥ m

where

m = max y

subject to Mx ≥ 1 · y,
〈x, 1〉 = n and x ≥ 0 is a vector of integers

The ±k uncertainty in our bound on uI(n, n+ k) has to do with the size of S ⊂ [k] mentioned above.
We turn to solve the rational relaxation of the above ILP.

max y

subject to Mx ≥ 1 · y,
〈x, 1〉 = n and x ≥ 0
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We pass to the dual and find the 2k-dimensional vector w with

w0 = 0 and wu =
1(
k−1
|u|−1

) for every u 6= 0 in {0, 1}k

It follows that (wM)0 = 0, and if v ∈ {0, 1}k with |v| = j for some k ≥ j ≥ 1 then

(wM)v =
∑
i≥1

1(
k−1
i−1
)j(k − j

i− 1

)
=
j!(k − j)!
(k − 1)!

∑
i≥1

(
k − i
j − 1

)
=
j!(k − j)!
(k − 1)!

(
k

j

)
= k.

The first equality follows from the definition. The second only involves reorganizing terms. The third
one uses the standard and easy fact that for all positive integers s ≤ N there holds∑

r≤N

(
r

s

)
=

(
N + 1

s+ 1

)
In other words, wM = k(1− e0), and hence nk ≥ wMx ≥ w · 1y = 〈w,1〉 · y.

Also

〈w,1〉 =

k∑
i=1

(
k
i

)(
k−1
i−1
) = kHk.

It follows that

n

Hk
+O(k) ≥ uI(n, n+ k),

since an upper bound on the LP applies as well to the corresponding ILP, both of which seek to maximize
the same objective function.

The reverse inequality follows by letting

x := n
w

kHk

and observing that with similar calculations we get 〈x,1〉 = n, therefore Mx = 1 n
Hk
≥ 1y, hence uI of

an n× (n+ k) matrix with rows corresponding to such x is n
Hk

+O(k).
To get the lower? bound on the ILP, let Hk := ak

bk
written as a reduced rational. If n is divisible by

ak, say n = pak, then uI(n, n+k) = pbk +O(k), because in this case the optimal solutions to our LP and
the ILP coincide. More generally, if n = pak + q then uI(n, n+ k) ≥ b nak cbk +O(k) ≥ n

Hk
+O(k)− 1.

5 Some Useful Constructions

In this section we introduce a (2k − 1− k)× (2k − 1) binary matrix Uk for k = 2, 3, . . . to be used below.
We define Uk both recursively and directly. It is easy to verify by a simple inductive argument that the
two definitions coincide. Here is the recursive one:

U2 =
(
1 1 1

)
(1)

Uk+1 =

(
I2k−1 12k−1×1 I2k−1

0 0 Uk

)
(2)

In the direct definition of Uk we index its columns by all integers 2k − 1, 2k − 2, . . . , 1, in this order.
The rows are indexed by the subsequence of the above excluding the powers of 2. Each row of Uk has
weight 3. If the integer m ∈ {1, . . . , 2k − 1} is not a power of 2, say 2t+1 > m > 2t, then the three 1
entries in row m appear in columns m,m− 2t and 2t.
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For example,

U3 =


1 0 0 1 1 0 0
0 1 0 1 0 1 0
0 0 1 1 0 0 1
0 0 0 0 1 1 1


with rows called 7, 6, 5, 3 in this order and columns called 7, . . . , 1.

We note that Uk is a generator matrix of the generalized [2k−1, 2k−1−k, 3]2 Hamming code. Clearly
every such triplet belongs to the relevant generalized Hamming code. Also, Uk has a full row rank since
it contains an upper-triangular square submatrix called Tk which is attained by erasing those columns of
Uk that correspond to a power of two. The remaining submatrix is called Rk.

An interesting aspect of this construction is that it exploits the duality between Hamming Codes
and shortened Hadamard Codes. Since the former are generated by a matrix with row weights 3, it
is relatively easy to derive a lower bound on u. On the other hand, due to the fact that all vectors
in an order-N Hadamard Codes have weight N/2 it yields a upper bound on ε. Since these bounds
coincide they are both tight. Indeed, in the next section we show that these matrices attain the bounds
u(n, n+ k), ε(n, n+ k) (for the corresponding n, k) and are, in fact, equal.

We next construct for every k ≥ 2,m ≥ 1 a ((2k − 1)m− k)× ((2k − 1)m) binary matrix as follows.

Uk,m =



Tk Rk
. . .

...
Tk Rk

I(m−1)k

Ik
...
Ik


(3)

where the empty blocks are all-zero.

6 Conjecture 1.5 Can Hold Only If f is at Least Logarithmic

We prove next that u(n− log2 n− 1, n− 1) = ε(n− log2 n− 1, n− 1) = n
2 for infinitely many integers n.

Concretely,

Theorem 6.1. For every integer k ≥ 2 there holds

u(2k − 1− k, 2k − 1) = ε(2k − 1− k, 2k − 1) = 2k−1.

Proof. The proof proceeds by showing that

ε(2k − 1− k, 2k − 1) ≤ 2k−1 and u(Uk) ≥ 2k−1.

We recall the following well-known fact:

Proposition 6.2. Every n×(n+k) binary matrix A has an even set of at most
(

1 + 1
2k−1

)
n+k
2 columns.

This yields 2k−1 ≥ ε(Uk).
We turn to prove that u(Uk) ≥ 2k−1 by induction on k ≥ 2. For k = 2 the claim clearly holds. For

the induction step we use the recursive description of Uk+1 in Section 5. Consider a 1-free column set of
Uk+1. If it contains column 2k, then it must include at least 2k − 1 additional columns (from either side
of the column), for a total of ≥ 2k columns, as claimed.

Thus it suffices to consider a 1-free set of columns of the form L t R, where R,L is the subset of
columns from the 2k−1 rightmost, leftmost ones (respectively). By the induction hypothesis |R| ≥ 2k−1.
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For every r ∈ R, one of its first (upper) 2k − 1 coordinates contains a 1. Since column 2k is absent from
L t R, the (unique) matching column from the 2k − 1 leftmost columns should be picked, in order for
L tR to be 1-free. It follows that |L tR| ≥ 2k, completing the proof.

Theorem 6.1 and the weak monotonicity of u, ε (see Proposition 7.2 below) yield

Corollary 6.3. For every k, n it holds that u(n, n+ k) ≥ ε(n, n+ k)− 2k−1 − 1.

Further cases where ε and u coincide are provided by the following extension of Theorem 6.1:

Theorem 6.4. For every integers k ≥ 2 and m ≥ 1 there holds

u((2k − 1)m− k, (2k − 1)m) = ε((2k − 1)m− k, (2k − 1)m) = 2k−1m.

Proof. Again we bound u from below and ε from above. The bound on u uses the matrices Uk,m from
Section 5 and the bound on ε follows from Proposition 6.2. To show that u(Uk,m) ≥ 2k−1m, we consider
1-free sets of columns in Uk,m. The matrix Uk,m with its last k columns removed has no nonempty 1-free
sets, since it is an upper-triangular, full-rank matrix. So consider a 1-free set that includes t > 0 columns
among the last k columns of Uk,m. By Theorem 6.1 at least (2k−1 − t)m additional columns are needed,
namely at least 2k−1 − t from every Tk in the direct sum. The lower part of Uk,m necessitates exactly
(m− 1)t columns from the columns that contain the block I(m−1)k. In total the cardinality of the 1-free

set at hand is at least t+ (2k−1 − t)m+ (m− 1)t = 2k−1m, as claimed.

7 Between u and ε When n−m is Bounded

In this section we compare between u(m,n), ε(m,n) when n−m ≥ 1 is bounded. Here is our main result:

Theorem 7.1. 1. u(4, 8) = 3 whereas ε(4, 8) = 4. This is the first case where ε > u.

2. u(n, n+ 1) = ε(n, n+ 1) = n+ 1. The case of equality is fully characterized.

3. u(n, n+ 2) = ε(n, n+ 2) = b 2n+4
3 c.

4. If n 6≡ −1 mod 7, then u(n, n+ 3) = ε(n, n+ 3) = b 4n+12
7 c. Also, u(7m−1, 7m+ 2) = 4m for every

positive integer m.

Proof. We start with several simple observations:

Proposition 7.2. 1. u(m,n) ≤ ε(m,n) ≤ m.

2. Both u(m,n) and ε(m,n) weakly increase with m and decrease with n.

3. u(m+ 1, n+ 1) ≥ u(m,n), ε(m+ 1, n+ 1) ≥ ε(m,n).

4. If a binary matrix A has a row of weight 1, then u(B) = u(A), ε(B) = ε(A) where B is attained by
from A elementary collapse, i.e., by deleting the corresponding row and column of A.

7.1 Proof of Item 1: u(4, 8) = 3 < 4 = ε(4, 8).

Proof. Proposition 6.2 implies that ε(4, 8) ≤ 4. On the other hand ε(A) = 4 for

A =


1 0 0 0 1 1 1 0
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1

 (4)

7



We now show that u(4, 8) = 3. The following matrix yields u(4, 8) ≥ 3
1 0 0 0 1 1 0 0
0 1 0 0 0 1 1 0
0 0 1 0 0 0 1 1
0 0 0 1 1 0 0 1

 (5)

Next we show that u(A) ≤ 3 for every binary 4× 8 matrix A. We reduce to the case that every column
of A weighs at least 2. If A has a zero column, then clearly u(A) = 1. If some column of A weighs 1,
say a1,1 = 1 and ai,1 = 0 for i = 2, 3, 4, consider the submatrix B of A that is obtained by erasing its
first row and column. If B has an all-zero column, then u(A) ≤ 2, and if B has two equal columns, then
u(A) ≤ 3. The only remaining case is when

B =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 (6)

up to permutations of the rows and columns. Consider the weight w =
∑
a1,j of row 1 in A. If w = 1,

then a1,j = 0 for all j ≥ 2. Consequently, u(A) = u(B) = 3, since every set of columns that is 1-free in B
is also 1-free in A. If w ≥ 3 there are at least two indices α > β > 1 such that a1,α = a1,β = 1. If columns
α, β of B are the vectors u resp. v, then some column γ corresponds to u ⊕ v (mod 2 sum). Columns
α, β, γ form a 1-free set in A. Finally, if w = 2, there is exactly one index δ > 1 such that a1,δ = 1. But
then we can find a triplet of columns of the form u, v, u⊕ v in B none of which is column δ.

We can now assume that every column of A has weight 2, 3 or 4. Also A has no repeated columns, or
else u(A) = 2. Also A can have at most two columns of weight ≥ 3, for any three such distinct vectors
form a 1-free set. Consequently A has exactly two columns of weight ≥ 3 and each of the six columns of
weigh 2. But the latter 6-tuple contains a 1-free set of three columns.

Note that 4, 8 are the minimal m,n for which u(m,n) < ε(m,n): The other parts of the present
theorem show that equality holds when n − m ≤ 3. For (m,n) = (1, 5), (2, 6) equality trivially holds
(with values of 2 for both cases). Also u(3, 7) = ε(3, 7) = 3 since both are ≤ 3, with equality for the
canonica parity-check matrix of the [7, 4, 3]2 Hamming code.

7.2 Proof of Item 2

It is clear that u(n, n+ 1) = ε(n, n+ 1) = n+ 1. Also ε(A) = n+ 1 for an n× (n+ 1) matrix A iff it has
a full F2-rank and all its row weights are even. Let A = AT be the edges vs. vertices incidence matrix of
an (n+ 1)-vertex tree T . It is easily seen that u(A) = n+ 1. As we show, no other examples exist.

Proposition 7.3. If u(A) = n + 1 for some n × (n + 1) binary matrix A, then A = AT for some
(n+ 1)-vertex tree T .

Proof. A cannot have a zero row, or else u(A) ≤ ε(A) ≤ 2(n+1)
3 , by Proposition 6.2. As in Proposition 7.2,

Item 4, any row of weight 1 in A can be collapsed, without changing ε and u. So w.l.o.g. every row of A
weighs at least 2. Let us view A as the edges vs. vertices incidence matrix of a hypergraph G = (V,E).
An edge in E of size 2 (resp. ≥ 3) is called light (resp. heavy). Let L ⊆ E be the set of light edges. If all
edges in E are heavy, we can omit a single column of A and obtain a matrix in which all rows weigh at
least 2, contrary to our assumption that u(A) = n+ 1.

The graph (V,L) has no isolated vertices, for if v ∈ V is incident with no light edge, then V \ {v}
is a 1-free set, contrary to our assumption. If L = E, then the vertex set of any connected component
of G is a 1-free set. Therefore G is a connected graph with n + 1 and n edges, i.e., a tree, as claimed.
On the other hand, if L 6= E, the graph (V,L) must be disconnected, since it has n + 1 vertices and
at most n − 1 edges. Let (V1, L1), . . . , (Vk, Lk) be the connected components of (V,L). By the above∑
|Vi| = n+ 1, |Li| ≥ |Vi| − 1, so that |L| =

∑
|Li| ≥ n+ 1− k, with equality iff (V,L) is a forest with

no isolated vertices. Consequently, at most k − 1 edges in E are heavy.
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Let B be the edges vs. vertices matrix of the hypergraph that results from G by shrinking each Vi
to a single new vertex vi. Since L 6= ∅ this actually reduces the size of the matrix and we can induct.
Every 1-free set S of B yields a 1-free set in A by inflating each vi ∈ S to Vi. In particular u(B) < k
would imply u(A) ≤ n. Consequently, B is a (k − 1) × k matrix with u(B) = k. By induction it is the
edge-vertex matrix of K, a tree with vertex set {v1, . . . , vk}. Say that v1 is a leaf of K, and let e be the
single edge of K that is incident with v1. We claim that either V1 or V \ V1 comprise a 1-free set of A.
Indeed, only the row corresponding to e may have weight 1 in the submatrix of A corresponding to either
V1 or V \ V1. But it is impossible that both cases occur, for that would mean that the edge e has size
2 contrary to the fact that e is a heavy edge. Since both V1, V \ V1 are nonempty, this contradicts our
assumption that u(A) = n+ 1. This establishes case 2 of the theorem.

7.3 Proof of Items 3, 4

The proof for k = 2 splits to cases according to the value of n mod 3. When n ≡ 1 mod 3 we have
u(3m − 2, 3m) = ε(3m − 2, 3m) = 2m by Theorem 6.4. By Proposition 6.2, u, ε do not change as we
move to n = 3m− 1. Finally, for n = 3m we introduce the matrix

A :=

(
U2,m 0
0 I2 I2

)
with U2,m as defined in Section 5. It is easy to see that u(A) = ε(A) = 2m+ 1. By Proposition 6.2 this is
also the upper bound on u(3m, 3m+2), ε(3m, 3m+2). We conclude that u(n, n+2) = ε(n, n+2) =

⌊
2n+4

3

⌋
as claimed.

The analysis when k = 3 is somewhat more involved and proceeds according to the value of n mod 7.
We start with the upper bound: By Proposition 6.2, ε(n, n+ 3) ≤ b 4n+12

7 c. This bound is tight, except
if n ≡ −1 mod 7, when it can be reduced by 1 due to Griesmer’s bound [4]:

Proposition 7.4. Every k-dimensional binary linear code of distance d has length at least
∑k−1
i=0

⌈
d
2i

⌉
.

Indeed, our general upper bound is ε(7m− 1, 7m+ 2) ≤ b 28m+8
7 c = 4m+ 1, but by Griesmer’s bound

if the code’s distance is 4m+ 1, then its length, is at least 4m+ 1 + d 4m+1
2 e+ d 4m+1

4 e = 7m+ 3.
We proceed to deal with the lower bounds. The case k = 3 of Theorem 6.4 gives u(7m − 3, 7m) =

ε(7m− 3, 7m) = 4m. Namely, u = ε when n ≡ 4 mod 7.
Item 3 of Proposition 7.2 and Proposition 6.2 yield

u(n− 1, n+ 2) ≤ u(n, n+ 3) ≤ ε(n, n+ 3) ≤
⌊

4

7
(n+ 3)

⌋
.

When u(n− 1, n+ 2) =
⌊
4
7 (n+ 3)

⌋
, this trivially allows to derive the case n ≡ r+ 1 mod 7 from the case

n ≡ r mod 7. This works verbatim for r ≡ ±2 mod 7. When n ≡ 0, 1, 3 mod 7, an additional argument
is needed. To this end, we extend U3,m from Section 5 to an n × (n + 3) matrix for the appropriate n.
This resembles the construction of Uk,m from Uk, and the case k = 2. In all three cases, these matrices
show that u(n, n+ 3) attains the upper bound on ε(n, n+ 3), namely

⌊
4
7 (n+ 3)

⌋
. Hence we get in each

case a matrix U such that ε(n, n + 3) = u(U) ≤ u(n, n + 3). For illustration, when n = 7m, we use the
matrix U3,m to construct

U :=

(
U3,m 0
0 I3 I3

)
Note that 4m+ 1 = u(U) ≤ u(7m, 7m+ 3) and ε(7m, 7m+ 3) ≤ 4m+ 1 from Proposition 6.2, so in total
u(7m, 7m+ 3) = ε(7m, 7m+ 3) = 4m+ 1.

We note that Item 4 holds as well when n = 1, 2, 3, but we skip this verification.

This concludes the proof of Theorem 7.1.
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8 Open Problems

Problem 8.1. The most obvious question is Conjecture 1.5 which remains open.

Problem 8.2. What is the smallest c for which the conclusion of Theorem 3.1 holds? Is it 5?

Problem 8.3. Let u3(m,n) denote maxu(A) of an m × n binary matrix A where every row weighs 3.
Proposition 7.3 implies that u3(n, n+ 1) < u(n, n+ 1), but perhaps u3(m,n) = u(m,n) when n > m+ 1.
Some supportive evidence for this is that u3(4, 8) = u(4, 8), u3(2k − 1− k, 2k − 1) = u(2k − 1− k, 2k − 1).
We note that more generally, u3((2k − 1)m− 1, (2k − 1)m) = u((2k − 1)m− 1, (2k − 1)m) holds, because
the matrices Uk,m can be modified so all rows weigh 3 without changing u, ε.

Problem 8.4. The proof of Theorem 3.1 suggests a more general setup. We seek a 1-free set of columns in
a binary matrix A. Having committed to some subset of columns, the rows of A are split into: I0tI1tI∗,
those of weight 0, 1 and ≥ 2, respectively. To extend our initially chosen set into a 1-free set, we need an
additional set of columns J , the weight of whose I0 and I1 rows differ from 1, 0 respectively. Under what
conditions is it possible to pre-specify which row sums we wish to be 6= 0 and which 6= 1?

Remark 8.5. Assuming that Conjecture 1.5 is valid, it is not clear how it can be established. As
Theorem 6.1 shows, methods that work for square matrices and matrices with only a few more columns
than rows as in Theorem 3.1 are not likely to deliver a full answer.
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