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Abstract

For a graph G and an integer t we let mcct(G) be the smallest m such that there
exists a coloring of the vertices of G by t colors with no monochromatic connected
subgraph having more than m vertices. Let F be any nontrivial minor-closed
family of graphs. We show that mcc2(G) = O(n2/3) for any n-vertex graph G ∈ F .
This bound is asymptotically optimal and it is attained for planar graphs. More
generally, for every such F , and every fixed t we show that mcct(G) = O(n2/(t+1)).
On the other hand we have examples of graphs G with no Kt+3 minor and with
mcct(G) = Ω(n2/(2t−1)).

It is also interesting to consider graphs of bounded degrees. Haxell, Szabó, and
Tardos proved mcc2(G) ≤ 20000 for every graph G of maximum degree 5. We
show that there are n-vertex 7-regular graphs G with mcc2(G) = Ω(n), and more
sharply, for every ε > 0 there exists cε > 0 and n-vertex graphs of maximum degree
7, average degree at most 6 + ε for all subgraphs, and with mcc2(G) ≥ cεn. For
6-regular graphs it is known only that the maximum order of magnitude of mcc2

is between
√
n and n.

We also offer a Ramsey-theoretic perspective of the quantity mcct(G).

1 Introduction

In the classical graph coloring problem we assign a color to each vertex so that no two
vertices of the same color are adjacent. In other words, each monochromatic connected
component must be a single vertex. In the problems that we study here, this require-
ment is relaxed and we only demand that monochromatic connected components should
have small cardinality. Concretely, for a graph G and an integer t we define mcct(G) as
∗Supported by the Israel Science Foundation.
†This paper is partially based on this author’s undergraduate Amirim honours program project.
‡Supported by NSERC grant 611470 and the Hungarian Foundation for Scientific Research Grant

(OTKA) Nos. T037846, T046234, AT048826 and NK62321.

1



the smallest integer m such that the vertices of G can be t-colored so that no monochro-
matic connected component has cardinality exceeding m. In particular, mcct(G) = 1
if and only if G can be properly t-colored.

Here are some technicalities before we survey earlier work on this subject. When
we consider a graph G, n always denotes the number of vertices. For a set S ⊆ V (G),
we let G[S] denote the subgraph of G induced by S. We use the standard asymptotic
language and conveniently ignore integrality issues in our computations. Some of the
examples we consider are line graphs. We recall that the line graph of a graph H is
defined as L(H) = (E(H), {{e, e′} : e∩ e′ 6= ∅}). Clearly, mcct(L(H)) is the smallest m
such that there is a t-coloring of the edges of H so that every monochromatic connected
subgraph of H has ≤ m edges.

The simplest form the well known HEX lemma states that in any two-coloring of
the triangulated m by m grid Gm we either have a path from the left edge of the grid
to the right edge in one of the colors or else we have a path from the top edge to the
bottom edge in the other color. As a consequence we have that mcc2(Gm) ≥ m. It is
easy to see that equality holds.

The earliest reference we are aware of that investigates the parameter mcct di-
rectly is Kleinberg, Motwani, Raghavan, and Venkatasubramanian [KMR+97], where
the question was motivated by a problem in computer science concerning dynamically
evolving databases. Among others, the authors prove that mcc3 is unbounded for pla-
nar graphs, and that there is a constant ε > 0 such that for all (sufficiently large) d,
there are d-regular graphs G with mccε

√
d(G) = Ω(n).

Apparently independently, the possibility of bounding mcct(G) by a constant for
graphs of bounded degree has been investigated by graph theorists. The results concern
mainly the case t = 2. It is easy to see that mcc2(G) ≤ 2 for any graph G of maximum
degree 3. Alon, Ding, Oporowski, and Vertigan [ADO+03] proved that mcc2(G) ≤ 57
for every graph G of maximum degree 4. Haxell, Szabó, and Tardos [HST03] improved
this to mcc2(G) ≤ 6 and proved that mcc2(G) ≤ 20000 for every graph G of maximum
degree 5. Robert Berke [B08] improved the latter bound to 1908. On the other hand,
the HEX lemma shows that that for graphs G with maximum degree 6 mcc2(G) can be
arbitrarily large. For graphs G of maximum degree 3 it was also shown in [BS05] that
they admit two-coloring where one color induces an independent set, while the other
color induces components of size at most 189. Earlier work on this subject [DOS+96],
[JW96] mainly focused on more specific questions concerning line graphs of 3-regular
graphs. These investigations culminated in [Tho99] showing that the edges of every
3-regular graph can be 2-colored so that each monochromatic component is a path of
length at most 5.

The Hadwiger conjecture is one of the most intriguing open problems on graph
coloring. In a recent paper Kawarabayashi and Mohar [KM07] consider an approach
to it that is based on coloring with no large monochromatic connected components for
minor closed families of graphs. Their main result says that there exist a function f
such that mccd15.5ke(G) ≤ f(k) for any k > 1 and any graph G having no Kk minor.

We should also mention that there is a fairly rich literature that deals with the
notion of t-vertex coloring where each monochromatic connected component has a small
diameter, see e.g. [LS93]. This line of research originated in the field of distributed
computing.

Here are the main results of the present paper. First we show that the triangulated
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grid of the HEX lemma does not give maximal mcc2 value among planar graphs with
a fixed number of vertices and find the order of magnitude of this maximum.

Theorem 1.1 For every planar graph G we have mcc2(G) = O(n2/3) and this bound
is tight.

More generally, for every nontrivial minor-closed family of graphs F (i.e., F does
not contain all graphs) and t ≥ 2 there exists a constant C = CF ,t such that if G belongs
to F , then mcct(G) ≤ Cn2/(t+1). On the other hand, for every t there exist graphs with
no Kt+3 minor and with mcct(G) ≥ C0n

2/(2t−1)). Here C0 > 0 is an absolute constant.

For bounded tree-width families of graphs we find for every t ≥ 2 how large mcct(G)
can get:

Theorem 1.2 If the tree-width of G is bounded by a constant (equivalently, if G ex-
cludes a fixed planar minor), then mcct(G) = O(n1/t). This bound is asymptotically
optimal for every fixed t.

The following theorem contrasts with the result of [HST03] on graphs of maximum
degree 5 mentioned above. It would be interesting to find how big mcc2(G) can get for
graphs of maximum degree 6. The HEX lemma proves that it can be as large as

√
n

but we do not know whether it can be linear.
The following theorem contrasts the result of [HST03] of maximum degree 5 graphs

mentioned above. It would be interesting to find the how big mcc2(G) can get with
maximum degree 6 graphs. The hex lemma proves that it can be as large as

√
n but

we are do not know whether it can be linear.

Theorem 1.3 For every ε > 0 there exists a constant cε > 0 and arbitrarily large
graphs G so that

• Every vertex in G has degree at most 7,

• Every subgraph of G has average degree at most 6 + ε,

• mcc2(G) ≥ cεn.

As already mentioned, the questions we consider here have independently originated
in computer science and in graph theory. Graph coloring is, of course, one of the most
fascinating parts of graph theory. Due to its great significance and the famous open
questions about it, many different variations on the basic theme are being investigated
(see, e.g., [JT95]) and the present problems can be viewed as part of this ongoing
research effort.

What is less obvious is the connection between the graph invariants we consider
here and Ramsey Theory. The usual perception is that Ramsey-type theorems express
the fact that large systems necessarily contain “highly regular islands”. We suggest
that many Ramsey-type results can be viewed as “sum theorems”. Specifically, let G
be a class of graphs closed under taking subgraphs. Given a graph G, we ask for the
smallest number of members in G whose union is G. Thus when G consists of all graphs
without a k-clique we encounter the classical Ramsey problem. When it is the class
of all graphs not containing a given subgraph we recover the so-called Graph Ramsey
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Theory. Finally if G contains all graphs in which each connected component has small
cardinality we arrive at our present problem. We believe that this perspective deserves
further research. Needless to say, this concept extends beyond graphs and unions. Other
mathematical objects and other appropriate operations can be considered. Given an
object G and a class G, one seeks the most economical way of expressing G as a “sum”
of members in G.

There are certain classes of graphs for which the study of coloring with small
monochromatic connected components is particularly interesting. Let Dd

m denote the d-
dimensional grid with all diagonals; that is, Dd

m is the graph with vertex set {1, 2, . . . ,m}d
where the two vertices u, v are adjacent if ‖u − v‖∞ = maxi |ui − vi| ≤ 1. The
study of mcc for this graph and its relatives leads to very interesting problems which
bring together combinatorics geometry and topology. The d-dimensional version of
the well-known HEX lemma (see Gale [G79] and Linial and Saks [LS93]) implies that
mccd(Dd

m) ≥ m (and a simple coloring shows an O(m) upper bound for every fixed d).
More colors allow for constant size components, i.e., we have mccd+1(Dd

m) = O(1) for
every fixed d. For two colors, Matoušek and Př́ıvětivý [MP07] proved mcc2(Dd

m) ≥
md−1 − d2md−2, which nearly matches the obvious upper bound (layer-by-layer 2-
coloring) of md−1. The behavior of mcct(Dd

m) for 3 ≤ t < d is still unknown and
remains an intriguing open problem.

2 Excluded minors, separators, and coloring

In this section we prove the upper bounds in Theorems 1.1 and 1.2.
A subset C ⊆ V of the vertex set of a graph G = (V,E) is called a separator if

no component of G[V \ C] has more than 2
3 |V | vertices (the choice of the constant 2

3
is somewhat arbitrary). By the well-known planar separator theorem of Lipton and
Tarjan [LT79], every planar graph G has a separator with at most O(

√
n ) vertices.

More generally, for every h-vertex graph H, every G containing no minor isomorphic
to H has a separator with at most h3/2√n vertices [AST90]. We will also need that
graphs of bounded tree width have bounded size separators. In particular, a graph of
tree width w has a separator of size w + 1, see [RS86].

In view of these results, the upper bounds in Theorems 1.1 and 1.2 all follow from
the following proposition.

Proposition 2.1 Let G be a class of graphs closed under taking induced subgraphs such
that every G ∈ G has a separator with at most Knγ vertices, where γ ∈ [0, 1) and K
are constants depending only on G. Then for every G ∈ G we have

mcc2(G) = O(n1/(2−γ)),

and more generally, for any t ≥ 2,

mcct(G) = O(n1/(t−(t−1)γ)),

where the hidden constants of proportionality depend on K, γ, and (in the second case)
on t
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Figure 1: The recursive algorithm for 2-coloring via separators.

Proof. First we deal with the special case t = 2. Given an n-vertex graph G, let
n0 := bn1/(2−γ)c be a threshold parameter. We present a simple algorithm producing
a 2-coloring of V (G). The algorithm maintains a set S of vertices, initialized to ∅
and the list L of the connected components of G[V (G) \ S] initialized to {G}. While
L contains at least one graph with more than n0 vertices, we select one such graph
Gi ∈ L arbitrarily, we remove it from L, we find a separator Ci of Gi of size at most
K|V (Gi)|γ , we set S := S∪Ci, and we add all of the components of Gi[V (Gi]\Ci] to L.
The algorithm ends when L contains only graphs of size at most n0; at this moment,
we color the vertices of S blue and all remaining vertices (i.e., the vertices of all graphs
in L) red and we finish. The algorithm is illustrated in Fig. 1.

By construction, no red component in this coloring has more than n0 vertices, and
it suffices to show |S| ≤ 3Kn1/(2−γ) at the end of the algorithm (S can form a single
blue component at worst). We use the following charging scheme: Whenever we select
a separator Ci in a graph Gi, we let each vertex of Gi pay K|V (Gi)|γ−1 units. Since
|Ci| ≤ K|V (Gi)|γ , the total paid by all vertices of Gi at this step is at least |Ci|. To
bound the size of S it is enough to bound the total charge paid by all vertices in all
steps. We consider an individual vertex v ∈ V (G) and we bound the total charge paid
by it throughout the whole algorithm. There may be several successive charges, since
v first pays as a vertex of G, and then possibly as a vertex of some of the Gi. Let xj
be the amount paid when v is charged the jth time, j = 1, 2, . . . , q. We observe that
this is a fast increasing sequence as xj−1 ≤ (2/3)1−γxj for all j, since the component of
Gi containing v always has at most two-third of the vertices of Gi. The largest charge
paid is xq ≤ Knγ−1

0 since only graphs Gi with at least n0 vertices get partitioned, and
hence the xj are bounded from above by a geometric series. Thus the total charge paid
by v is O(nγ−1

0 ). So |S| ≤ O(nnγ−1
0 ) = O(n1/(2−γ)).

Next, we consider the case of t > 2 colors. We proceed by induction on t, assuming
that for every n-vertex graph G ∈ G we can construct a coloring with t − 1 colors
witnessing mcct−1(G) = O(n1/(t−1−(t−2)γ)).

For the induction step, we consider a G ∈ G and we apply to it the algorithm above
with the following modifications: This time we let the threshold be n0 := bn1/(t−(t−1)γ)c,
and at the end, we color G[S] by t− 1 colors using the inductive assumption, while the
vertices not belonging to S get color t.

By the above analysis, we have |S| = O(nnγ−1
0 ), and by induction, the monochro-

matic components in colors 1 through t − 1 have size at most O(|S|1/(t−1−(t−2)γ)) =
O(n1/(t−(t−1)γ)). The components in color t have size at most n0 by construction. This
finishes the proof of Proposition 2.1. 2
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Figure 2: The lower bound construction for planar graphs, drawn for k = 3.

3 Lower bounds for planar graphs and for excluded mi-
nors

To prove that the bound in Theorem 1.1 for mcc2(G) is tight for planar graphs G, we
construct planar graphs G with mcc2(G) = Ω(n2/3). For every integer k we construct
G = Gk on n = 2k3 + 1 vertices, as indicated in Fig. 2. This G is constructed from a k
by k2 grid Z, a path P of k3 vertices, and an extra vertex x. For 1 ≤ i ≤ k2 we denote
the ith column of Z by Ci, and we let vi be the top vertex of Ci. We break the path P
into consecutive intervals I1, . . . , Ik2 of k vertices each and we connect the vertices of Ii
with vi. We let Ri = Ci ∪ Ii and call this a rib of G. We connect x with all vertices in
P . Finally, we add diagonals to all quadrilateral faces of the planar graph constructed
so far, so that it becomes a triangulated polygon, that is, a planar graph where all faces
except possibly for one are triangles.

Our main tool is the following lemma about triangulated polygons (a very similar
lemma appears in [MP07]). For a set S of vertices in a graph we denote by ∂S the set
of vertices that are not in S but have a neighbor in S.

Lemma 3.1 Let G be a triangulated polygon and let S ⊆ V (G) be such that G[S] is
connected. Suppose that two vertices u, v ∈ ∂S are not separated by S in G. Then there
is a path between u and v that is entirely included in ∂S.

Proof. This is a simple consequence of the planar HEX lemma. Since G[S] is connected
and u, v ∈ ∂S, there is an u-v path P1 with all internal vertices in S. Since S doesn’t
separate u from v, there is another u-v path P2 that avoids S. We consider subgraph
of H consisting of the cycle P1 ∪ P2 plus the part of G that triangulates the interior of
this cycle (assuming that the single non-triangular face of G is the outer face). We add
two new vertices z and t and we connect z to all vertices of P1 and t to all vertices of
P2. The resulting graph H is a triangulation of the cycle uzvt.

We color blue all vertices in ∂S including u and v, and we color red all other vertices
of H including z and t. By the HEX lemma (as stated, e.g., in [MN98]) we have either
a blue u-v path, which is what we want, or a red z-t path Q. We want to exclude the
latter possibility. Let us imagine that we follow the red path Q from t to z and we
watch the distance to S in H. Since t is adjacent only to P2, whose vertices are not
in S, initially at t this distance is at least 2. On the other hand, since the red vertices
connected to z are inner vertices of P1 and thus in S, the penultimate vertex in Q is
in S. Consequently, there is a vertex in Q at distance 1 from S, but such a vertex was
colored blue—a contradiction. 2

We need the following consequence of Lemma 3.1:

Corollary 3.2 Consider a red-blue vertex coloring of the graph G = Gk, where x is
red. Let S be the connected component of x in the red subgraph. If there is a connected
component of G \ S containing at least r complete ribs, then G has a blue connected
subgraph with at least rk vertices.
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Proof. If a rib Ri is S-free (that is, contains no vertex in S), then the k vertices in
the interval Ii are contained in ∂S and are therefore blue. For any two S-free ribs Ri,
Rj contained in the same connected component of G \S, we choose vertices u ∈ Ii and
v ∈ Ij (arbitrarily). The previous lemma now shows that u and v are connected by a
blue path. 2

We can now show that any two-coloring of G has a monochromatic connected sub-
graph of at least k2/2 vertices. As in the corollary, we assume that x is red and we let
S be the connected component of x in the red subgraph. We may assume |S| ≤ k2/2,
for otherwise, we have a large red component. Hence there are at least k2/2 S-free ribs.
We want to show that at least k/2 of them are in the same connected component of
G \ S; then we will be done by the corollary.

Since |S| < k2, at least one of the k rows of the grid Z contains fewer than k vertices
from S. It follows that the S-free ribs live in at most k connected components of G\S.
So there must be at least k/2 of them in the same connected component as claimed. 2

For m ≥ 1 and a graph G let cone(mG) be a graph constructed by taking the union
of m isomorphic and pairwise disjoint copies of G (no edges between the copies) and
connecting all of their vertices to an additional new vertex, called the apex.

Lemma 3.3 Let t ≥ 1, let G be a graph, and let m = mcct(G). Then mcct+1(cone(mG)) ≥
m.

Proof. Let us consider a coloring of the vertices of cone(mG) with t + 1 colors, and
let us assume that the apex has color t + 1. Clearly, all vertices of color t + 1 form a
connected subgraph, so if there are at least m of them we have our large monochromatic
connected subgraph. Otherwise, one of the copies of G lacks color t+ 1 and the claim
follows. 2

Notice that as we pass from G to cone(mG), the number of vertices grows (approx-
imately) m times, but other parameters grow slowly: the tree width grows by at most
one, the size of the largest clique minor grows by one, and if G is outerplanar, then
cone(mG) is planar.

To prove the existence statement in Theorem 1.1, we simply take the planar graph
Gk constructed at the beginning of this section and we apply the above lemma t − 2
times with m = k2/2. Then mcct of the resulting graph is at least k2/2, and the number
of vertices is O(k2t−1). This finishes the proof of Theorem 1.1.

To prove the existence statement statement in Theorem 1.2 we need a different
base graph: let Fk be the “fan” consisting of a k-vertex path and an additional vertex
adjacent to all vertices of this path. Clearly, Fk is an outerplanar graph of tree width
2. A straightforward computation shows that mcc2(Fk) = Θ(

√
k ) (this also appears

in [ADO+03]). Applying the above lemma to Fk t − 2 times with m = mcc2(Fk), we
obtain a graph of tree width at most t on O(kt/2) vertices with mcct = Ω(

√
k). This

finishes the proof of Theorem 1.2.

The case t = 3 of the construction for the proof of Theoremt:treewidth yields n-
vertex planar graphs with mcc3 at least Ω(n1/3). These very graphs were used in
[KMR+97] to show that mcc3 is not bounded for planar graphs.
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4 Edge expansion and degree 6 + ε

In this section we prove Theorem 1.3. The graphs we construct are line graphs G =
L(H). So the property that we need is that in every 2-coloring of E(H) there are
monochromatic connected components containing a positive fraction of the edges of H.
To this end, it suffices to show that small subgraphs of H have small average degrees,
as the next observation shows:

Lemma 4.1 Let H be a graph with average degree d. Suppose that every subgraph on p
or fewer vertices in H has average degree strictly smaller than d/t. Then mcct(L(H)) ≥
p.

Proof. If F ⊆ E(H) is the largest color class in a t-coloring of E(H), then the graph
(V (H), F ) has average degree at least d/t. Consequently, some connected component
of (V (H), F ) has average degree at least d/t. Such a connected component must have
more than p vertices, and thus at least p edges. 2

In the proof of Theorem 1.3, we will use a suitable random graph (with bounded
vertex degrees) for H. The basic idea is that random graphs are typically very good
expanders. This means that every sufficiently small set S ⊂ V (H) has many neighbors,
hence most of the edges incident to S leave S, and consequently, the average degree of
H[S] is small. More precisely, it turns out that if |S| is sufficiently small and if H[S] is
connected, then this subgraph is nearly a tree in the sense that the average degree in
H[S] is just a little bigger than 2. Here sufficiently small means that |S| < β|V (H)|,
where β > 0 is a suitable small constant depending on how close we want to get to
average degree 2.

A result about this almost-tree behavior of small sets in random regular graphs
appears explicitly in [HLW06]. In particular, Theorem 4.16, part (1) in [HLW06] tells
us that for every d ≥ 3 and every δ > 0 there exists β = β(d, δ) > 0 such that almost
every d-regular graph H on m vertices has average degree of H[S] at most 2 + δ for all
S with at most βm vertices. This, together with Lemma 4.1, immediately yields the
following weaker analogue of Theorem 1.3: There exist arbitrarily large 8-regular graphs
G with mcc2(G) = Ω(n). Indeed, we choose H as a 5-regular graph on m vertices (thus,
G = L(H) is 8-regular) satisfying the conclusion of the statement quoted above with
δ = 0.4. Then for β = β(5, 0.4), every S ⊆ V (H) with at most βm vertices induces
a subgraph average degree at most 2.4, and hence Lemma 4.1 with t = 2 and d = 5
shows mcc2(L(H)) ≥ βm.

In order to lower the maximum degree of G to 7 and the maximum average degree
to 6 + ε, we will use a random H where a small fraction of vertices have degree 5, all
others have degree 4, and no two degree-5 vertices are connected.

The random graph model. It is easier to deal with random bipartite graphs. Most
of the literature in this area deals with regular random graphs, but we need a suitable
mixture of vertex degrees, and so we prescribe the degree individually for each vertex.
That is, we have two disjoint sets A and B of vertices, |A| + |B| = m, and for every
v ∈ A ∪ B we specify a number d(v) ∈ {1, 2, . . . , D}, where D is a constant. These
degrees and the sizes of A and B are related by the condition d(A) = d(B), where
we use the notation d(S) =

∑
v∈S d(v). Hence |A| = cAm, |B| = cBm for constants

8



cA, cB. To generate the random graph, every vertex v starts with d(v) “half-edges”,
and then the half-edges of all vertices in A are matched at random to the half-edges of
all vertices in B (this is a configuration model of generating random bipartite graphs).
We note that the resulting H may have multiple edges, but the line graph L(H) we are
interested in is still a simple graph.1

The following lemma speaks about number of vertices adjacent to S; the number
of edges is then obtained as a simple consequence.

Lemma 4.2 Let D be a fixed integer. Then for every δ > 0 there exists β = β(D, δ) > 0
such that if H is generated according to the above model (with an arbitrary choice of
the d(v)’s), then with probability 1 − o(1) (as m → ∞), every S ⊆ A with |S| ≤ βm
has at least d(S)− (1 + δ)|S| neighbors in B.

Proof. Let us write w(S) = d(S) − (1 + δ)|S|. Since every S has at least |S|/D
neighbors, it suffices to consider only the S with w(S) ≥ |S|/D. The calculation is a
variation of that in [HLW06].

For sets S ⊆ A, |S| = s ≤ βm, and W ⊆ B, |W | = bw(S)c, let XS,W be the event
“all neighbors of S lie in W .” If no XS,W occurs, then H satisfies the conclusion of the
lemma. We have

Pr[XS,W ] =
d(W )(d(W )− 1) · · · (d(W )− d(S) + 1)
d(B)(d(B)− 1) · · · (d(B)− d(S) + 1)

≤
(
d(W )
d(B)

)d(S)

≤
(
D2w(S)
m

)d(S)

.

Thus for S fixed, the probability of XS,W occurring for some w is at most(
|B|
w(S)

)(
D2w(S)
m

)d(S)

.

Estimating the binomial coefficient as
(
x
y

)
≤ (ex/y)y and using s/D ≤ w(S) ≤ d(S) ≤

Ds, this can be bounded by(
e|B|
w(S)

)w(S)(D2w(S)
m

)d(S)

≤
(
e|B|D
s

)w(S)(D3s

m

)d(S)

≤ Cs1
( s
m

)(1+δ)s
,

where C1 = eDD4D. The probability of any XS,W occurring at all is bounded by

∑
1≤s≤βm

(
|A|
s

)
Cs1

( s
m

)(1+δ)s
≤
∑
s

Cs2

( s
m

)δs
,

where C2 = eC1. The term for s = 1 is O(m−δ) = o(1), and the ratio of consecutive
terms is at most C2β

δ, which can be made smaller than 1
2 , say, by fixing β small enough.

Then the entire sum is o(1) as claimed. 2

1It is well known that for random regular graphs of fixed degree, the configuration model yields a
simple graph with probability bounded away from 0, and consequently, any property that holds almost
surely in the configuration model also holds for almost all simple regular graphs of the given degree;
see, e.g., [JLR00]. By slightly modifying the proof of this fact, we could also get a similar result for
our model with mixed degrees, and hence have H simple.

9



Corollary 4.3 In the setting of Lemma 4.2, the following holds almost surely: The
average degree of the subgraph of H induced by any set of at most βm vertices is at
most 2 + 2δ.

Proof. Let us consider the subgraph of H induced by S ∪ T , S ⊆ A, T ⊆ B,
|S ∪ T | ≤ βm. By Lemma 4.2, we may assume that S has at least w(S) neighbors.
Hence at least w(S) − |T | neighbors of S do not lie in T , and each such neighbor
“consumes” at least one edge among the d(S) edges incident to S. Thus the number of
edges in H[S∪T ] is at most d(S)−w(S)+ |T | = (1+δ)|S|+ |T |, and the average degree
is at most 2+2δ (actually, at most 2+δ, if we use symmetry and assume |S| ≥ |T |). 2

Proof of Theorem 1.3. We let ρ = ρ(ε) > 0 be a sufficiently small constant, and we
set the parameters of our random graph model as follows: we let d(v) = 5 for some ρm
vertices in A, and all remaining vertices in A ∪ B have d(v) = 4. Clearly, the average
degree of H is 4 + Ω(ρ), and thus if we choose δ sufficiently small in terms of ρ and let
β = β(5, δ), then Lemma 4.1 and Corollary 4.3 guarantee mcc2(L(H)) ≥ βm almost
surely.

The maximum degree of L(H) is 7; the degree-7 vertices of the line graph correspond
to 5ρm edges of H incident to the ρm vertices of degree 5. It remains to bound the
maximum average degree of L(H).

To this end, we apply Corollary 4.3 once again, this time with δ = 1
2 , say, and we

let β0 = β(5, 1
2) be the corresponding parameter. We note that β0 is independent of ρ,

and hence we can assume that ρ/β0 is sufficiently small.
Now let F ⊆ E(H) be an arbitrary subset of edges, and let U be the set of all vertices

incident to edges of F . If |U | ≤ β0m, then by Corollary 4.3 the graph K := (U,F ) has
average degree at most 2.5. The average degree of L(K) is

d(L(K)) =
1
|F |

∑
{u,v}∈F

(degK(u) + degK(v)− 2) =
1
|F |

∑
u∈U

degK(u)(degK(u)− 1).

If we denote by xi the fraction of vertices u ∈ U with degK(u) = i, i = 1, 2, . . . , 5, then
the xi satisfy the constraints

∑5
i=1 xi = 1 and

∑5
i=1 ixi ≤ 2.5 (this reflects the bound

on the average degree of K), and we have d(L(K)) = 2(2x2 + 6x3 + 12x4 + 20x5)/(x1 +
2x2 + 3x3 + 4x4 + 5x5). One can use, e.g., linear programming to verify that the above
constraints imply d(L(K)) ≤ 6 as needed.

If, on the other hand, |U | > β0m, then since H has at most ρm vertices of degree 5,
these vertices constitute at most ρ/β0 fraction of U , and all other vertices have degree
at most 4. Hence at most a small fraction of the vertices of L(K) can have degree 7,
while others have degrees at most 6, and it follows that the average degree of L(K) can
be pushed below 6 + ε by making ρ sufficiently small. Theorem 1.3 is proved. 2

5 The Hamming cube

An interesting example, where mcc2 can be determined exactly, is the line graph of
the Hamming cube. Let Qd denote the d-dimensional Hamming cube with vertex set
{0, 1}d and with two vectors u, v ∈ {0, 1}d adjacent in Qd if they differ in exactly one
coordinate. Let L(Qd) be the line graph of Qd.
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Proposition 5.1 For every even d we have mcc2(L(Qd)) = d
42d/2.

Proof. The upper bound is witnessed by the following coloring: Color an edge
{u, v} ∈ E(Qd) red if u and v differ in one of the first d/2 coordinates, and blue
otherwise. Then the monochromatic components are (d/2)-dimensional subcubes.

For the lower bound, it suffices to show that whenever the edges of Qd are colored
red and blue, there exists a monochromatic connected subgraph with at least d

42d/2

edges. Let us assume that, e.g., blue is the majority color; that is, at least d
42d edges

are blue. Let B1, B2, . . . , Bk be the connected components of the blue subgraph, and
let mi be the number of blue edges in Bi. Hence

∑k
i=1mi ≥ 1

2 |E(Qd)| = d
42d.

We recall the following formulation of the edge-isoperimetric inequality for the cube
(E.g., [Bol86], Chapter 16): Every subgraph of Qd on v vertices has at most 1

2v log2 v
edges. Let βi > 0 be the real number satisfying 1

2βi log2 βi = mi (where βi = 1 for
mi = 0). Thus, βi is a lower bound for the number of vertices of Bi, and consequently,∑k

i=1 βi ≤ 2d. Assuming for contradiction that mi <
d
42d/2 for all i, we have βi < 2d/2

for all i, and thus

k∑
i=1

mi =
k∑
i=1

1
2
βi log2 βi <

d

4

k∑
i=1

βi ≤
d

4

k∑
i=1

|V (Bi)| ≤
d

4
2d.

But as was noted above,
∑k

i=1mi ≥ d
42d, and this contradiction establishes the propo-

sition. 2

The proof also shows that the monochromatic components in any extremal coloring
have to be (d/2)-dimensional subcubes.

6 Open problems

There are quite a few interesting open questions suggested by the present paper. Here
are some of them.

1. How large can mcc2(G) be for graphs of maximum degree 6? By the planar HEX
lemma, the triangulated planar grid is an example with mcc2(G) = Θ(

√
n), but

this is at present the best we know.

2. A special case of the previous question, which seems interesting in its own right,
is when G = L(H) for some 4-regular H. The best lower bound we know is
Ω(log n), from a construction by Alon et al. [ADO+03], where H is a 4-regular
graph of logarithmic girth.

3. The examples we know for planar graphs G with large mcc2(G) and mcc3(G) have
at least one vertex of high degree. Can anything better be said if we assume that
G has bounded degrees? More specifically, the following was asked in [KMR+97]:
Is there a function f such that for every planar graph G of maximum degree ∆
we have mcc3(G) ≤ f(∆)?

4. For two colors we cannot hope for constant monochromatic component size in
bounded-degree planar graphs, as shown by a triangulated planar grid, but similar

11



to the previous question, we can ask if there exists a function g such that every
n-vertex planar graph G of maximum degree ∆ satisfies mcc2(G) ≤ g(∆)

√
n.

5. There is still a gap between the best bounds we know for mcct(G) for graphs from
minor-closed families of graphs. Can this gap be closed?

6. A question suggested to us by Emo Welzl concerns the possible behavior of
mcct(G) when the chromatic number of G as well as its number of vertices are
known.

7. The proof of Theorem 1.3 can be adapted to show that for any fixed t there exist
n-vetrex graphs with maximum degree 4t − 1 and with mcct(G) = Ω(n). Note
that in [ADO+03] it was shown that mcct(G) is not bounded by a constant even
for graphs of maximum degree 4t−2; however, that proof gives only a logarithmic
lower bound for mcct(G) (cf. our first open problem). From the other direction
[HST03] show that mcct(G) is bounded by a constant for all t and all graphs
G with maximum degree at most 3t − 1. The constant 3 here is not optimal,
since the same paper shows that for some constant ε > 0 and all sufficiently
large t, the value mcct(G) is bounded by a constant for all graphs G of maximum
degree at most (3 + ε)t. It would be interesting to find the asymptotic behaviour
of the maximal value of mcct(G) for graphs G with maximum degree d in the
intermediate range (3 + ε)t < d < 4t− 2. In particular, it would be interesting to
know if there exist t and d for which the above maximum is sublinear but not a
constant.

8. There are several natural conjectures pertaining to mcct for triangulations of the
d-dimensional grid graph. These questions suggest an interesting “combinatorial
dimension theory” waiting to be discovered. More on this subject can be found
in [MP07].
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[JLR00] S. Janson, T.  Luczak, A. Ruciński: Topics in random graphs, J. Wiley
and Sons, New York, NY, 2000.

[JT95] T. R. Jensen and B. Toft. Graph coloring problems. Wiley-Interscience
Series in Discrete Mathematics and Optimization, John Wiley & Sons
Inc., New York, 1995.

[JW96] B. Jackson and N. Wormald. On the linear k-arboricity of cubic graphs.
Discrete Math. 162:293–297, 1996.

[KM07] K. Kawarabayashi and B. Mohar. A relaxed Hadwiger’s conjecture for
list colorings. J. Combinatorial Theory Ser. B 97:647–651, 2007.

[KMR+97] J. Kleinberg, R. Motwani, P. Raghavan, and S. Venkatasubramanian.
Storage management for evolving databases, FOCS 1997, 353–362.

[LS93] N. Linial and M. Saks. Low diameter graph decompositions. Combina-
torica 13:441–454, 1993.

[LT79] R. Lipton and R. Tarjan. A separator theorem for planar graphs. SIAM
J. of Applied Mathematics 2:177–190, 1979.
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