
COMBINATORICA
Bolyai Society – Springer-Verlag

COMBINATORICA 18 (1) (1998) 121–132

NON-EXPANSIVE HASHING

NATHAN LINIAL* and ORI SASSON

Received February 5, 1996

In a non-expansive hashing scheme, similar inputs are stored in memory locations which are
close. We develop a non-expansive hashing scheme wherein any set of size O(R1−ε) from a large
universe may be stored in a memory of size R (any ε > 0, and R>R0(ε)), and where retrieval
takes O(1) operations. We explain how to use non-expansive hashing schemes for efficient storage
and retrieval of noisy data. A dynamic version of this hashing scheme is presented as well.

1. Introduction

A dictionary is a data structure for storing elements from universe U in memory
M . It has to be capable of storing any subset S⊆U whose cardinality is not too
big, and an efficient implementation of the following operations is required:
• Membership queries of the form “Given x ∈ U is x ∈ S? If it is, where is it

stored in M?”
• Update operations: Add/Delete elements from S.

Consider the “noisy” version of the same problem : There is a notion of distance
on U , i.e. it is a metric space, with metric dU . There is some constant ∆>0 which is
the measure of noise (or uncertainty), and on input x we are interested in retrieving
every y such that dU (x,y)≤∆. In other words, the membership query is “given
x ∈ U decide whether there are any y ∈ S such that dU (x,y) ≤∆ and determine
where these items are stored in M”.

Of course, any dictionary may be adapted to deal with noisy data as well.
Given x ∈ U , check for every y ∈ U with dU (x,y)≤∆ whether it is stored in the
dictionary. However, this simple procedure is applicable only if:
• For every x∈U , it is possible to quickly generate all y∈U with dU (x,y)≤∆.
• Every memory location may be accessed at unit cost in each time.

Unfortunately, these assumptions fail in most interesting instances. The first
assumption fails for real-time systems handling real world inputs (e.g. image

Mathematics Subject Classification (1991): 68R05, 68P05

* Part of the work was done while the author was visiting DIMACS.

0209–9683/98/$6.00 c©1998 János Bolyai Mathematical Society

122 NATHAN LINIAL, ORI SASSON

recognition applications). The second assumption is not realistic when the memory
M is very large, specifically when it is paged.

Are there storage/retrieval schemes that operate well regardless of these con-
ditions? If U is mapped to M by functions that respect proximity in U , then on
input x∈U , one would map x to z∈M and search the vicinity of z. This concept is
meaningful only if there is a metric dM defined on M , which we henceforth assume.

Hashing is, of course, the most fundamental tool for dealing with the standard
dictionary problem. It may seem, however, infeasible to rely on hashing if our goal
is to respect proximity at U .1

This paper shows that this is a misconception. For the case where U and M
are both (a long and a short) intervals with the usual metric, we construct small
c-universal families of functions from U to M that do not expand distances.

Our method thus solves the noisy dictionary problem in a way that is nearly
space-optimal and where retrieval time takes the optimal O(∆) operations2. A
dynamic version allows also updates at an optimal expected amortized cost.

The metric on U reflects some structure of the relevant inputs while dM reflects
the architecture of our storage space. Depending on the application domain U and
the architecture used to deal with it M , there are numerous other instances of our
general problem that would be very interesting.

Before we state our main result we need to resolve another technicality, namely
what can be stored in a single memory location. To simplify matters, we assume
that it holds a single element from U . This assumption is not essential and can be
modified.

Definition 1. A function h : U → M is non-expansive (or 1-Lipschitz) if for all
x,y∈U , dM (h(x),h(y))≤dU (x,y).

Definition 2. Consider a storage scheme that stores sets S ⊆ U in memory M .
Such a scheme is c-non-expansive, if for every x ∈ U there is a set B1, . . . ,Bc of
∆-neighborhoods in M such that every y ∈S with dU (x,y)≤∆ is stored at some
location in ∪ci=1Bi.

A storage scheme is non-expansive if it is c-non-expansive for some c>0.

Theorem 3. Let U=[u], ε>0, M=[R], with R>R0(ε). U and M are equipped by
the usual one-dimensional metric. There is a non-expansive hashing scheme that

can store every S⊆U with |S|<R1−ε in M . Retrieval is performed in a constant
number of operations. The functions used for the hashing scheme are taken from a
family of size O(|U |).

The following section surveys related work. Section 3 describes our novel family
of non-expansive hashing functions, and describes a non-expansive hashing scheme

1 e.g.: “... hash coding destroys any structure that the stored set may have, so it is a poor

model of human memory.” [7]
2 It is still an intriguing open problem whether similar schemes can be devised where the

number of operations depend on the number of elements y∈S with dU (x,y)≤∆.

NON-EXPANSIVE HASHING 123

based on this family. We have also devised a dynamic version of our hashing scheme,
and it is presented in the last section.

2. Related Work

The problem of hashing noisy data defined above is similar to the Best Match
problem introduced by Minsky and Papert [8]. In their problem, D is a dictionary
of strings over some alphabet Σ, and it is required to store D in such a way that
on query string q, the member of D closest to q in Hamming distance be retrieved.
The version where all members in D of distance d or less from q be retrieved is the
“Approximate Query (AQ)” problem of [6].

Most of the work on these problems (see [9] and the references therein) fo-
cuses on deterministic schemes. However, deterministic hashing schemes are rather
limited, especially for the dynamic dictionary problem (e.g. [2]), so we resort to
randomized tools.

We were much inspired by the landmark paper by Fredman, Komlós and
Szemerédi [5]. Their hashing scheme allows to store any subset of n elements from
U=[u] in memory of size O(n). All queries are served in O(1) operations.

The FKS hashing scheme is based on the notion of pairwise independence and
so it conforms with the conventional view of hashing: Any two distinct elements in
U are equally likely to be mapped to any two locations in M (regardless of their
distance in U). Therefore, a naive adaptation of FKS to the noisy case will fail badly
if the memory is paged. Our new hashing scheme described in the next section is
based on a family of functions with a property weaker than pairwise independence.

3. Non-Expansive Hashing

3.1. The case |S|=O(R
1
2)

We seek a family of non-expansive hash functions that can be used for perfect
hashing.

Theorem 4. There exists a family H of non-expansive functions from U to [R], and

a constant C (C≤0.1 will do) such that for any S⊆U with |S|≤C
√
R,

Prf∈H(f|S is one-to-one) ≥ 1
2

The family H contains O(|U |) functions, each of which is computable in O(1)
operations.

Our idea is that the hash functions f that we use should have the property
that for every x∈U either f(x+1)=f(x)+1 or f(x+1)=f(x)−1. Obviously, this

124 NATHAN LINIAL, ORI SASSON

condition implies that f is non expansive. Such a function f can be specified by
selecting a “starting point” s, i.e. f(0)=s, and then defining f(1)=s+1, f(2)=s+2,
and so on, until reaching a “turning point” t0, where the direction is reversed. That
is, if f(a)= t0−1 and f(a+1)= t0 then f(a+2)= t0−1,f(a+3)= t0−2 and so on,
until the next “turning point” is reached, where again the direction is reversed. It
is easy to see that for any S⊆U , |S|=n, there is a function h of this sort for which
h|S is one-to-one. As stated, this approach is impractical since the size of this class
of functions is exponential in n, and so members in this class do not have a short
description. It is also unclear how to compute such functions efficiently.

We overcome these problems, by restricting ourselves to functions f whose
turning points are not arbitrary but rather explicitly defined.

Note that a family of non-expansive mappings cannot possibly be pairwise
independent. As we observe below it suffices to control the collision probabilities.
That is, a c-universal family of hash functions can be used for the purpose of perfect
hashing.

Definition 5. [1] A family H of functions from U to [R] is c-universal if for every
x,y∈U ,

Prf∈H(f(x) = f(y)) ≤ c · 1
R

We start with a variation on a lemma from FKS [5].

Lemma 6. Let H be a c-universal family of functions from U to [R]. Then, for

every S⊆U , with |S|<
√

R
2c

Prf∈H(f is one-to-one on S) ≥ 1
2

Proof. Define a random variable X which counts for any function f ∈H the number
of pairs of elements in S that collide under f , i.e.:

X =
∑
j∈M

(
|f−1(j)|

2

)

Note that X(f) = 0 iff f|S is one-to-one. Also, X ≥ 0, and if the expectation

EX≤ 1
2 , then at least half of the functions f ∈H are one-to-one on S (by Markov

inequality).

E(X) =
1
|H|

∑
f∈H

∑
j∈M

(
|f−1(j)|

2

)
=

1
|H|

∑
x 6=y∈S

∑
f∈H

∑
j∈M

1f(x)=f(y)=j ≤

≤ |S|(|S| − 1) ·max
x 6=y

Prf∈H(f(x) = f(y)) ≤ c |S|(|S| − 1)
R

<
1
2

NON-EXPANSIVE HASHING 125

Let L = bĉRc for some constant ĉ (we pick ĉ = 1
7). The “left” and “right”

turning points used for our hash functions are always selected from the segments
[0,2L−1] and [R−2L+1,R], respectively. At “left” turning points we cease moving
to the left and start moving right and the opposite for “right” turning points. A
function f in our family H is specified as follows.

1. Choose a random “starting point” f(0)=sf ∈ [2L,R−2L]

2. Let P be a family of pairwise independent functions from [0, UR] to [0,L− 1]
(e.g. the hash functions from [5]). Randomly choose Φ∈P .

3. Consider the (unique) sequence t0, t1, . . . of integers from [0,2L−1] where

j∑
i=0

ti = jL+ Φ(j)

for every j≥0. We make our “left” turns at ti for i odd and the “right” turns
at R− ti for i even.

4. For any integer 0≤j< |U |R , let:

Aj = 2

jR− 2j−1∑
i=0

ti

− sf = 2(jR− (2j − 1)L− Φ(2j − 1))− sf

Bj = 2

(j + 1)R−
2j∑
i=0

ti

− sf = 2((j + 1)R− 2jL− Φ(2j))− sf

5. Define f as follows:

f(x) =


x−A0 if 0 ≤ 2x ≤ A0 +B0

x−Aj if Aj +Bj−1 < 2x ≤ Aj +Bj
Bj − x if Aj +Bj < 2x ≤ Aj+1 +Bj

Indeed, as stated above, f(1) = sf +1, f(2) = sf +2, and so on, until the first
right “turning point” R− t0 is reached and the direction is reversed. That is, if
f(a)=R−t0−1 and f(a+1)=R−t0 then f(a+2)=R−t0−1, and so on, until the
next turn at t1.

Equivalently, subsequent to the 2j-th turn f is defined by f(x) = x−Aj and
f(x)=Bj−x following the (2j+1)-st turn.

Define H={f :U→ [R] |Φ∈P ,sf ∈ [2L,R−2L]}
Given x, denote by τx,f the number of turns taken up to x by the function

f ∈H.

Lemma 7. For all x∈U , the set {τx,f |f ∈H} consists of at most four consecutive
integers.

126 NATHAN LINIAL, ORI SASSON

Proof. Denote τ=τx,f , and fix any x∈U .

τ =

{
2j if Aj +Bj−1 < 2x ≤ Aj +Bj

2j + 1 if Aj +Bj < 2x ≤ Aj+1 +Bj

The above can be rewritten as:

τ =
2j if 2j +

3L−Φ(2j−1)−Φ(2j−2)

R−2L
<

x+sf
R−2L

≤ (2j + 1) +
3L−Φ(2j−1)−Φ(2j)

R−2L

2j + 1 if (2j + 1) +
3L−Φ(2j−1)−Φ(2j)

R−2L
<

x+sf
R−2L

≤ 2(j + 1) +
3L−Φ(2j+1)−Φ(2j)

R−2L

In particular, τ=2j is possible only when

2j +
L

R− 2L
<

x+ sf
R− 2L

≤ 2j + 1 +
5L

R− 2L

and similarly τ=2j+1 is possible only when

2j + 1 +
L

R− 2L
<

x+ sf
R− 2L

≤ 2j + 2 +
5L

R− 2L

As long as L< R
6 , the “even” intervals {[2j+ L

R−2L ,2j+1+ 5L
R−2L]}j≥0 are disjoint,

similarly for “odd” intervals {[2j+1+ L
R−2L ,2j+2+ 5L

R−2L]}j≥0.

Also, the values of x+sf
R−2L span an interval of length 1. This interval may

intersect with at most two odd intervals and at most two even intervals, because
the intervals are separated and their left ends increase by 1. Consequently, for every
x∈U , there are at most four numbers in {τx,f |f ∈H}.

Lemma 8. H is a family of c-universal hash functions.

Proof. Fix any x > y in U . Given τx,f and τy,f , the condition f(x) = f(y) is
equivalent to an equation involving two different values of Φ. The equation depends
on the parities of τx,f and τy,f .

For example, if τx,f is even, and τy,f is even, then:

f(x) = x−A τx,f
2

and
f(y) = y −A τx,f

2

Hence we obtain:

x− y = (τx,f − τy,f)(R − 2L)− 2(Φ(τx,f − 1)− Φ(τy,f − 1))

NON-EXPANSIVE HASHING 127

Similar equations hold for the other 3 cases.
The pairwise independence of P implies that such an equality holds with

probability O(1
R). In other words, given β, and any u,v∈U ,

PrΦ∈P (Φ(u)−Φ(v) = β) ≤
L∑
α=1

PrΦ∈P (Φ(u) = α+β | Φ(v) = α)PrΦ∈P (Φ(v) = α)

But P is pairwise independent so each of the O(R) terms in the sum is O(1
R2),

hence

PrΦ∈P (Φ(u)− Φ(v) = β) ≤ O
(

1
R

)
Let Tx={τx,f |f ∈H} and Ty={τy,f |f ∈H}. Then,

Hence we obtain:

Prf∈H(f(x) = f(y)) =∑
s∈Tx

∑
s∈Ty

Pr(f(x) = f(y) | τx,f = s and τy,f = t) ≤ |Tx| · |Ty | ·O
(

1
R

)
≤ O

(
1
R

)

Since |Tx|, |Ty |=O(1) by lemma 7.

3.2. The case |S|≤O(R1−ε)

In this section we present a hashing scheme for storing a larger set S with |S|<
O(R1−ε) (any ε>0 and R>R0(ε)). This hashing scheme allows serving a query in
the noisy dictionary problem in O(1) operations.

At this point we must further deviate from the FKS scheme. Their two-layer
method becomes inapplicable, since the second layer will destroy the non-expansive
property achieved for |S|≤O(

√
R). We therefore resort to an alternative idea.

Let H be a family of c-universal non-expansive hash functions, and t=O(log 1
ε)

a constant.
S will be hashed into t separate tables of size R each. Select h1∈H at random,

and hash the elements of S into the first table. The expected number of pairs x,y∈S
that collide under h1 is less than c|S|2

R (by the proof of lemma 6). Consequently,
the expected number of elements x∈S that collide with another element y ∈ S is

at most 2c|S|2
R (in the extremal case elements collide in pairs). Hence most possible

selections of h1 have the property that the actual number of elements x∈ S that

collide with another element y∈S is less than 2c|S|2
R . Select such h1 and store the

128 NATHAN LINIAL, ORI SASSON

elements that do not collide under it in the first table. The colliding elements are
then hashed using a randomly selected h2∈H into the second table. The expected
number of elements which are hashed to the same location in the second table is less
than 8c3|S|4

R3 . Continue this process inductively. For most selections of ht−1, fewer

than (2c)2t−1−1|S|2t−1

R2t−1−1
elements are expected to collide under ht−1. For t=O(log 1

ε)

this size is less than
√

R
2c .

Assuming that at most
√

R
2c collide under ht−1, most selections of ht will

guarantee perfect (i.e. one-to-one) hashing into the last table.
For a membership query “given x∈U decide whether there are any y∈S such

that dU (x,y)≤∆ and determine where these items are stored in M”, we probe the
∆-neighborhood of hi(x) in the i-th hash table, for each 1≤ i≤ t.

4. The Dynamic Case

In the spirit of [2], this section describes a dynamic version of the non-expansive
hashing scheme. This version achieves expected amortized complexity O(1) for any
sequence of updates.

First, we consider the more relaxed problem where memory size is allowed to
be quadratic in the size of the stored set.

4.1. The case of quadratic storage space

A dynamic storage scheme is required to process a sequence of insertions and
deletions. Occasionally, we will rehash i.e. select a new set of hash functions. As the
current set S of stored elements grows and shrinks we may also resize our memory
to an either larger or smaller size.

Let H be a family of c-universal non-expansive hash functions, as in Section 3.
Our policy for resizing the memory, i.e. changing the size of the table R is as

follows:
• Following an insert operation, if |S|2≥ R

2c then enlarge the table to R=3c|S|2.

• Following a delete operation, if |S|2< R
4c then set R= 8c

3 |S|2.
Specifically, the following inequality is maintained at all times:

1
4
≤ c|S|2

R
<

1
2

We use one hash function h∈H, which is one-to-one on the current S. If the
next element to be inserted, x, is such that location h(x) is already occupied, we
rehash.

NON-EXPANSIVE HASHING 129

Our analysis goes as follows: Fix the (initially unknown) sequence of update
requests σ. This sequence is split into intervals that end at those locations in σ
where our rule calls for resizing. Note that the times at which we resize depend on
σ, and not on the steps taken by the storage and retrieval scheme. Specifically, it is
independent of the random choices made by the algorithm. Note also that our rule
for resizing is such that at the two ends of any interval (i.e., at two consecutive resize
operations), the numbers of currently stored items, differ by an absolute constant
factor. Fix some interval, I, and let n be the smaller of these two numbers. Also,
there are Ω(n) requests for update throughout I, so it is possible to further break I
to segments of length Θ(n) requests each. Our analysis will show that the expected
number of operations for each such segment is only O(n). The resizing that takes
place at the beginning of I costs only O(n) operations, which we charge to the first
segment in I. As long as no collisions occur, every request is served at an O(1) cost.

The analysis of rehashing costs is a little more involved: We claim that only a
constant number of rehash steps are expected to take place within each segment.
To see this, consider a segment at the beginning of which there are, say, n items
stored in memory. Observe that only O(n) items are added to M throughout the
interval. We can even afford to ignore the fact that some of them are also deleted
within the same period. Let T , with |T | ≤ a ·n, (where a is an absolute constant)
be the set of these (initially unknown) elements. We have picked our parameters so
that for every set T ⊆U of cardinality a ·n, most hash functions that we select are
one-to-one on T (following the calculation in the proof of lemma 6). If this is the
case, then no rehashing will be required throughout this segment. Since our chance
of success is bounded away from zero, the expected number of selections for h∈H
within the segment, and hence the expected number of rehashings, is only O(1), as
claimed.

4.2. The case of slightly super-linear storage space

This general case can be treated similarly to the case of quadratic storage. One
modification is that t=O(log 1

ε) tables are used, each of which has size tR. Another
difference is that resizing is geared towards maintaining the inequality

1
4
≤ c|S|1+ε

R
<

1
2

at all times. Namely, the policy used for resizing the memory is:

• Following an insert operation, if |S|1+ε ≥ R
2c then enlarge the table to R =

3c|S|1+ε.

• Following a delete operation, if |S|1+ε< R
4c then set R= 8c

3 |S|1+ε.
We keep a set of t hash functions hi. When a new element x is to be inserted

into the table, we store it in location hi(x) of the i-th table, for the smallest 0≤ i<t
such that this location is not occupied. If all locations hi(x) are occupied, then we

130 NATHAN LINIAL, ORI SASSON

rehash. Queries and deletions for an element x ∈ U are handled by checking all
locations hi(x).

The analysis used above to show O(1) expected cost of operations is still valid,
only the analysis of rehashing costs is slightly different. Consider again a set T ⊆U
of items that appear in the update requests within one segment. Previously, we
only demanded that h∈H, used for storage throughout this interval be one-to-one
on T with probability bounded away from zero (over all possible choices of h), since
the selections of the hi’s are independent, and since (1− 1

t)
t≥Ω(1).

This condition needs to be strengthened now so that our probability of success
be at least 1− 1

t for each hi. Hence, for a tuple (hi)ti=1 the probability that it can
be used for storage throughout the interval will be bounded away from zero.

Denote by Q1(T) the number of elements of T which collide when hashing T
with h1. Define inductively the set Qj(T) of elements of T which collide when
hashing Qj−1(T) with the function hj .

Claim 9.

Pr(hi)ti=1∈Ht

(
|Qt−1(T)| <

√
R

2c

)
≥
(

1− 1
t

)t−1

Proof. In the following proof, all probabilities are computed in the space Ht.

Pr

(
|Qt−1(T)| <

√
R

2c

)
=

Pr

(
|Qt−1(T)| <

√
R

2c

∣∣∣∣∣ |Qt−2(T)| < (2c)2t−2−1|T |2t−2

R2t−2−1

)
·

Pr

(
|Qt−2(T)| < (2c)2t−2−1|T |2t−2

R2t−2−1

)

Continuing this conditioning inductively, we get

Pr

(
|Qt−1(T)| <

√
R

2c

)
≥ Pr

(
Q1(T) <

2c|T |2
R

)
·

t−1∏
l=2

Pr

(
|Ql(T)| < (2c)2l−1|T |2l

R2l−1

∣∣∣∣∣ |Ql−1(T)| < (2c)2l−1−1|T |2l−1

R2l−1−1

)

since t=O(log 1
ε) implies

(2c)2t−1−1|T |2t−1

R2t−1−1
≤
√
R

2c

NON-EXPANSIVE HASHING 131

Now, the expected number of elements with collisions under hl is at most
2c|Ql−1(T)|2

tR . Hence, given that

|Ql−1(T)| < (2c)2l−1−1|T |2l−1

R2l−1−1

The expected size of the set Ql(T) is less than (2c)2l−1|T |2l

tR2l−1
.

Therefore by Markov inequality,

Pr

(
|Ql(T)| > (2c)2l−1|T |2l

R2l−1

∣∣∣∣∣ |Ql−1(T)| < (2c)2l−1−1|T |2l−1

R2l−1−1

)
≤ 1
t

And so,

Pr

(
|Ql(T)| < (2c)2l−1|T |2l

R2l−1

∣∣∣∣∣ |Ql−1(T)| < (2c)2l−1−1|T |2l−1

R2l−1−1

)
≥ 1− 1

t

Hence we obtain

Pr

(
|Qt(T)| <

√
R

2

)
≥
(

1− 1
t

)t−1

Corollary 10.

Pr(hi)ti=1∈Ht
(T is hashed perfectly into the t hash tables) >

1
e

(Here e=2.71828 . . . is Euler’s constant.)

Proof. Using a similar argument to the one used in the previous proof,

Pr

(
Qt(T) < 1

∣∣∣∣∣Qt−1 <

√
R

2c

)
≥ 1− 1

t

hence

Pr(Qt(T) < 1) ≥
(

1− 1
t

)t
>

1
e

And since this probability (which is the probability of a tuple being suitable
for perfectly hashing T into the set of tables) is bounded away from zero, the
expected number of rehashings in a segment (using the terminology of the previous
subsection) is ≤e.

The following theorem states our final result.

132 NATHAN LINIAL, ORI SASSON: NON-EXPANSIVE HASHING

Theorem 11. For any δ > 0 there exists a dynamic non-expansive hashing scheme

that requires only O(n1+δ) space to store n elements. Queries are served in O(1)
operations, and a sequence of updates is performed with expected amortized cost
of O(1) operations.

References

[1] J. L. Carter and M. N. Wegman,: Universal Classes of Hash Functions, Proceed-

ings of the 9th ACM Symposium on Theory of Computing, 1977, 106–112.

[2] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H.

Rohnert, and R. E. Tarjan: Dynamic Perfect Hashing: Upper and Lower

Bounds, Proceedings of the 29th Annual IEEE Symposium on Foundations of

Computer Science, 1988, 524–531.

[3] D. Dolev, Y. Harari, N. Linial, N. Nisan, and M. Parnas: Neighborhood

preserving hashing and approximate queries, 5th ACM Symposium on Discrete

Algorithms, 1994.

[4] D. Dolev, Y. Harari, and M. Parnas: Finding the neighborhood of a query in a

dictionary, 2nd Israeli Symposium on Theory of Computing and Systems.

[5] M. L. Fredman, J. Komlós, and E. Szemerédi: Storing a Sparse Table with O(1)

Worst Case Access Time, Journal of the ACM, Vol. 31, No. 3, July 1984,

538–544.

[6] D. Greene, M. Parnas, and F. Yao: Multi-Index Hashing for Information Re-

trieval, Proceedings of 35th Annual IEEE Symposium on Foundations of Com-

puter Science, 1994.

[7] P. Kanerva: Sparse Distributed Memory, MIT Press, Cambridge, Massachusetts,

1988, 12.

[8] M. Minsky and S. Papert: Perceptrons, MIT Press, Cambridge, Massachusetts,

1969, 222–225.

[9] M. Parnas: Robust Algorithms and Data Structures for Information Retrieval, Ph.

D. dissertation, Hebrew University, Jerusalem, Israel, 1994.

Nathan Linial

Hebrew University,

Jerusalem, Israel.

nati@cs.huji.ac.il

Ori Sasson

Hebrew University,

Jerusalem, Israel.

ori@cs.huji.ac.il

mailto:nati@cs.huji.ac.il
mailto:ori@cs.huji.ac.il

	Heading
	1. Introduction
	2. Related Work
	3. Non-Expansive Hashing
	3.1. The case $|S| = O(R^{1\over 2})$
	3.2. The case $|S| \leq O(R^{1-\varepsilon })$

	4. The Dynamic Case
	4.1. The case of quadratic storage space
	4.2. The case of slightly super-linear storage space

	References

