No Justified Complaints: A Bottleneck-Based Fair Resource Sharing

Danny Dolev, Dror Feitelson, Joe Halpern, Nati Linial, and Raz Kupferman

iAGT May ’11
The basic setup:

\[N \text{ users} \text{ are sharing} \ m \text{ resources.} \]
The basic setup:

\(N\) users are sharing \(m\) resources.

- There is a unit supply of each resource (a harmless normalization).
The basic setup:

\(N \) users are sharing \(m \) resources.

- There is a unit supply of each resource (a harmless normalization).
- Each user \(i \) has an entitlement \(e_i > 0 \) with \(\sum_{i=1}^{N} e_i = 1 \). (More on what these entitlements are - below).
Requests: For every i,j the number $r_{ij} \geq 0$ is the quantity of resource j that the i-th user is requesting.
The basic setup (contd.)

Requests: For every i, j the number $r_{ij} \geq 0$ is the quantity of resource j that the i-th user is requesting.

No exchanges: In serving user i the proportions between the numbers $\{r_{ij}\}_{j=1,\ldots,m}$ must be respected.
Requests: For every \(i, j \) the number \(r_{ij} \geq 0 \) is the quantity of resource \(j \) that the \(i \)-th user is requesting.

No exchanges: In serving user \(i \) the proportions between the numbers \(\{r_{ij}\}_{j=1,...,m} \) must be respected. In words: Users are not willing (are not permitted?) to substitute one resource for another.
Requests: For every i, j the number $r_{ij} \geq 0$ is the quantity of resource j that the i-th user is requesting.

No exchanges: In serving user i the proportions between the numbers $\{r_{ij}\}_{j=1,\ldots,m}$ must be respected. In words: Users are not willing (are not permitted?) to substitute one resource for another. Consequently, for every i we need to select some $x_i > 0$ and give user i exactly $x_i r_{ij}$ of resource j, for every j.
Requests: For every i, j the number $r_{ij} \geq 0$ is the quantity of resource j that the i-th user is requesting.

No exchanges: In serving user i the proportions between the numbers $\{r_{ij}\}_{j=1,\ldots,m}$ must be respected. In words: Users are not willing (are not permitted?) to substitute one resource for another.

Consequently, for every i we need to select some $x_i > 0$ and give user i exactly $x_i r_{ij}$ of resource j, for every j.

The fruit-salad metaphor.
So, we are seeking positive real numbers $x_i > 0$ for $i = 1, \ldots, N$. These numbers determine the resource allocation:
For every $N \geq i \geq 1, m \geq j \geq 1$, player i is to receive $x_i r_{ij}$ units of resource j.
So, we are seeking positive real numbers $x_i > 0$ for $i = 1, \ldots, N$. These numbers determine the resource allocation:

For every $N \geq i \geq 1, m \geq j \geq 1$, player i is to receive $x_i r_{ij}$ units of resource j. The obvious *feasibility* condition says that we must not exceed the unit capacity of the various resources. Namely, for every resource j

$$\sum_{i} x_i r_{ij} \leq 1$$
So, we are seeking positive real numbers $x_i > 0$ for $i = 1, \ldots, N$. These numbers determine the resource allocation:

For every $N \geq i \geq 1, m \geq j \geq 1$, player i is to receive $x_i r_{ij}$ units of resource j.

The obvious *feasibility* condition says that we must not exceed the unit capacity of the various resources. Namely, for every resource j

$$\sum_i x_i r_{ij} \leq 1$$

In matrix notation:

$$x > 0 \quad xR \leq 1$$
What are those entitlements?

These numbers might represent various things:

- A user’s share in the computers’ installation.
What are those entitlements?

These numbers might represent various things:

- A user’s share in the computers’ installation.
- An externally defined level of priority.
What are those entitlements?

These numbers might represent various things:

- A user’s share in the computers’ installation.
- An externally defined level of priority.
- Alternatively, the number of users is actually $M \gg N$ and all users are treated equally, i.e. all entitlements are $\frac{1}{M}$. However, there are only N types of users and e_i is the fraction of users of type i.
Bottlenecks

For a given request matrix R and a feasible $x > 0$ (i.e. $xR \leq 1$), we say that resource j is a bottleneck if it is consumed in full, i.e., if

$$(xR)_j = 1.$$
Given a request matrix R, an entitlement vector e and a feasible x, let J be the set of bottleneck resources. We say that x is fair if for every user i, either

- $x_i = 1$ (so that user i is receiving his request in full), or
Given a request matrix R, an entitlement vector e and a feasible x, let J be the set of bottleneck resources. We say that x is fair if for every user i, either

- $x_i = 1$ (so that user i is receiving his request in full), or
- There is some bottleneck resource $j \in J$ for which $x_i r_{ij} \geq e_i$.
The criterion says that if a user is receiving less than his total request, then:
The criterion says that if a user is receiving less than his total request, then:
There is a resource on which user \(i \) is receiving at least his entitlement.
Bottleneck-based fairness means that there are No Justified Complaints

The criterion says that if a user is receiving less than his total request, then:
There is a resource on which user i is receiving at least his entitlement. Moreover, this is a bottleneck resource, so increasing i-th share will necessarily hurt other users. In other words, player i has no grounds for a justified complaint.
For a fixed set J of bottleneck resources, a fair and feasible x can be found by solving a linear program. Consequently, the whole problem is solvable in time $\exp(O(m))$ where m is the number of resources.
For a fixed set J of bottleneck resources, a fair and feasible x can be found by solving a linear program. Consequently, the whole problem is solvable in time $\exp(O(m))$ where m is the number of resources. Without knowledge of J, the problem cannot be solved using LP.
For a fixed set \(J \) of bottleneck resources, a fair and feasible \(x \) can be found by solving a linear program. Consequently, the whole problem is solvable in time \(\exp(O(m)) \) where \(m \) is the number of resources. Without knowledge of \(J \), the problem cannot be solved using LP. A little more on this - at the end of the talk.
An example

\[R = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \]
An example

\[R = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \]

All \(e_i = 1/4 \).
An example

\[R = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \]

All \(e_i = 1/4 \).

\(x = (1/4, 1/4, 3/8, 3/8) \) is feasible and fair with \(J = \{1, 2\} \).
An example

\[R = \begin{pmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
\end{pmatrix} \]

All \(e_i = 1/4 \).

\(x = (1/4, 1/4, 3/8, 3/8) \) is feasible and fair with \(J = \{1, 2\} \),

Same for \(x' = (3/8, 3/8, 1/4, 1/4) \), with \(J = \{3, 4\} \).
An example

\[R = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \]

All \(e_i = 1/4 \).

\(x = (1/4, 1/4, 3/8, 3/8) \) is feasible and fair with \(J = \{1, 2\} \),

Same for \(x' = (3/8, 3/8, 1/4, 1/4) \), with \(J = \{3, 4\} \).

Their average \(\frac{x + x'}{2} = (5/16, 5/16, 5/16, 5/16) \) is feasible but not fair.
Theorem

For every matrix R with $1 \geq r_{ij} \geq 0$ for all i, j
Main result

Theorem

For every matrix R with $1 \geq r_{ij} \geq 0$ for all i, j and for every $e > 0$ with $\sum e_i = 1$,

Danny Dolev, Dror Feitelson, Joe Halpern, Nati Linial, and Raz Kupferman

No Justified Complaints: A Bottleneck-Based Fair Resource Sharing Algorithm
Main result

Theorem

For every matrix R with $1 \geq r_{ij} \geq 0$ for all i, j and for every $e > 0$ with $\sum e_i = 1$, there exists a vector $x > 0$ such that $xR \leq 1$
Main result

Theorem

For every matrix R with $1 \geq r_{ij} \geq 0$ for all i, j and for every $e > 0$ with $\sum e_i = 1$, there exists a vector $x > 0$ such that $xR \leq 1$ so that for every i there is a $j \in J$ with

$$x_i r_{ij} \geq e_i$$

where $J = \{j|(xR)_j = 1\}$.

Danny Dolev, Dror Feitelson, Joe Halpern, Nati Linial, and Ra: No Justified Complaints: A Bottleneck-Based Fair Resource Sharing Algorithm.
A little geometric insight

The constraints $x > 0$ and $xR \leq 1$ define a convex polytope P that resides in the positive quadrant of the N-dimensional space \mathbb{R}^N.
The constraints $x > 0$ and $xR \leq 1$ define a convex polytope P that resides in the positive quadrant of the N-dimensional space \mathbb{R}^N. Corresponding to each constraint is a hyperplane that constitutes a facet of P.
The constraints $x > 0$ and $xR \leq 1$ define a convex polytope P that resides in the positive quadrant of the N-dimensional space \mathbb{R}^N. Corresponding to each constraint is a hyperplane that constitutes a facet of P. (Actually, this is a bit inaccurate, and some resource may be defining a redundant inequality, but in this case we pre-process the problem and eliminate any such resources).
The **feasibility** of x is equivalent to $x \in P$.
A little geometric insight (contd.)

The **feasibility** of x is equivalent to $x \in P$.
In order for x to be **fair** it is necessary that x belongs to $\partial^+ P$, the upper boundary of P.
The **feasibility** of x is equivalent to $x \in P$. In order for x to be **fair** it is necessary that x belongs to $\partial^+ P$, the upper boundary of P. Recall that the set J of bottleneck resources depends on x. Actually it is defined by the set of facets on which x resides. (In every vertex of P several facets meet).
So what is it that complicates matters?

The boundary ∂P may, in general, be a complicated combinatorial object (the so-called face lattice of the polytope P). We do not have very good methods of searching through it.
The domain P that’s defined by $x > 0$ and $xR \leq 1$ is convex and *closed down* (since the matrix R is nonnegative).
The domain P that’s defined by $x > 0$ and $xR \leq 1$ is convex and closed down (since the matrix R is nonnegative).

If it’s the combinatorial complexity that complicates the situation, let us try to simplify matters by considering, rather than P, another domain Q in the first quadrant of \mathbb{R}^N that is
The domain P that’s defined by $x > 0$ and $xR \leq 1$ is convex and closed down (since the matrix R is nonnegative).

If it’s the combinatorial complexity that complicates the situation, let us try to simplify matters by considering, rather than P, another domain Q in the first quadrant of \mathbb{R}^N that is

- Convex
The domain P that’s defined by $x > 0$ and $xR \leq 1$ is convex and \emph{closed down} (since the matrix R is nonnegative).

If it’s the combinatorial complexity that complicates the situation, let us try to simplify matters by considering, rather than P, another domain Q in the first quadrant of \mathbb{R}^N that is

- Convex
- Closed down
Continuous mathematics to the rescue?

The domain P that’s defined by $x > 0$ and $xR \leq 1$ is convex and *closed down* (since the matrix R is nonnegative).

If it’s the combinatorial complexity that complicates the situation, let us try to simplify matters by considering, rather than P, another domain Q in the first quadrant of \mathbb{R}^N that is

- Convex
- Closed down
- Has a smooth upper boundary $\partial^+ Q$
But how?

- How can you even describe such a smooth domain?
But how?

- How can you even describe such a smooth domain?
- How do you test feasibility?
But how?

- How can you even describe such a smooth domain?
- How do you test feasibility?
- What form does fairness take in this context?
But how?

- How can you even describe such a smooth domain?
- How do you test feasibility?
- What form does fairness take in this context?

Note that in the original setup feasibility can be reformulated as $x > 0$ and $\Phi(x) \leq 1$, where
But how?

- How can you even describe such a smooth domain?
- How do you test feasibility?
- What form does fairness take in this context?

Note that in the original setup feasibility can be reformulated as $x > 0$ and $\Phi(x) \leq 1$, where $\Phi(x) := \max_j (xR)_j$.

Danny Dolev, Dror Feitelson, Joe Halpern, Nati Linial, and Ra: No Justified Complaints: A Bottleneck-Based Fair Resource Sharing Algorithm.
Dealing with a smooth domain Q

We define Q as $\{x \in \mathbb{R}^N | f(x) \leq 1, x > 0\}$,
Dealing with a smooth domain Q

We define Q as $\{x \in \mathbb{R}^N | f(x) \leq 1, x > 0\}$, where f is

- Concave
Dealing with a smooth domain Q

We define Q as $\{x \in \mathbb{R}^N | f(x) \leq 1, x > 0\}$, where f is

- Concave
- Positive in the vicinity of the origin in the first quadrant of \mathbb{R}^N
We define Q as $\{x \in \mathbb{R}^N | f(x) \leq 1, x > 0\}$, where f is

- Concave
- Positive in the vicinity of the origin in the first quadrant of \mathbb{R}^N
- Monotone decreasing in each variable in the vicinity of the origin in the first quadrant of \mathbb{R}^N
We define Q as $\{x \in \mathbb{R}^N | f(x) \leq 1, x > 0\}$, where f is

- Concave
- Positive in the vicinity of the origin in the first quadrant of \mathbb{R}^N
- Monotone decreasing in each variable in the vicinity of the origin in the first quadrant of \mathbb{R}^N
- Sufficiently smooth
Dealing with a smooth domain Q

We define Q as $\{x \in \mathbb{R}^N | f(x) \leq 1, x > 0\}$, where f is

- Concave
- Positive in the vicinity of the origin in the first quadrant of \mathbb{R}^N
- Monotone decreasing in each variable in the vicinity of the origin in the first quadrant of \mathbb{R}^N
- Sufficiently smooth

In simple words: Q should look like P, but have a smooth upper boundary.
Working with a smooth domain

Testing feasibility of x is easy. We only need to verify that $x > 0$ and that $f(x) \leq 1$.
Testing feasibility of x is easy. We only need to verify that $x > 0$ and that $f(x) \leq 1$. But what about the bottleneck condition?
Working with a smooth domain

Testing feasibility of x is easy. We only need to verify that $x > 0$ and that $f(x) \leq 1$.
But what about the bottleneck condition? This is exactly where we gain:
Working with a smooth domain

Testing feasibility of x is easy. We only need to verify that $x > 0$ and that $f(x) \leq 1$.
But what about the bottleneck condition?
This is exactly where we gain: Membership in Q is defined by (uncountably many) inequalities, one per each hyperplane that is tangent to $\partial^+ Q$. In particular, every $x \in \partial^+ Q$, is automatically feasible.
Let us express the hyperplane H that’s tangent to $\partial^+ Q$ at x as $H = \{y \in \mathbb{R}^N | <a, y> = 1\}$.
Let us express the hyperplane H that's tangent to $\partial^+ Q$ at x as $H = \{y \in \mathbb{R}^N | < a, y > = 1 \}$. Here a is (the appropriately normalized) normal to the surface $\partial^+ Q$ at x.
In a smooth world

Let us express the hyperplane H that’s tangent to $\partial^+ Q$ at x as $H = \{y \in \mathbb{R}^N | <a, y> = 1\}$. Here a is (the appropriately normalized) normal to the surface $\partial^+ Q$ at x. Every point $z \in Q$ satisfies $<a, z> \leq 1$, (z lies below the hyperplane H).
Let us express the hyperplane H that’s tangent to $\partial^+ Q$ at x as $H = \{ y \in \mathbb{R}^N | \langle a, y \rangle = 1 \}$. Here a is (the appropriately normalized) normal to the surface $\partial^+ Q$ at x. Every point $z \in Q$ satisfies $\langle a, z \rangle \leq 1$, ($z$ lies below the hyperplane H). Among Q’s points x is uniquely determined by the condition $\langle a, x \rangle = 1$.
In words, the case of a smooth domain can be viewed as a variation of the original problem:
In words, the case of a smooth domain can be viewed as a variation of the original problem: There are uncountably many resources, one per each tangent plane of Q.
In words, the case of a smooth domain can be viewed as a variation of the original problem: There are uncountably many resources, one per each tangent plane of \(Q \). For a feasible solution in the interior of \(Q \), there are no bottleneck resources.
In words, the case of a smooth domain can be viewed as a variation of the original problem: There are uncountably many resources, one per each tangent plane of Q. For a feasible solution in the interior of Q, there are no bottleneck resources. However, at a boundary point $x \in \partial^+ Q$, there is exactly one bottleneck resource.
In words, the case of a smooth domain can be viewed as a variation of the original problem: There are uncountably many resources, one per each tangent plane of Q. For a feasible solution in the interior of Q, there are no bottleneck resources. However, at a boundary point $x \in \partial^+ Q$, there is exactly one bottleneck resource. Namely, the one corresponding to the tangent plane of Q at x.
In words, the case of a smooth domain can be viewed as a variation of the original problem: There are uncountably many resources, one per each tangent plane of Q. For a feasible solution in the interior of Q, there are no bottleneck resources. However, at a boundary point $x \in \partial^+ Q$, there is exactly one bottleneck resource. Namely, the one corresponding to the tangent plane of Q at x.

Actually, I am cheating here a little - I have shoved under the rug the possibility of $x_i = 1$, but it’s not a very serious lie.
What have we gained?

The combinatorial complexity is no longer an issue.
What have we gained?

The combinatorial complexity is no longer an issue. Moreover, fairness has become an equation rather than an inequality.
What have we gained?

The combinatorial complexity is no longer an issue. Moreover, fairness has become an equation rather than an inequality. Now there is a unique bottleneck resource - the one corresponding to the tangent to $\partial^+ Q$ at x.
What have we gained?

The combinatorial complexity is no longer an issue. Moreover, fairness has become an equation rather than an inequality. Now there is a unique bottleneck resource - the one corresponding to the tangent to $\partial^+ Q$ at x. Therefore the fairness condition reads

$$\forall i = 1, \ldots, N \quad x_i a_i \geq e_i$$
What have we gained?

The combinatorial complexity is no longer an issue. Moreover, fairness has become an equation rather than an inequality.

Now there is a unique bottleneck resource - the one corresponding to the tangent to $\partial^+ Q$ at x. Therefore the fairness condition reads

$$\forall i = 1, \ldots, N \quad x_i a_i \geq e_i$$

where a is the normalized normal to $\partial^+ Q$ at x and e_i are the entitlements.
What have we gained? (contd.)

Summing over all i this becomes

$$\langle a, x \rangle \geq \sum e_i.$$
Summing over all i this becomes

$$<a, x> \geq \sum e_i.$$

But, as we know $<a, x> = 1$ and $\sum e_i = 1$ as well.
What have we gained? (contd.)

Summing over all i this becomes

$$< a, x > \geq \sum e_i.$$

But, as we know $< a, x > = 1$ and $\sum e_i = 1$ as well. It follows that we must have equalities throughout.
Summing over all i this becomes

$$< a, x > \geq \sum e_i.$$

But, as we know $< a, x > = 1$ and $\sum e_i = 1$ as well. It follows that we must have equalities throughout. In words, what we are seeking is a vector $x > 0$ with $f(x) = 1$ and

$$\forall i \quad a_i x_i = c \cdot e_i$$

for some $c > 0$. Here a is a vector normal to $\partial^+ Q$ at x and e_i are the entitlements.
What f should we choose?

The most obvious choice of f (and thus of the domain Q) is

$$f(x) = - \sum_j \log(1 - (xR)_j)$$

It is positive near the origin of the first quadrant of \mathbb{R}^N.
What f should we choose?

The most obvious choice of f (and thus of the domain Q) is

$$f(x) = - \sum_j \log(1 - (xR)_j)$$

It is positive near the origin of the first quadrant of \mathbb{R}^N. It tends to ∞ as we approach the boundary of P (where some of the inequalities $(xR)_j \leq 1$ become equalities).
The general approach

We do not define Q right away. For every $t > 0$ we consider the domain

$$Q_t = \{ x > 0 \mid f(x) \leq t \}$$
The general approach

We do not define Q right away. For every $t > 0$ we consider the domain

$$Q_t = \{ x > 0 \mid f(x) \leq t \}$$

Figure: Illustration of level-sets of f from $t = 0$ to $t = \infty$.
Putting everything together

On the boundary ∂^+ of the domain Q_t we find (using standard material from the theory of ordinary differential equations) a point x such that there is a constant $c > 0$ for which

$$\forall i \quad n_i x_i = c \cdot e_i$$

where n is the (l_2-normalized) normal at x to the surface $f(x) = t$.
Putting everything together

On the boundary ∂^+ of the domain Q_t we find (using standard material from the theory of ordinary differential equations) a point x such that there is a constant $c > 0$ for which

$$\forall i \quad n_i x_i = c \cdot e_i$$

where n is the (l_2-normalized) normal at x to the surface $f(x) = t$.

Finally we pass to a limit as $t \to \infty$.
Solving the differential equation

Danny Dolev, Dror Feitelson, Joe Halpern, Nati Linial, and Ra: No Justified Complaints: A Bottleneck-Based Fair Resource Sharing Algorithm
No Justified Complaints: A Bottleneck-Based Fair Resource Sharing
Danny Dolev, Dror Feitelson, Joe Halpern, Nati Linial, and Ra: No Justified Complaints: A Bottleneck-Based Fair Resource Sharing
Danny Dolev, Dror Feitelson, Joe Halpern, Nati Linial, and Raz Kupferman

No Justified Complaints: A Bottleneck-Based Fair Resource Sharing
What is still missing?

We still do not know how to turn the numerical solution of the ordinary differential equation into a polytime algorithm. (I am quite certain that this can be done and should not be too difficult).
What is still missing?

We still do not know how to turn the numerical solution of the ordinary differential equation into a polytime algorithm. (I am quite certain that this can be done and should not be too difficult).

What do the solutions look like? As mentioned above, for each fixed J (set of bottleneck resources), the problem becomes a Linear Program. In particular, for this reason, in the generic case, the solution set is a discrete set of points. We can consider various criteria to tell which of these solutions is more suitable.
Specifically, can we guarantee the existence of a fair solution with a high utilization of resources? To answer this question positively, we certainly have to limit the feasible solution which we consider acceptable (nearly fair in some sense).

Danny Dolev, Dror Feitelson, Joe Halpern, Nati Linial, and Ra: No Justified Complaints: A Bottleneck-Based Fair Resource Sh
Specifically, can we guarantee the existence of a fair solution with a high utilization of resources? To answer this question positively, we certainly have to limit the feasible solution which we consider acceptable (nearly fair in some sense). Recall that the choice of f in our solution was quite arbitrary. Perhaps some clever choice of f can help.
That’s all, folks