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ABSTRACT

Fair allocation has been studied intensively in both ecdosmand
computer science. This subject has aroused renewed invdths
the advent of virtualization and cloud computing. Prior kvbas
typically focused on mechanisms for fair sharing of a single
source. We consider a variant where each user is entitle¢¢o-a
tain fraction of the system’s resources, and has a fixed yzagiée
describing how much he would want from each resource. We pro-
vide a new definition for the simultaneous fair allocatiomaflti-
ple continuously-divisible resources that we daikttleneck-based
fairness(BBF). Roughly speaking, an allocation of resources is
considered fair if every user either gets all the resoureewibhes
for, or else gets at least his entitlement on sdoiktleneck resource
and therefore cannot complain about not receiving more. Mfars
that BBF has several desirable properties such as provatirig-
centive for sharing, and also promotes high overall utiiora of
resources; we also compare BBF carefully to another nofifaire
ness proposed recentpminant resource fairness

Our main technical result is that a fair allocation can benfbu
for every combination of user requests and entitlements. allo-
cation profile of each user is proportionate to the user'filprof
requests. The main problem is that the bottleneck resoareasot
known in advance, and indeed one can find instances that difow
ferent solutions with different sets of bottlenecks. Tliereknown
techniques such as linear programming do not seem to work. Ou
proof uses tools from the theory of ordinary differentialiations,
showing the existence of a sequence of points that converge u
a solution. It is constructive and provides a practical roétko
compute the allocations numerically.

*Much of this work was done while the author was on sabbatical
leave at Hebrew University.
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Categories and Subject Descriptors

D.4.1 [OPERATING SYSTEMS]: Process ManagementSehedul-
ing; K.6.2 [MANAGEMENT OF COMPUTING AND INFOR-
MATION SYSTEMS ]: Installation Management-ricing and re-
source allocation
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1. INTRODUCTION

Fair allocation has been widely studied both in economias an
computer science (See [4, 11, 19] for a sample of the widgingn
work in this area.) Generally speaking, the notion of fasmmay
pertain to mechanisms like bargaining and their relatigngheth-
ical issues (e.g. [18]). We assume fairness to mean thatiesssh
has a certain level of resources to which he is entitled, akel &n
allocation to be fair if each user indeed gets at least thisl |But
how exactly should the entitlements be interpreted? Spadifi
what does it mean that a user is “entitled to 20% of the systeis”
this a guarantee for 20% of the CPU cycles? Or maybe 20% of each
and every resource? And what should we do if the user requires
say, only 3% of the CPU, but over 70% of the network bandwidth?
Reserving 20% of the CPU will cause obvious waste, while-curb
ing the network usage would be unreasonable if no other @ser ¢
take up the slack.

Our goal in this paper is to define a notion of fair allocatibatt
applies when multiple, continuously-divisible resouregs to be
allocated. In a nutshell, we observe that allocations negdfocus
on contended resources. Our scheme, which webwdtleneck-
based fairneséBBF), therefore requires that each user receives his
entitlement on at least one bottleneck resource. We claamthie
user can then not justify complaining about not getting makée
then show that a BBF allocation is guaranteed to exist.

2. CONTEXT AND PREVIOUS WORK

This work concerns mostly eollaborative environment. The
different users may represent, e.g., different activitiesne orga-



nization or even a set of computational systems that arenaled
by the same entity. Another possible scenario is an insit@iigut
together by a group of mutually trusting partners. In thistest a
user’s entittement may represent that user’s share in testment
that created the installation and the shared resources.

Simple and direct approaches for scheduling according tie en
tlements include lottery scheduling [17] and economic niees],
where each process'’s relative share of the resources isssqut by
its share of lottery tickets or capital. Another popular m@agh is
based owirtual time[7, 14]. The idea is that time is simply counted
at a different rate for different processes, based on tbé&itive al-
locations. In networking research the most common apprdésach
max-min fairness, where the goal is to maximize the minintal a
location to any user [15]. Using weights this can be adjusted
support diverse entitlements.

The main drawback of the approaches above is that they fatus o
one resource—the CPU or the bandwidth of a link—irrespeaiiv
contention. This may be inappropriate when the goal is toeaeh
a predefined allocation of the resources. For example, hggtry
to promote an 1/0-bound process (because it deserves mahne of
CPU than itis using), we might turn the disk into a bottleneuid
inadvertently allow the internal scheduling of the disk trolter to
dictate the use of the whole system.

In order to avoid such problems, it has recently been sugdest
that fair-share scheduling be done in two steps [2, 8]: fidshtify
the resource that is the system bottleneck, and then entfoeagte-
sired relative allocations on this resource. This appraadh line
with basic results in performance evaluation, as it is walhkn
that the bottleneck device constrains system performahi®is§,
after all, the definition of a bottleneck) [13]. An importam@ni-
festation of this result is that, in a queueing network, nodshe
clients will always be concentrated in the queue of the eo#tk
device. This implies that scheduling the bottleneck deiscthe
only important activity, and moreover, that judicious sdhieng
can be used to control relative resource allocations. Theufa
age of the bottleneck resource induces some level of usageaf
resources as well, but this need not be controlled, bechese is
sufficient capacity on those resources for all contendinggsses.

The question is what to do if two or more resources become bot-
tlenecks. This may easily happen when different processes p
dominantly use distinct resources. For example, consid#tua-

in handling all users of the same type equally. In this caserge
led to the problem formulation as described next.

Each usel requests a fraction;; of resourcej. Obviously the
interesting situation is when for eagtthere exists g such that
rij > eq, and for everyj, >~ r; > 1. Our goal is to find a set of
allocations that allow us to exploit complementary usagfdiles to
achieve high utilization, but at the same time respect tfferdnt
entitlements. By respecting the entitlements, the allonatcan be
claimed to be fair.

An important attribute of our user model is that the request p
file of each user ifixed Thus the allocation to uséiis character-
ized by a single factar;, rather than a separate factor for each
resourcej. The fraction allocated to of each resourcg will be
x;ri;. This model reflects a situation where each user is engaged in
a specific type of activity with a well-defined resource uspge
file. For example, a user may be serving requests from clmes
the Internet. Each request requires a certain amount of at@amp
tion, a certain amount of network activity, and a certain anmof
disk activity. If the rate of requests grows, all of thesevgtty the
same factor. But if one resource is constrained, limitirgyrite of
serving requests, this induces a similar limit in the usdgdl other
resources. This is essentially the “knee model” of Etsioal.€9],
where /O activity is shown to be linearly proportional to (C&l-
location up to some maximal usage level. It also corresptmtie
task model of Ghodsi et al. [10] when all tasks belonging tseru
have identical resource requirements (which is indeed pikeific
model they use in their proofs). Note, however, that thiadeed a
limiting assumption. Specifically, it excludes usage patavhere
one resource is used to compensate for lack of another sour
as happens, for example, in paging, or when using compressio
reduce bandwidth.

All the above leads to the following problem definition. Wenva
tofindzy,...,zny with0 < z; < 1. Herex; is the fraction of user
7's request which will be granted. Feasibility of thesgs means
that our total consumption of each resource is at most one:

Vj : ZCCZ‘TU <1 (1)

Those resourcegfor which equality holds in (1) are tHeottleneck
resources These are important for our fairness condition, which

tion where one process makes heavy use of the CPU, a second i&'e call the “No Justified Complaints” condition. The ideahatta

1/0-bound, while a third process uses both CPU and I/O, ngakin
both bottlenecks.

user cannot justify complaining about his allocation iheithe gets
all he asked for, or else he gets his entitlement on someshettk,

There have been a number of approaches suggested for fairlySO giving him more would come at the expense of other users who

allocating multiple resources. Most relevant to our workhis re-
cently proposed notion afominant resource fairneg®RF) [10].

DRF does not explicitly consider bottlenecks, but ratheuges on
each user’s maximal usage of any single resource. We desbi#
in more detail and compare it with our definition in Section 4.

3. BOTTLENECKBASED FAIRNESS WITH
MULTIPLE BOTTLENECKS

Consider a setting wittV users andn resources (e.g. CPU and
network and disk bandwidth). Without loss of generality vee a
sume that there is exactly one unit available of each resoiie
assume that each uséis entitled to a fixed percentage of the
full capacity, and hence of each resource, whetee; = 1. Al-
ternatively, the actual number of users mayMe > N, where

have their own entitlements. This is formally expressed as:

Vi : [mL = 1] V [3‘]* : (Zk TkTkj* = 1) N (CCZ‘Tij* > eL)] 2)
In the sequel, we call this requiremembttieneck based fairness
(BBF).

Note that it may happen that a user receives less than his enti
tlement onother resources, including other bottleneck resources,
where the entitlement would seem to indicate that a lardeca
tion is mandated. This is where the fixed request profile apsum
tion comes in. Recall that the factoy is common to all resources.
Thus, giving a user a higher allocation on any resource esghat
his allocation must grow oall resources. The original bottleneck
resource™ thus constrains all allocations, even on other bottleneck
resources or resources that are not themselves contended.

Showing that a fair allocation according to this definitiodises

all theseM users are treated equally (so each user’s entitlement is turns out to be surprisingly nontrivial. As far as we know,cddvi-

%). However, there are onliV typesof users, of whichM e; are
of types. It is not hard to verify that there is no loss of generality

ous approaches (e.g., Linear Programming) seem to fail. rdiesp
the existence of fair allocations in Section 5.



4. PROPERTIES OF BOTTLENECK BASED resources.

FAIRNESS To further support the focus on bottlenecks, we note thatiYaa
and Bar-Hillel extended the Jones and Smith example to at&itu
where Smith’s ability to extract vitamins from fruit is egmely
low. In this scenario, a large number of respondents no lotode
erated his inefficiency, and broke from the goal of achiewqggal
utility. An additional consideration that was not checkedthe
study was contention for limited resources. We conjecthea if
a minimal level of vitamin was given as a requirement, eshci
if there were many potential beneficiaries rather than juet te-
spondents would be even less tolerant of inefficiency, andarp
fair division of the resources (or fruit).

In fact, Ghodsi et al. also mention bottleneck fairness ®irth
description of DRF, but only as a secondary criterion. Thefyng
bottleneck fairness only when all users have the same doniea
source, essentially reducing the scope to the single bettlecase.
Our work is the first to extend this with a meaningful definitiof
fairness for multiple bottlenecks, and when the dominasdueces
are different.

In this section, we discuss properties of BBF, and compare it
to DRF. A user’s dominant resource is the one where the user re
quires the largest fraction, i.ergmax; r;;. Given the fixed request
profile assumption, in any allocation the user's maximalyesaf
any resource will be his usage of the dominant resource. DRF
fairness is then defined as equalizing these maximal usagks le
across users, or more generally, making them proportianghe
entitlements [10]. In the special case where each user @thas
full capacity of some resource (so the dominant resoyjrsatis-
fiesr;; = 1) this is equivalent (in our notation) to requiring that
XTi; X €4.

An important difference between DRF and BBF is that DRF al-
locations can be found using an incremental algorithm [EQjd-
ing BBF allocations is harder, because we do not know in azk/an
which resources will be the bottlenecks. But interestintiig tra-
jectory argument used in the proof that a BBF allocation texis
is actually somewhat similar to the way that allocations @e-

structed for DRF. 4.2 Game-Theoretic Considerations

4.1 Defining Fairness Ghodsi et al. [10] show that DRF has four desirable attrifute

BBF and DRF bhoth define a notion of fairmess across multiple Under the assumption that all tasks belonging to a user ligve i
resources. At a very basic level, the notion of fairess depe tical resource requirements (in which case their modelaeslto

on perception of utility. In the context of allocating resces on ours). We now show that BBF also has two of them, and explain
computer systems, the utility is typically unknown. Consemfly the tradeoff regarding the other two. o
the notion of fairness is ill-defined. The first requirement is what Ghodsi et al. csliaring incen-

To better understand the difference between utility andcaH tive: each usei should be better off than he would be if he could

tion, we recount an example used by Yaari and Bar-Hillel [18] Work with only his entitlement; of each resource. Due to the
Jones and Smith are to share a certain number of grapefdinan ~ fixed request profile assumption, if usegets a fractiore; of each
ocados to obtain certain vitamins they need. They haverdifte ~ resource, much of this capacity may remain unused. Indesed; u

physiological abilities to extract these vitamins from thfierent is no better off from his point of view than if he got a fractiorf
fruit. The overwhelming majority (82%) of people polled aegd his requests, where = e;/ max;{r; }. In a BBF allocation user
that the most fair division is one that gives them equal shafex- ¢ gets a fraction:; of his requests, where;r;; > e; for some bot-
tracted vitamins, despite being quite far from being equahibers tleneck resourcg. Thusz; > z, which means that BBF provides
of actual fruit. Thus respondents clearly favored equéityitis the an incentive for sharing resources, and thus allows thesyt
criterion for fairness. But such considerations would bpassible ~ €Xploit situations where users have complementary reqainés.
if you do not know their specific ability to extract vitamires)d that Another attribute i°areto efficiencyThis means that increasing
they actually only eat fruit for their vitamins. the allocation to one user must come at the expense of andtisr
When allocating resources we do not know the real utility of follows immediately from doing allocations based on boigleks.
these resources for the users. We are therefore forcedttegust The two properties that are more problematic are strategypr
the amount of resources being allocated. The differenosesst ness and envy-freedom. Beisyategyproofmeans that users won't

definitions of fairness is in how this counting is done. A sienp ~ benefit from lying about their resource needs. Beamyy free
counting rule isasset fairnes§10] , where the fractions of all re- ~ Means that users don't prefer another user’s allocatiorod€itet
sources used are summed up. Thus the total allocation ta iser ~ @l- provide one approach to obtain a DRF allocation, and shetv
>, 45, and these allocations should be equalized across users their approach is strategyproof, and its outcome satisfe feee-

In DRF, only the largest fraction is considered. To be fdinisers dom. As we show in Section 6 BBF may allow multiple solutions.
should receive the same fractions of their respective dantire- ~ This provides flexibility in the sense that secondary objestmay
sources. In BBF we take a system-wide view, and only count the D€ used to select among the options. But it may also be siscept

usage of bottleneck resources. Thus a user may receive hwre t  ble to manipulations by users who try to influence the dexigio
his entitlement of non-bottleneck resources, but this isiered  their favor. But note that this effect is limited to the chw@mong

immaterial because there is no contention for those ressurc alternative fair allocations. However, as lan Kash [pevedommu-
Interestingly, Ghodsi et al. prove that under DRF each ugiér w  Nication, 2011] has shown, even for an instance of the probie.,
actually be constrained by some resource that is a botkeieg. choice ofey, ..., e, andri; for 1 < i <nandl < j < m) that

However, their fairmess criterion does not depend on thitibo  has a unique BBF allocation, strategyproofness does ndt hol
neck, while ours does. As a result DRF may constrain the alloc .. . . .

tions of a non-bottleneck resource, and use this as an argdore ~ 4-3  Utilization Considerations

being fair to the user. There seems to be no criterion by wtdch We now turn to a discussion of how fairness definitions may af-
say that either DRF or BBF is fairer than the other. It may well fect system utilization. First, we observe that if all uskase the

be that a user derives much benefit from using the non-bettlen ~ same dominant resource, DRF and BBF are equivalent. This fol
resource, and therefore cutting him back on other resousqes- lows since the common dominant resource is the only bottlene
fectly justified. But given that we do n&howthat this is the case,  Thus the resulting utilization is the same. But in other sabere
we suggest that it is safer to focus exclusively on the huottt& may be differences. In fact, it is easy to find examples whé&E B



leads to higher overall utilization than DRF, and countaregles
where the opposite is true.
However, the following claim indicates that BBF may actyall

have an edge over DRF. Assume that every user has at least one

resource that he can use to capacity (i.e. for every utegre is a
resourcej such thatr;; = 1). Consider those problems that have a
full-utilization solution, meaning that we can find, ... znx such
thatxz; > e; and, for every resourcg we haved  z;r;; = 1. We
claim that all such cases are BBF solutions, but there exish s
cases where the DRF solution exhibits very low utilization.

These assumptions are not as restrictive as they may seeam. Th
requirement that each user has a resource he can use totgapaci
just means that users are greedy and want lots of power. Mereo
every DRF and BBF solution must be such that> e; (in the
case of BBF, this is because = 1 or x;r;; > e; for somej
andr;; < 1). Since, in a full-utilization solution, all resources
are bottlenecks, and each user has a resource wherg > e;
(namely, the resourcg such that-;; = 1), it is easy to see that
a full-utilization solution satisfies BBF. But consider thoilowing
specific example where DRF does badly. Assuffve users want
resource 1 at full capacity. An additionalusers want only a very
small e of resource 1, and/n of all the other resources. DRF
will seek to give each user 1/Kn of its dominant resource, so
these last users will get~ 1/ K of what they want. But BBF can
opt to give the lash users their full request, at very small cost to
the others. With smalK (e.g. K = 2), DRF gives a third of the
population just half of what they could get without reallynleéting
the others. With smalh (e.g.n = 1) it reduces the utilization of
all resources except the first g K.

This example in itself does not prove that BBF is superior to
DRF. It might be the case that other examples will show latge u
lization differences in the other direction. We are curyeattempt-
ing to achieve a more complete characterization of theivelati-
lization implications of BBF and DRF.

5. EXISTENCE OF A FAIR ALLOCATION

In this section, we prove that an allocation satisfying (id &)
always exists. Note, that (2) deals separately with the wdze
x; = 1 and usel’s request is respected in full, and whare< 1
and we need to at least givehis entitlement on some bottleneck
resource. Consider the following simplification of (2), theaves
out the first disjunct:

Vi 35" (3, kg = D)A(@irij > ei). (2)
We claim that, given a problenX, we can convert it to a prob-
lem X’ such that an allocatiofx, . . . , z,,) for X satisfies (1) and
(2) iff (z1,...,x,) satisfies (1) and (2for X’. To convertX to
X', we simply addNV new dummy resources, . .., ry such that
ri; = 1if j = i and O otherwise. In light of this, the following
theorem establishes that there always exists a solutidisatiafies
BBF.

Theorem 1. Given
e entitlements,...,eny suchthate; > 0fori=1,...,N
ande; +---+ey =1, and
e resource requirements;; such thatd < r;; < 1 andri; +
coodry; > 1fori=1,...,Nandj=1,...,m,
there exists an allocatiom1, ...,z N, where0 < z; < 1fori =
1,..., N, such that (1) and (2 hold.

5.1 A Few Simplifying Assumptions

Before proving the theorem, we make three simplifying agsum
tions, all without loss of generality.

X2
14 Ry R2
R3
0
0 1 X1

Figure 1: Depiction of bounds on;; values due to capacity con-
straints of resources, fo¥ = 2 andm = 3.

We can and will assume thatax; r;; > e;, for each uset.
Otherwise, we give usereverything he asked for, remove his re-
quests, renormalize the entitlements of the remainingsusethat
they still sum to 1, renormalize the remaining capacity &f dif-
ferent resources so that it is still 1, and renormalize tineaiaing
requests by the same factors. Again, it's not hard to seétisatan
be done without changing the problem and the possible owgsom

Also, say that resourcgis dominatedf the inequalityzir1; +
---+znrN; < lisaconsequence of all other inequalitfes r1s+
-+ anrns < 1|s # j}. Clearly, the existence of such an in-
equality can be efficiently detected by standard linear ranogning
methods. Again, dominated resources can be eliminated thhem
problem without any change.

We turn to prove the existence of a solution. . . z x satisfying
Theorem 1 under these simplifying assumptions. As mentdione
this is done without loss of generality, and a solution te&bind
under the simplifying assumptions can be easily turnedargolu-
tion for the original formulation of the problem.

5.2 Proof Structure

We first establish some notation. The set of all feasibletswia
is the polytopeD C (RT)Y, where

D={(z1,...,zn):0<2; <1, Vi and
x1ry + -+ anrn; <1, Vi }

This is illustrated in Fig. 1 folV = 2.
Forx = (x1,...,xzn) € D, the set of bottleneck resources is

Jx)y={j: 1<j<m, ziry+ --+znrn; =1}

The solutionz that we seek must clearly reside on the boundary of
D, for J(x) is empty whernz is in D’s interior. So, paraphrasing
(2), our goal is to find an allocatiom = (z1, ..., zx), such that

(©)

This is exactly the source of our difficulty. Given the set of-b
tleneck resources, the problem of findiags just a linear program.
Specifically, given an arbitrary subsetC {1,...,m}, the fol-
lowing decision problem is an LP: Is there anc D for which
J(x) = I such that condition (3) holds?

How can we overcome the difficulty involved in satisfying eon
dition (3) without prior knowledge of the sdt(x)? As a first step,
we approximate the polytopge by a subse® C D that is convex
and has a smooth boundary. Intuitively,“rounds off” the corners
of D (see below for further discussion). Such a@es defined by
infinitely manylinear inequalities: For every hyperplatig that is

Vi 35" € J(x) 1 zirijx > e



tangent toQ we write a linear inequality that states thamust re-
side “below” H. It would seem that this only complicates matters,
replacing the finitely define® by Q. However, the problematic
condition (3) takes on a much nicer form when applied®toand
becomes a very simple relation involving the contact pofnfio
andQ, the normal toH, and the vectoe (see Equation (7) below).
Moreover, using standard tools from the theory of ordinaffed
ential equations, we can find a point on the boundar@afhere
this relation holds.

To find the solution, we do not consider a single smo@thut
rather a whole parametric familQ:. This family has the properties
that (a) the set®, grow as the parameterincreases; (b) they are
all contained inD; and (c) ag — oo the setsQ; converge tdD.

In the language of the description bela® is defined as the set of
thosex € D for which f(x) < t. For everyt > 0, we find a point
x® on the boundary 08, such thatc® satisfies the analogue of
condition (3). Ast — oo, the pointsz?) tend to the boundary of
D. We argue that there always exists a convergent subseqoénce
the pointsz®, and show that the limit point of this subsequence
solves our original problem.

The procedure above hinges on our ability to define the appro-
priate pointsz‘® that satisfy the required condition. This is based
on considering the tangent to the surfaceXf Note that the only
essential difference betwedn and Q is that the latter is defined
by an infinite family of defining linear inequalities, namebye for
each hyperplané/ that is tangent t@. Keeping this perspective in
mind, let us apply the original problem definition to a paine Q.

If x lies in the interior ofQ, then none of)’s defining inequalities
holds with equality. Thus, as beforé(x) is empty for anye in the
interior of the domain®. We therefore consider that lies on the
boundary ofQ. In this case, the sef(x) is a singleton, the only
member of which is the inequality corresponding to the hglzere
H that is tangent t@ and touches it at the point The equation of
the tangent hyperplang can be written a§ " v;z; = 1, where the
vector (v, ..., vy,) is normal toH . Now condition (3) becomes

4)

When we sum over all this become$_ v;xz; > > e; = 1. But
x lies on H, so thatd | v;xz; = 1. It follows that all inequalities
in Eq. (4) hold with equality. But we also have, from the defom
of the bottlenecks, that_ r;;z; = 1. Thus, the normal is simply
defined by the requirements vectors. Moreover, we can useshi
a condition on the gradients of the surface®pffor successive's,
and follow a trajectory that leads to a solution on the bounaé
D. This is then the desired constructive proof: it both shdves &
solution exists, and provides a mechanism for finding itheriext
subsection we formalize this argument.

5.3 Proof of Theorem 1

Construction 1. To every allocatior in the interior of the domain

D, we assign a value
N
<1 — Zl’)ﬂ‘/w) .

k=1

Vi vizi > e;.

m

f(@) == log

Remark 1. The functionf is positive in the interior oD, diverging
to infinity asx tends to the boundary @.

®)

Remark 2. Clearly, there are other choices ¢fthat satisfy these
desired properties. This choice seems like the simplestarrair
purposes.

Definition 1. To every numbet > 0, there corresponds a level set
of f, namely,

X2
1+ Rl RZ
R3
t=00
oa
0 1 X1

Figure 2: lllustration of level-sets of fromt = 0 tot = oco.

Ii={xecD: flx)=t}

Remark 3. Thisis an(N — 1)-dimensional hypersurface. (Fig. 2
illustrates this forN = 2.)

Definition 2. To every pointe € D, there corresponds a unique
unit vectorv(x) = (v1(x), ..., v~ (2)), normal to the level set of
fatx.

The unit normalv(x) is proportional to the gradient of at «,
implying that

_ L of
768:62‘

m

(@) =¢>

=1

Tij

N )
1= ThTky

Vi=1,...,N,

(6)
where the normalization constahits chosen so as to guarantee that
v is a unit vector, that isy? + - - - + v% = 1.

vi(x)

Construction 2. We now construct a vector-valued function
z(t) = (z1(t),...,zn (1)), t>0,

satisfying the following properties:
1. x(t) lies on the level seft; for all ¢ > 0 (and, in particular,
remains inD).

2. Forallt > 0, there exists a-dependent normalization factor
c(t), such that forevery=1,..., N,

zi(t) vi(x(t)) = ce(t)es. )
Remark 4. Note that sincef (z(0)) = 0 it follows thatz(0) = 0,
that is, the vector-valued functiae(t) “starts” at the origin.
Remark 5. Substituting6) into (7) and summing over the indéx
determines ¢(¢). After simple algebraic manipulations, we get
i i(t)rij — (Cpmy @k (B)rag)ei

N
j=1 L=k wk(t)r;

=0,Vi=1,...,N, Vt > 0.

®)

Intuitively, =(¢) is a “trajectory” that takes us from the origin
x = 0to a point on the boundary @ ast grows from0 to co®.

In networking, allocations to flows traversing multipleKinare
also viewed as using multiple resources, where again the con
straints stem from links that become bottlenecks. In thigtext
max-min fairness can be characterized based on a geonhedpea
resentation that is very similar to ours [15]. However, thguire-
ments from all the resources (links) are equal, making tlaecbe
for a solution easier. Specifically, it is often possible tovain a
straight line from the origin to the boundary, in a directimased

on the desired relative allocations, rather than using eersom-
plicated trajectory as we do.



The formal proof now follows from the following sequence of

three lemmas, proved below. First, we show that a trajectatty
the required properties exists (Lemma 4). Given such acti@jg
we show that a subsequence of this trajectory converges dna p
on the boundary oD (Lemma 2). Finally, this accumulation point
is shown to be a solution to our allocation problem (Lemma 3).
It is convenient to postpone the discussion of whether threre

deed exists a trajectoey(¢) satisfying the required properties, and

consider convergence first.

This is a contradiction to the fact that, by (9), the limit altbbe
the negative of the right-hand side of (10). Hence we corecthdt
x* has the property that for all useisthere exists a bottleneck
resourcej such thate;r;; > e;. Thus,xz™ is a fair allocation. O

It remains to show that the trajectary(t) is indeed well-defined
for all system parametets andr;;. This is handled by the follow-
ing lemma.

Lemma 4. There exists a functiom(¢) with the properties speci-
fied in Construction 2.

Lemma 2. Let0 < t; < t2 < --- be a sequence tending to infin-
ity. Letx(¢) be a vector-valued function as defined in Construction
2. Then, the sequenest;) has a subsequence that converges to

PROOF. To prove this we show that we can find points satisfying
property 1 that also satisfy property 2. Sincé) € I', we have

an allocationz™ on the boundary ob.

ProOF. Consider what happens as— oco. Sincex(t) €
T4, it follows thatx(t) approaches the boundary Bf However,
the functionz(¢) may not tend to a limit a8 — co. Neverthe-

less, sinceD is a compact domaing(t) has a convergent subse-

guence. That is, there exists an allocatish= (z7,...,x%) on

the boundary of> and a subsequenctg, < t,, < ... such that
khﬁrr;o z(tn,) ="

O

The next lemma shows that this accumulation point is a soiuti
to the fair allocation problem.

Lemma 3. An allocationz™ as resulting from Lemma 2 is a fair
allocation according to our definition.

PROOF Sincex™ is on the boundary db, it has a non-empty
setJ(z") of bottleneck resources such that
Vje J(x) #0.

We then rewrite (8) by splitting the resourcgmto bottleneck re-
sources and non-bottleneck resources, and setting,,:

i(tn)rij — (e, Th(tn)rig)e: .
1= 300 wi(tn)re

* *
xir1; + -+ ayrn; =1

JEJT (%)
N 9)
Z zi(tn)riy — (O py (tn)rrs)e .
jeT(@*) 1= 300 @kltn)re

The two summations behave very differentlyrass co. For a non-
bottleneck resourcg, Zszl xyrk; < 1, so the summation over
the non-bottleneck resources tends to a limit obtained tiinde
xz(tn) — x* term-by-term:

N
lim Z tn 7‘2] - (N,X:k:l xk(tn)rkJ)ez
naongJ(z*) Zk:l xk(tn)rkj
B (10)
-3 Tirig — (D TRy )€
= N
e D D

f(z(t)) =t, thatis,

m N
Sfiefum)e e
= k=1
By (7),
Em: xi(t)rij = c(t)e, Vi=1,...,N. (12)

1- Zg:1 Tk (t)Tk;
Differentiating both equations with respectttove obtain a linear
system of equations for the derivatide:/dt. Differentiating (11),
we get

Zilj 1 djtk Thi
1- Zk:l Tr(t)rk;
Differentiating (12), we get

m dx m

N d
Z T +Z TiTij D p—q %m]
(1= 3200, @arey)? dt

=1 —Zkzl TkTki =1

- (13)

Observe that, without loss of generality, we can éetdt = 1,
compute the resulting vector of derivativés /dt, and then multi-
ply it by a constant for the normalization condition to holdhus, it
remains only to show that (13) has a unique solution whefdt =
1. To do so, we define am-dependent matrix with entries

Tij
1= 300 aurny

These entries are non-negative e D. We now rewrite (13) in
a more compact form,

Z dzk <Z bL](SZk + Z:C bL]bk]> = €.

=1

bij = t=1,...,N, j=1....,m.

The term inside the brackets is tli&, i) entry of a symmetric
positive-definite N x N matrix, which immediately implies that
there exists a unique solutiafiz/dt. Since the dependence of
dxz/dt on x is continuous, the existence and uniqueness: (@f
follows from the Fundamental Theorem of Ordinary Diffeiaht
Equations [5]. (More precisely, the fundamental theorer®@DEs
guarantees only the existence and uniqueness of a solatienrhe

For a bottleneck resourggthe denominatot —3 " x4, tends small¢; global existence follows from the boundedness of the do-

to zero ast — «”, so the limit exists only if the numerator vanishes  mainp.) 0
as well. But if it were the case that, for a given uger This completes the proof of Theorem 1.
airij < ei forall j € J(z*), We note that our proof that a fair allocation exists is almost

constructive. The trajectories(t) can easily be computed nu-
merically using standard ODE integrators (for example, |dk&s$
ode45 function). If 2(t) is found to tend to a limit for large,
then this limit is a fair allocation. The only reservatiorth&t nu-
merical integration only provides approximate solutionswever,

then

N
- Z xi(tn)rej — (g:k:l x(tn)Thj)€i = —00.
1=>0_ xr(tn)rry

n—r oo
JEJ(x*)



with a controllable error), and can only be carried out ovéniée
t interval.

Following our work, Gutman and Nisan [12] have provided a
polynomial-time solution to the problem of finding a BBF allo
cation. They did so by first providing a characterization &M
To explain their results, we require some definitions, whiske
the notation of Section 3. Define anallocation for playeri to
be a tupley, = (v:1,...,yim) such thaty;; > 0; intuitively,
yi; is the amount of resourcg that playeri gets. We can asso-
ciate with an allocatiory; its utility. To capture BBF, we take
u;(ys) = min; (ys;/7:;). An allocationy; for player: is parsimo-
niousif there is no allocatiory; < y; such thatu;(y;) = wi(y:),
wherey; < y; if yi; < yi; for all j andy;; < yi; for somej. It
is easy to see that; is parsimonious iff there exists; such that
yi; = xiri; for all j. An allocationy = (y1,...,yn.) is feasible
if >, yi; < 1forall j. Inour setting, &isher market equilib-
rium consists of an allocatioly and a vectorr = (71,...,7m)
with 7r; > 0 for j = 1,...,m (which can be thought of as a price
vector, wherer; is the “price” of resourcg) such that

1. fori =1,...,n, the vectory; maximizesu; (y;), under the
constrainty_, m;yi; < ei;

Note that although we took; to be user’s allocation, in the con-
text of Fisher market equilibrium it can be thought of as u&er
budget. The constrait, y;; = 1 says that each resource is “used
up”.

Gutman and Nisan show that, given an instance of our prob-
lem (defined by the allocations, . .., e, and the requests;), by
adding a new resource for each player, we can easily coriert t
instance to a new instance of the problem such that (LYifr)
is a Fisher market equilibrium corresponding to the newainse,
and X is a parsimonious allocation such that, for all useréa)
X; <Y, and (b)u;(X;) = ui(Y;), thenX is a BBF allocation;
(2) the allocation to the original resourcesXhgives a BBF solu-
tion for the original instance of the problem. By the resolt$6],

a Fisher market equilibrium can be computed in polynomiakti
It easily follows that a BBF allocation can be computed inypol
nomial time. Moreover, it follows from the results of [6] thtae
feasible solution to the constraints (1) that maximiggs , z; is a
BBF allocation. We note that this statement can be verifiezttly,
using convex programming duality.

6. UNIQUENESS AND OPEN QUESTIONS

Generally speaking, the BBF allocation problem does no¢ laav
unique solution; moreover, different solutions may dependlif-
ferent sets of bottlenecks. Consider the following exampli¢h
four users and four resourced’ (= m = 4). Assume all users
have the same entitlements, thaktjs= 0.25 fori = 1,...,4.

m N Solutions
4 20 5.4£1.9
5 25 14.6:3.8
6 30 34.884
7 35 7H20
8 40 18631
9 45 40163

Table 1: Average number of solutiong standard deviation for
randomized resource request matrices of different sizes.

than their entitlements on all the resources they use. Buéthre 6
additional solutions. Pick any two userandyj, and setr; = z; =
0.25. Letk andl be the other two users, and sgt= x; = 0.375.
Now two resources are bottlenecks25 + 0.375 + 0.375 = 1)
but the other two are nod(25 + 0.25 4 0.375 = 0.875). Which
resources become bottlenecks depends on the choikeanfl (.
This example can easily be generalized as follows. Consider
example withN = m > 2. The requirements arg; = 0 for all ¢
andr;; = 1wheni # j. All e; = 1/N. ForeveryN —1>¢ > 1
we select an arbitrary set olusers and let the correspondingbe
1/n. For all otherN — ¢ users we let:; 1{,"(;\,’5:1). It is easily
verified that in this case there are exponentially many swoiat

To get some idea of more general results, we provide a brief re
port about some preliminary numerical experiments that axeeh
carried out. We start by observing that for a giv¥nx m matrix
R, itis possible to discover all the BBF solutions of the cepand-
ing problem by solvin®2™ — 1 linear programs. This is done as
follows: Fix a nonempty set of resourcéds We can test, using an
LP solver, whether it is possible to satisfy condition (1)hwequal-
ity iff j € J along with condition (2) (with respect to the same set
of bottlenecks/).

Our experiment runs as follows: We repeatedly (100 timas)sa
ple a randomV x m matrix R whose entries;; are drawn inde-
pendently from the uniform distribution df, 1]. For the resulting
matrix we solve the™ — 1 linear programs described above and
list all the resulting BBF solutions. Needless to say, wetidamit
our search to relatively small values«f. Our preliminary results
suggest that, for a fixeeh, the number of solutions grows very
substantially when the number of playéysincreases. In fact, the
number of solutions seems to be growing exponentially wittior
N large) (Table 1).

These preliminary observations are very intriguing andétis-
sues call for a more thorough investigation. Several qoestsug-
gest themselves: Of the many available BBF solutions, wétichuld
be preferred? Can the “better” solutions be found efficigniiVe
note in particular that the Gutman-Nisan algorithm yield@ne
solution, and tells us nothing about the rest of them.

The solution concept we develop here has many properti¢s tha
are desirable as well in an environment where differentausem-

Arrange the users and resources in a circle, and make each usepete for resources. However, we still do not know much abost p

request the full capacity of its resource and those of itghtmirs.
Thus the requirements matrix becomes

=== O
(I e R Y

1
1
1
0

— O =

This instance is completely symmetric, and the obvioust&miu
is a symmetric allocation where; = % fori = 1,...,4. In
this solution, all 4 resources are bottlenecks, and allsugetr more

2We remark that we simplify the definitions of [12].

sible manipulations in this context, and how they affect de-
come.

The suggested approach is off-line, and requires full datata
requirements to be available in order to compute a solutiom-
other interesting question is how to formulate an on-lirgoathm
that schedules tasks in a way that will lead to the desirextal
tions.

7. CONCLUSIONS

To summarize, our main contribution is the definition of wiat
means to make a fair allocation of multiple continuouslyisible



resources when users have different requirements for soeirees,
and a proof that such an allocation is in fact achievable. défii-

tion is based on the identification of bottleneck resouraes, the
allocation guarantees that each user either receives allistees

for, or else gets at least his entitlement on some bottleresdurce.
The proof is constructive in the sense that it describes aodeto
find such a solution numerically. The method has in fact been p
grammed in Matlab, and was used in our exploration of various
scenarios.

Note that, in the context of on-line scheduling, we may netche
to find an explicit solution in advance. Consider for exantpie
RSVT scheduler described by Ben-Nun et al. [2]. This is a fair
share scheduler that bases scheduling decisions on thetyagdn
what each user has consumed and what he was entitled togeceiv
To do so, the system keeps a global view of resource usagesby th
different users. If there is only one bottleneck in the systéhis
would be applied to the bottleneck resource. The questiorna
to do if there are multiple bottlenecks. Our results indicttat
the correct course of action is to prioritize each procesedtan
the minimal gap on any of the bottleneck devices, because this is
where it is easiest to close the gap and achieve the desitité-en
ment. Once the user achieves his target allocation on anlyeof t
bottleneck devices, he should not be promoted further. Gtis
tradicts the intuition that when a user uses multiple resesirhis
global priority should be determined by the one where hertbést
behind. Note that such an algorithm is similar to the corsion
used for DRF, and also works if users have different taskis aift
ferent resource requirement vectors.

It should also be noted that our proposal pertains to theyoli
level, and only suggests the considerations that shoulgppled
when fair allocations are desired. It can in principle beduséh
any available mechanism for actually controlling resowatieca-
tion, for example, resource containers [1].

A possible direction for additional work is to extend the rabd
In particular, an interesting question is what to do wherréhative
usage of different resources is not linearly related. Irhsaicase,
we need to replace the user-based factonsy specific factors:;;

for each user and resource. This also opens the door for a gamg13]

where users adjust their usage profile in response to sydtem a
cations — for example, substituting computation for bartiiviby
using compression — and the use of machine learning to predic
performance and make optimizations [3]. Finally, we mighi-c
sider approaches where users have specific utilities agedaiith
each resource.
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