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ON METRIC RAMSEY-TYPE DICHOTOMIES

YAIR BARTAL, NATHAN LINIAL, MANOR MENDEL and ASSAF NAOR

Abstract

The classical Ramsey theorem states that every graph contains either a large clique or a large
independent set. Here similar dichotomic phenomena are investigated in the context of finite metric
spaces. Namely, statements are provided of the form ‘every finite metric space contains a large
subspace that is nearly equilateral or far from being equilateral’. Two distinct interpretations are
considered for being ‘far from equilateral’. Proximity among metric spaces is quantified through
the metric distortion α. Tight asymptotic answers are provided for these problems. In particular,
it is shown that a phase transition occurs at α = 2.

1. Introduction

A Ramsey-type theorem states that large systems necessarily contain large, highly
structured subsystems. Here we consider Ramsey-type problems for finite metric
spaces, and interpret ‘highly structured’ as being embeddable with low distortion
in some ‘simple’ metric spaces.

A mapping between two metric spaces f : M −→X, is called an embedding of M
in X. The distortion of the embedding is defined as

dist(f) = sup
x,y∈M

x�=y

dX(f(x), f(y))
dM (x, y)

· sup
x,y∈M

x�=y

dM (x, y)
dX(f(x), f(y))

.

The least distortion attainable by any embedding of M in X is denoted by cX(M).
When cX(M) � α we say that M α-embeds in X. When M α-embeds in X via a
bijection, we say that M and X are α-equivalent.

This paper deals with the following notion.

Definition 1 (metric Ramsey function). For a given class of metric spaces X
we denote by RX (α, n) the largest integer m such that any n-point metric space
has a subspace of size m that α-embeds into some X ∈ X . When X = {�p} we use
the notation Rp.

In [7], Bourgain, Figiel, and Milman study this function for X = {�2}, as a
non-linear analog of the classical Dvoretzky theorem [8]. They prove the following.

Theorem 1 [7]. For any α > 1 there exists C(α)> 0 such that R2(α, n)�
C(α) log n. Furthermore, there exists α0 > 1 such that R2(α0, n)= O(log n).
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Lower bounds which improve on Theorem 1 for large α were obtained in [2], and
the Euclidean metric Ramsey problem was comprehensively studied in [3]. There,
the lower bound on R2 was achieved via embedding into a special type of �2 metrics,
namely ultrametrics. Denote by UM the class of ultrametrics. The following phase
transition was established.

Theorem 2 [3]. Let n ∈ N. Then the following hold.
(1) For every 1 < α < 2,

c(α) log n � RUM(α, n) � R2(α, n) � 2 log n + C(α),

where c(α), C(α) may depend only on α.
(2) For every α > 2,

nc′(α) � RUM(α, n) � R2(α, n) � nC′(α),

where c′(α), C ′(α) depend only on α and satisfy max{0, 1 − c log α/α}< c′(α)<
C ′(α) < min{1, 1 − C/α}, with c, C > 0 universal constants.

In [4], a similar phase transition phenomenon is proved for embeddings in �p,
p ∈ [1, 2).

A natural refinement of ultrametrics was suggested in [1].

Definition 2 [1]. For k � 1, a k-hierarchically well-separated tree (k-HST) is
a metric space whose elements are the leaves of a rooted tree T . To each vertex
u ∈ T , a label ∆(u) � 0 is associated such that ∆(u) = 0 if and only if u is a leaf of
T . The labels are such that if a vertex u is a child of a vertex v then ∆(u) � ∆(v)/k.
The distance between two leaves x, y ∈ T is defined as ∆(lca(x, y)), where lca(x, y)
is the least common ancestor of x and y in T . T is called the defining tree of the
hierarchically well-separated tree.

The notion of an ultrametric is easily seen to coincide with that of a 1-
hierarchically well-separated tree.

In [3], the Ramsey problem of embedding into k-hierarchically well-separated
trees was also studied.

Theorem 3 [3]. For any ε ∈ (0, 1], and any k � 1,

Rk-HST(2 + ε, n) � ncε/log(2k/ε).

In this paper we study Ramsey problems closer in spirit to the original Ramsey
problem in combinatorics, which is of a dichotomic nature. More specifically, such
theorems state that every metric space contains a large subspace which is close to
one of two extremal types of simple metric spaces. In this paper we consider two
different (but related) types of dichotomies.

We begin with some motivation. Since every 3-point metric is isometric to a
Euclidean triangle, we can associate with it three angles. We say that two 3-point
metrics are ε-similar, if the corresponding angles differ by at most ε. Fix some ε> 0.
The collection of all 3-point metrics can be partitioned into a constant number of
classes such that every two triples in the same class are ε-similar. By Ramsey’s
theorem, every n-point metric space contains a large homogeneous subset, namely
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a set of f = f(n) elements, every two triples in which are ε-similar, where f tends
to ∞ with n. It is not hard, however, to show that there are only two types of
unboundedly large homogeneous sets. Either all triples in such a class are ε-similar
to the equilateral triangle with angles (60◦, 60◦, 60◦) or all are ε-similar to a triple
in which the smallest angle is at most ε2, say. In the latter case, in fact, more is
true.

1.1. The metric dichotomy

In the first type of dichotomy treated, which we call the metric dichotomy, we
have on the one hand equilateral spaces, that is metric spaces in which all pairwise
distances are equal. The ‘opposite’ extreme are spaces in which every triple of points
is far (in the sense of metric distortion) from being an equilateral triangle. We define
Fk(α, n) as the largest m such that any n-point metric space contains an m-point
subspace which is either α-equivalent to an equilateral space or α-equivalent to a
space for which every triple of points has distortion at least k from an equilateral
triangle.

The notion of spaces in which no triple is k-equivalent to an equilateral triangle
is quite natural. It turns out, however, that in order to analyze the behavior of
Fk, it is more convenient (and essentially equivalent) to consider instead binary
k-hierarchically well-separated trees, that is k-hierarchically well-separated trees
whose defining tree is binary (every vertex has at most two children). The relevant
dichotomic Ramsey function is defined as

Ek(α, n) = R{
binary k-HSTs

or equilateral spaces

}(α, n).

The relation between these notions is clarified in the following proposition.

Proposition 1. The following two assertions hold.
(1) Let M be a binary k-hierarchically well-separated tree and let S ⊂ M , have

cardinality |S| � 3. Then

c{equilateral spaces}(S) � k.

(2) Let M be a metric space in which c{equilateral spaces}(S) � k for every S ⊂ M
with |S| � 3, where k > 2. Then M is (k/(k − 2))-equivalent to a binary (k/2)-
hierarchically well-separated tree. In particular,

Ek(α, n) � Fk(α, n) � Ek/2(αk/(k − 2), n).

Theorem 4 (the metric dichotomy). (1) For α > 2, k > 2,

exp(c(α, k)
√

log n) � Ek(α, n) � Fk(α, n) � exp(C(α, k)
√

log n).

(2) For 1 < α < 2, k > 2,

c(α, k) · log n

log log n
� Ek(α, n) � Fk(α, n) � C(α, k)

log n

log log n
.

Here c(α, k), C(α, k) > 0 depend only on α and k. The bounds above on Ek also
hold for k ∈ (1, 2).



292 yair bartal, nathan linial, manor mendel and assaf naor

This dichotomic Ramsey problem was first studied implicitly in [5]. It is possible
to deduce from that work that Elog n(4, n)� exp(c

√
log n/ log log n). A closely

related problem was formulated in [2], where some bounds on Ek(α, n) were given.

1.2. The equilateral/lacunary dichotomy

Another type of dichotomy that we study was first formulated in [10]. On the
one hand, we have again the equilateral metric spaces. At the other extreme
of the dichotomy is a class of metric spaces in which the set of pairwise
distances is sparse, which we call lacunary metric spaces. Recall that the sequence
a1 � a2 � . . . � an > 0 is called k-lacunary for some k � 1, if ai+1 � ai/k for
i= 1, . . . , n − 1. A metric d on {1, . . . , n} is called k-lacunary if there exists
a k-lacunary sequence a1 � . . . � an > 0 such that for 1� i < j � n, d(i, j)= ai.
Alternatively, k-lacunary spaces can be defined using hierarchically well-separated
trees.

Definition 3. Let k > 1. A k-increasing metric space is a k-hierarchically well-
separated tree X such that in the tree defining X each vertex has at most one child
which is not a leaf. A k-lacunary metric space is a k-increasing metric space X such
that in the tree defining X, each vertex has at most two children.

Given integers n, k and α > 1, we ask for the largest integer m such that every
n-point metric space contains an m-point subspace which is α-embeddable in either
an equilateral space or a k-lacunary space. Formally, we define this quantity to be

Dk(α, n) = R{
k-lacunary spaces

or equilateral spaces

}(α, n).

When k > 1, this function exhibits a phase transition at α = 2. When k = 1, no
phase transition occurs.

Theorem 5 (the equilateral/lacunary dichotomy). (1) For α > 2, k > 1,

c(α, k) · log n

log log n
� Dk(α, n) � C(α, k) · log n

log log n
.

(2) For 1 < α < 2, k > 1,

c(α, k)
√

log n � Dk(α, n) � C(k)
√

log n.

(3) For any α > 1,

c(α) log n � D1(α, n) � C log n.

Here c(α, k), C(α, k) > 0 depend only on α and k, c(α)> 0 depends only on α,
C(k) > 0 depends only on k, and C > 0 is an absolute constant.

Dichotomic metric Ramsey problems have been studied for some time now. The
proof of [7, Theorem 1] uses embedding into 1-increasing spaces (a class which
contains both k-lacunary spaces and equilateral spaces). Karloff, Rabani, and Ravid
[10] have studied the dichotomic problem in the context of online computation, and
obtained the lower bound above for Dk(4, n). In [2] some of the upper bounds in
Theorem 5 are proved.
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Remark 1. In graph theory, the study of dichotomic Ramsey problems is
usually not restricted to the symmetric case. In our setting this translates to
questions such as: given α � 1, k > 1, e, f ∈ N, what is the smallest n such that every
n-point metric space contains either an e-point subspace which is α-equivalent to an
equilateral space or an f -point subspace which is α-equivalent to a k-lacunary space
(respectively a binary k-hierarchically well-separated tree)? All our proofs extend
in a straightforward manner to give similarly tight bounds for the non-symmetric
problems as well.

Our proof of Theorem 4 relies on Theorem 3. On the other hand, our proof
for the equilateral/lacunary dichotomy is elementary. We therefore start with an
elementary proof of Theorem 5 (Section 2), and then give a short proof, based on
a tool from [3], of Theorem 4 (Section 3).

2. The equilateral/lacunary dichotomy

In this section we prove Theorem 5. A careful reading of the proof in [7] shows
that every n-point metric space M contains, for any ε > 0, a subspace Y which is
(1 + ε)-embeddable in a 1-increasing space, and |Y | = Ω((ε/log(1/ε)) log n).

We begin with a simplified proof of this, which works for k-increasing space for
any k � 1.

Theorem 6. Fix an integer n, 0 < ε < 1 and k � 1. Then any n-point metric
space X contains a subspace Y ⊂ X which is (1 + ε)-embeddable in a k-increasing
space and

|Y | � ε

6 log(12/ε) log(2k)
· log n.

We start with the following simple lemma.

Lemma 1. Let M be an n-point metric space and 0 < ε < 1. Then there are
x ∈ M , A ⊂ M and λ ∈ [1, 2] with the following properties.

(1) |A| � εn/4.
(2) For every z ∈ A, λ diam(M)/2(1 + ε) � d(x, z) < λ diam(M)/2.

Proof. Denote ∆ = diam(M). Take x, x̄ ∈ M such that d(x, x̄) = ∆. The two
sets Z = {y ∈ M ; d(y, x) < ∆/2} and Z ′ = {y ∈ M ; d(y, x̄) < ∆/2} are disjoint,
so we may assume that |Z| � n/2. We split M \ Z into layers:

Si =
{
z ∈ M ; (1 + ε)i−1 ∆

2
� d(x, z) < (1 + ε)i ∆

2

}
.

Since |M\Z| � n/2, there exists 1 � i0 � �log1+ε 2� such that

|Si0 | � n

2�log1+ε 2� � εn

4
.

Take A = Si0 and λ = min{2, (1 + ε)i0} to obtain the required result.

We also need the following numerical lemma.

Lemma 2. Let {ai}m
i=1 be a sequence of positive numbers, satisfying for

any i < j, aj � 2ai. Fix ε > 0 and k � 1. Then there exists L⊂{1, . . . , m}, of
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cardinality |L|� m/(�log1 + ε(2k)�+ 1), and a sequence {bi}i∈L such that for any
i∈L, ai � bi � ai(1+ ε), and for any i < j in L, either bi = bj or bj � bi/k.

Proof. For every a > 0, let t(a) be the unique integer such that a∈
((1 + ε)t(a)−1, (1 + ε)t(a)]. Set r = �log1+ε(2k)� + 1. For j ∈ {0, . . . , r − 1} define

Lj = {1 � i � m; t(ai) ≡ j (mod r)}.
There is an integer 0 � j � r − 1 such that |Lj | � m/r. Set L = Lj . Define for
i ∈ L, bi = (1 + ε)t(ai ), hence ai � bi � ai(1 + ε). Fix i, j ∈ L, i < j. Then either
t(ai) = t(aj), in which case bi = bj , or otherwise t(aj) �∈ (t(ai) − r, t(ai) + r). We
claim that t(aj) � t(ai0)−r. Indeed, otherwise t(aj) � t(ai)+r, and therefore aj >
ai(1+ ε)r−1 � 2ai, which contradicts the assumptions. Therefore bj � bi/(1+ ε)r �
bi/k.

Proof of Theorem 6. Set ∆= diam(M). Let x1 ∈M , A1 ⊂M , λ1 ∈ [1, 2] be as in
Lemma 1. Iterate this construction for A1 until we reach a singleton. We construct
in this way x1, . . . , xm ∈ M , λ1, . . . , λm ∈ [1, 2] and Am ⊂ Am−1 ⊂ . . . ⊂ A1 ⊂
M = A0 with the following properties.

(a) |Ai+1| � (ε/4)|Ai|.
(b) For every z ∈ Ai+1, λi+1 diam(Ai)/2(1 + ε) � d(xi+1, z) < λi+1 diam(Ai)/2.
(c) Am = {xm} and |Am−1| > 1

These conditions imply in particular that m � log n/log(4/ε).
The set {x1, . . . , xm} is therefore (1 + ε)-equivalent to a metric similar to an

increasing space, but the labels are not monotonic. We solve this problem by
an appropriate sparsification. Put li = λi diam(Ai−1)/2. Note that if i > j then
li � 2lj . Indeed, this follows from the fact that Ai ⊂Aj and λi, λj ∈ [1, 2]. Apply
Lemma 2 to the sequence {li}m

i=1, and let {bi}i∈L be the resulting sequence. Let
c1 > c2 > . . . > cs be such that {c1, . . . , cs} = {bi; i ∈ L}.

For i = 1, . . . , s define Ji = {h ∈ L; bh = ci} and put Bi = ∪h∈Ji
Ah. Set also

B0 = M . We construct a labelled tree T as follows. The root of T is B1, and the rest
of the vertices are {xi}i∈L and {Bi}s

i=2. For i ∈ L, xi is a leaf of T . The children of
Bi are Bi+1 and each of {xh}h∈Ji

. We label T by setting for each i ∈ L, ∆(xi) = 0,
for i = 1, . . . , s and ∆(Bi) = ci. By Lemma 2, ∆(Bi+1) � ∆(Bi)/k.

Set X = {xh}h∈Lj
. We have proved that X is a k-increasing space. Take a, b ∈ L,

a < b. Assume that a ∈ Jp, b ∈ Jq, p � q. Since xb ∈ Aa we get

dX(xa, xb) = ∆(Bp) = ba � (1 + ε)la =
(1 + ε)λa diam(Aa−1)

2
� (1 + ε)2d(xa, xb),

and

dX(xa, xb) = ∆(Bp) = ba � la =
λa diam(Aa−1)

2
� d(xa, xb).

This proves that {xh}h∈L is (1+ε)2-equivalent to a k-increasing space. The estimate
on |L| gives the required result.

We can now deduce that any large metric space contains a large subspace which
is close to either an equilateral space or to a lacunary space.

Proposition 2. Let X be an n-point metric space, k � 1, and ε > 0. Then X
contains a subspace Y which is (1 + ε)-equivalent to either an equilateral space or
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a k-lacunary space, and such that

|Y | � c

√
ε

log(2/ε)
· log n

log k
,

where c is an absolute constant.

Proof. By Theorem 6, it is enough to prove that any m-point k-increasing metric
space contains (isometrically) either an equilateral space of size

√
m or a k-lacunary

space of size
√

m.
Let X be an m-point k-increasing space. Let T be the tree defining X. If T

contains an internal vertex with
√

m leaves then these leaves form an equilateral
space. Otherwise T contains at least

√
m internal vertices which have at least one

child which is a leaf. These leaves form a k-lacunary metric space.

For distortion α < 2, Proposition 2 is tight. Here is a matching upper bound.

Proposition 3. For any α ∈ [1, 2), any k > 1 and any integer n there exists
an n-point metric space X such that no subset of X with cardinality greater than
(c/log k)

√
log n is α-equivalent to an equilateral space or a k-lacunary space. Here

c is an absolute constant.

The proof of Proposition 3 is based on the notion of simple metric composition.
This is a special case of a more general definition that was introduced in [3].

Definition 4 (simple metric composition). Let M,N be two finite metric
spaces and let β � 1. The β-composition of M and N is a metric space on M × N
which we denote by L = Mβ [N ]. Distances in L are defined by

dL((i, j), (k, l)) =

{
dN (j, l) i = k

βγdM (i, k) i �= k,

where γ = diam(N)/mini�=k dM (i, k). It is easily checked that the choice of the factor
β · γ guarantees that dL is indeed a metric.

In words, first multiply the distances in M by β · γ, and then replace each point
of M by an isometric copy of N .

We also use the notation Φ(X)= diam(X)/minx,y∈X, x �=y dX(x, y). This is the
aspect ratio of the metric space X, and in other words, the Lipschitz distance
between X and an equilateral space. We begin with three simple lemmas.

Lemma 3. Let X be a finite metric space which is α-embeddable in a k-lacunary
metric space for some k, α > 1. Then |X| � 2 + logk (αΦ(X)) .

Proof. Let Y be a k-lacunary space that is α-equivalent to X. Hence Φ(Y ) �
αΦ(X). A simple induction on |Y | shows that for any k-lacunary space Y , Φ(Y ) �
k|Y |−2.

Lemma 4. Let M , N be finite metric spaces, and let β > α � 1. Then every
subset S ⊂ Mβ [N ] with Φ(S) � α is 1-embeddable either in M or in N .
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Proof. For every x ∈ M denote Dx = {(x, y) ∈ M × N ; y ∈ N}. If S ⊂ Dx for
some x ∈ M then S is 1-embeddable in N . If for each x ∈ M , |S ∩ Dx| � 1 then S
is 1-embeddable in M . Otherwise there are a, b, c ∈ S and x, y ∈ M , a �= b, x �= y,
such that a, b ∈ Dx and c ∈ Dy. Hence

dS(a, c)
dS(a, b)

� βγ minu�=v dM (u, v)
maxu,v∈N dN (u, v)

� β > α,

which contradicts the fact that Φ(S) � α.

Lemma 5. Let M , N be finite metric spaces. Fix k, α � 1 and β � max{1, α/k}.
Then every S ⊂ Mβ [N ] which is α-embeddable in a k-lacunary metric space has a
subset T ⊂ S that is 1-embeddable in M and S\T is 1-embeddable in N .

Proof. Let a1 � . . . � an > 0 be a k-lacunary sequence, that is, ai+1 � ai/k. It
is easy to verify that for every four distinct integers 1 � i1, i2, i3, i4,� n,

max{amin{i1,i2}, amin{i3,i4}} � k min{amin{i1,i3}, amin{i1,i4}, amin{i2,i3}, amin{i2,i4}}.

Since S is α-embeddable in a k-lacunary space, it follows that for every distinct
x1, x2, x3, x4 ∈ S,

max{dS(x1, x2), dS(x3, x4)} � k

α
min{dS(x1, x3), dS(x1, x4), dS(x2, x3), dS(x2, x4)}.

(1)

As before, denote γ = maxx,y∈N dN (x, y)/minx�=y dM (x, y) and for x ∈ M , Dx =
{(x, y) ∈ M × N ; y ∈ N}. It is sufficient to prove that there is at most one
x ∈ M such that |S ∩ Dx| > 1. This is true since otherwise there would be four
distinct points p, q, r, s∈N and two distinct points x, y ∈M such that p, q ∈Dx and
r, s∈Dy. Now

max{dS(p, q), dS(r, s)}
min{d(p, r), d(p, s), d(q, r), d(q, s)} � maxu,v∈N dN (u, v)

βγ minu�=v dM (u, v)
=

1
β

<
k

α
,

which contradicts (1).

Proof of Proposition 3. Let G = (V,E) be a graph of diameter 2 on �2
√

log n�
vertices, with no independent sets and no cliques larger than C

√
log n, where C

is an absolute constant. It is well known and easy to prove that almost all graphs
have these properties, see [6, 9].

Let M be the metric defined by G. Define M1 = M , and Mi = Mβ [Mi−1], where
β = 2. First we prove by induction that for each i � 1, if S ⊂ Mi is α-embeddable
in an equilateral space then |S| � C

√
log n. For i = 1 consider a subset S ⊂ M that

is α-embeddable in an equilateral space. Since α < 2, and G has diameter 2, all the
distances in S must be either 1 or 2. Thus S is either a clique or an independent
set, so that |S| � C

√
log n. Now let i > 1 and consider S ⊂ Mi = Mβ [Mi−1] that

is α-embeddable in an equilateral space. By Lemma 4, S is 1-embeddable in either
M or Mi−1, which by induction implies that |S| � C

√
log n.

We now prove by induction on i that if S ⊂ Mi is α-embeddable in a k-lacunary
space then |S| � i (1 + logk(2α)). For i = 1 this follows from Lemma 3. For i > 1
let S ⊂ Mi = Mβ [Mi−1] be α-embeddable in a k-lacunary space. By Lemma 5 this
implies that there is A ⊂ S that 1-embeds into M and S \ A 1-embeds into Mi−1.
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By the induction hypothesis,

|S| = |A| + |S \ A| � 1 + logk(2α) + (i − 1) (1 + logk(2α)) = i (1 + logk(2α)) .

Take t = �
√

log n� and note that |Mt|� n. The space X = Mt satisfies our claim.

For every b > a > 1, it is easy to extract from every a-lacunary sequence a long
b-lacunary subsequence, by skipping each time appropriately many terms in the
sequence. We record this simple fact for future reference.

Lemma 6. For every b > a > 1, every a-lacunary sequence of length n contains
a subsequence of length n/�1 + loga b� which is b-lacunary. Hence any n-point
a-lacunary metric space contains a b-lacunary subspace of the above size.

Using a technique similar to [10], we now prove the following.

Proposition 4. For any k > 1, α > 2 and any integer n, every n-point
metric space contains a subspace of cardinality at least (log(α/2)/2 log(αk))·
(log n/log log n) which is α-embeddable in either an equilateral space or a k-lacunary
space.

Proof. Let (M,d) be an n-point metric space. Denote ∆= diam(M), and let
x, x̄∈M be a diametrical pair, that is, d(x, x̄) = ∆. Let x = x1, . . . , xs be a maximal
subset in M containing x such that for every i �= j, d(xi, xj) � ∆/α. Clearly
{x1, . . . , xs} is α-equivalent to an equilateral space, so that if s � log n we are
done. As usual, we denote by B(x, r) = {y ∈ M ; d(x, y) < r} the open ball of
radius r around x. Let

A1 = B

(
x1,

∆
α

)
and Ai+1 = B

(
xi+1,

∆
α

)∖ i⋃
j=1

B

(
xj ,

∆
α

)
.

Assume that s < log n. Since
⋃s

i=1 Ai =
⋃s

i=1 B(xi,∆/α)= M , it follows that there
exists 1 � i � n such that |Ai| � n/ log n. Observe that there exists y ∈ M such
that d(y,Ai) � ∆/α. Indeed, if i > 1 then Ai ⊂ M \B(x,∆/α) so that we can take
y = x. Otherwise, since α > 2, for every z ∈ A1 = B(x,∆/α),

d(z, x̄) � d(x̄, x) − d(x, z) � ∆ − ∆
α

>
∆
α

,

so that we can take y = x̄. Note also that diam(Ai) � diam(B(xi,∆/α)) � (2/α)∆.
Iterating this construction we get a sequence of points z1, . . . , zm ∈ M , and a

decreasing sequence of subsets {zm} = Fm ⊂ Fm−1 ⊂ . . . ⊂ F1 ⊂ F0 = M such that
for each i, zi ∈ Fi−1, d(zi, Fi) � diam(Fi−1)/α, diam(Fi) � (2/α) diam(Fi−1) and
|Fi| � |Fi−1|/ log n. By induction, |Fi| � n/(log n)i and since |Fm| = 1, necessarily
m � log n/ log log n. Moreover, the sequence {diam(Fi)}m−1

i=0 is (α/2)-lacunary and
for 1 � i < j � m,

diam(Fi−1)
α

� d(zi, Fi) � d(zi, zj) � diam(Fi−1).

This proves that {zi, . . . , zm} is α-equivalent to a (α/2)-lacunary metric space.
If k < α/2 we are done. Otherwise, we can apply Lemma 6 to find a subset of
{z1, . . . , zm} which is α-embeddable in a k-lacunary space and with cardinality
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at least
m

�1 + logα/2 k� � log(α/2)
2 log(αk)

· log n

log log n
.

We can now establish the equilateral/lacunary dichotomy.

Proof of Theorem 5. The lower bound in part (1) was proved in Proposition 4.
In [2, Proposition 29] it is proved that for 2 < α < k,

Dα(n, k) � C
log α

log k
· log n

log log n
.

In the case α � k, let M be a metric space and N ⊂M a subset which is
α-embeddable in either an equilateral space or a k-lacunary space. Apply Lemma 6
with b = α2 and a = k. We deduce that there is N ′ ⊂ N which is α-embeddable in
either an equilateral space or a α2-lacunary space such that |N ′| � |N | log k/2 log α.
By the above-stated result from [2],

|N | log k

2 log α
� |N ′| � C

log α

log(α2)
· log n

log log n
,

which implies the required result.
Part (b) is a combination of Proposition 2 and Proposition 3. Part (c) is a

combination of Theorem 6 and [2, part 4 of Proposition 29].

3. The metric dichotomy

Our main aim in this section is to prove Theorem 4. We begin, however, with a
proof of Proposition 1.

Proof of Proposition 1. To prove the first assertion note that if x, y, z are three
distinct leaves in a binary tree T , then there are p, q ∈ T such that p �= q, q is a
descendant of p and {lca(x, y), lca(x, z), lca(y, z)} = {p, q}. Since ∆(p)/∆(q) � k,
the Lipschitz distance between the triangle {x, y, z} and an equilateral triangle is
at least k.

To prove the second assertion, denote ∆= diam(M), and let x, x̄∈M be a
diametrical pair: d(x, x̄) = ∆. Let Bx =B(x,∆/k), and Bx̄ =B(x̄,∆/k). Since k > 2,
the triangle inequality implies that Bx ∩Bx̄ = ∅. We claim that Bx ∪ Bx̄ = M .
Otherwise, there is a y ∈ M such that d(x, y) � ∆/k, and d(x̄, y) � ∆/k. However
this implies that x, x̄, y are three points for which c{equilateral spaces}({x, x̄, y}) � k,
contrary to our assumption.

We proceed to construct a binary (k/2)-hierarchically well-separated tree
L with diam(L)= diam(M), and a non-contractive embedding g : M ↪→L
with ‖g‖lip � k/(k − 2). Inductively, assume that we have already constructed
g1 : Bx ↪→L1, g2 : Bx̄ ↪→L2, where L1, L2 are binary k-hierarchically well-separated
trees with diam(L1)= diam(Bx), diam(L2)= diam(Bx̄), and g1, g2 are non-
contractive embeddings with ‖g1‖lip � k/(k − 2), and ‖g2‖lip � k/(k − 2). Define
L= L1 ∪L2, and g : M ↪→L by g|Bx

= g1, g|Bx̄
= g2. Set the distance between any

point in L1 and any point in L2 to be ∆. Since max{diam(L1),diam(L2)} �
2∆/k, L is a binary (k/2)-hierarchically well-separated tree, g is non-contractive,
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diam(L)= diam(M), and

‖g‖lip � max
{
‖g1‖lip, ‖g2‖lip,

∆
∆ − 2∆/k

}
� k

k − 2
.

We begin with the upper bounds on Ek and Fk for distortions smaller than 2. We
give a bound both for Ek and for Fk, since the bound for Ek holds for any k > 1,
whereas for Fk, it holds only for k > 2.

Lemma 7. Let X be a finite metric space which is α-embeddable in a binary
k-hierarchically well-separated tree for some k, α > 1. Then |X| � 21+logk (αΦ(X)).

Proof. Let Y be a binary k-hierarchically well-separated tree that is α-equivalent
to X. Hence Φ(Y ) � αΦ(X). The tree defining Y is binary and its depth is therefore
� log2 |Y |. A simple induction on |Y | proves that for any binary k-hierarchically
well-separated tree Y , Φ(Y ) � klog2 |Y |−1.

Proposition 5. For any α ∈ [1, 2), any k > 1 and any integer n there exists
an n-point metric space X such that no subset of X with cardinality greater
than (c/log k)(log n/log log n) is α-equivalent to an equilateral space or a binary
k-hierarchically well-separated tree. Here c is an absolute constant.

Proof. Again we recall that almost every graph on

s = �22(1+logk (2α))log n/log log n�
vertices has diameter 2 and its independence number and clique number are at
most C log s, for some absolute constant C.

Let G be such a graph and let M be its metric. Next, define M0 = {a}, and
Mi = Mβ [Mi−1], where β = 2.

Similar to the proof of Proposition 3, for each i � 1, if S ⊂ Mi is α-embeddable
in an equilateral space then |S| � C log s. For i = 1, if S ⊂ M is α-embeddable in
an equilateral space, then S must either be a clique or an independent set, since
α < 2. Consequently, |S| � C log s. Now let S ⊂ Mi = Mβ [Mi−1] be α-embeddable
in an equilateral space for some i > 1. By Lemma 4, S is 1-embeddable in either
M or Mi−1, which by induction implies that |S| � C log s.

We now prove by induction on i that if S ⊂ Mi is α-embeddable in a binary
k-hierarchically well-separated tree then |S| � 2i(1+logk (2α)). For i = 0 this is
obvious. Assume that i> 0 and S ⊂Mi =Mβ [Mi−1] is α-embeddable in a binary
k-hierarchically well-separated tree. Partition S to S =S1 ∪ . . . ∪S� such that each
Sj is a subset of a different ‘copy’ of Mi−1. Note that Sj ⊂ Mi−1 is α-embeddable
in a binary k-hierarchically well-separated tree, and by the inductive hypothesis
|Sj |� 2(i−1)(1+logk (2α)). Pick a representative from each Sj , and denote the set
of representatives by S′, |S′|= �. As S′ ⊂S it is also α-embeddable in a binary
k-hierarchically well-separated tree (the defining tree is a subtree of the tree defining
the hierarchically well-separated tree of S). The metric of S′ is a dilation of a subset
of M , and so by Lemma 7, � � 21+logk (2α). We can therefore estimate

|S| � � max
1�j��

|Sj | � 21+logk (2α)2(i−1)(1+logk (2α)) = 2i(1+logk (2α)).

Note that |Mt|� n for t = �log log n/2(1 + logk(2α))�. The space X = Mt satisfies
the proposition.
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We give a similar upper bound for the equilateral/triangular variant of this
dichotomy.

Proposition 6. For any α ∈ [1, 2), any k > 2 and any integer n there exists
an n-point metric space M such that no subset of M with cardinality greater than
c logk/2(k/k − 2) · (log n/log log n) is α-equivalent to an equilateral space or a space
in which no triangle is k-equivalent to an equilateral triangle. Here c is an absolute
constant.

Proof. The proof is almost identical to the proof of Proposition 5. The only
change is the reference to Lemma 7. Here instead we use the following claim: any
finite metric space X which is α-embeddable in space in which no triangle is �
k-equilateral, for some k > 2, α > 1 satisfies |X|� 21+logk /2(α(k/k−2)Φ(X)). This fact
is an immediate consequence of Lemma 7 and Proposition 1.

The proofs of the lower bounds on Ek use the following simple structural lemma.

Lemma 8. Let T be a rooted tree with n leaves, in which each vertex has at
most h � 2 children. Then T contains a binary subtree with at least n1/ log2 h leaves.

Proof. By induction on the size of T . Let h′ � h be the number of children
of T ’s root r. Let Ti be the subtree rooted at the rth ith child and let ni be
the number of leaves in Ti, where n1 � n2 � . . . � nh′ and

∑h′

i=1 ni = n. By the
induction hypothesis, Ti has a binary subtree with at least n

1/ log2 h
i leaves. We form

a binary subtree of T by joining the binary subtrees of T1 and T2. Together they
have at least n

1/ log2 h
1 +n

1/ log2 h
2 leaves, which is � n1/ log2 h as we now show. First,

n
1/ log2 h
1 + n

1/ log2 h
2 � 2((n1 + n2)/2)1/ log2 h since the function f(x) = x1/ log2 h

is concave. Also, f is increasing, and (n1 + n2)/2 � n/h′ � n/h. Consequently,
n

1/ log2 h
1 + n

1/ log2 h
2 � 2(n/h)1/ log2 h = n1/ log2 h, as claimed.

The following is a short argument proving the lower bound on Ek for distortions
larger than 2.

Proposition 7. For any ε ∈ (0, 1), and k � 1,

Ek(2 + ε, n) � exp
(√

cε

log(2k/ε)
log n

)
.

Proof. Let M be an arbitrary n-point metric space. By Theorem 3, it contains
a subset N ⊂M that is (2 + ε)-equivalent to a k-hierarchically well-separated
tree and |N |� ncε/log(2k/ε). Let T be the tree defining this k-hierarchically well-
separated tree. The claim is now proved by taking either a large equilateral
subspace of T or a large binary subtree of T according to Lemma 8, where
h = exp(

√
(cε/log(2k/ε)) log n

)
.

We note that the above proposition can also be proved by arguments similar to
those from [5].

The lower bound on Ek for distortions smaller than 2 is only slightly more
complicated.
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Proposition 8. For any ε > 0, k � 1,

Ek(1 + ε, n) � cε

log(1/ε) log(k/ε)
· log n

log log n
,

where c is a universal constant.

Proof. Essentially, we repeat the argument from Proposition 7, and find either
an h-point subspace that is 3-equivalent to equilateral space or an (n1/ log h)-point
subspace that is 3-equivalent to binary k-hierarchically well-separated tree. In order
to improve the distortion to 1 + ε, we invoke in the first case the classical Ramsey
theorem to find a � log h-point subspace which is (1+ε)-equivalent to an equilateral
space, whereas in the second case we observe that by optimizing the distances in the
binary k-hierarchically well-separated tree, we improve the distortion. We choose
h ≈ n1/ log log n, so that log h ≈ n1/ log h. We now turn to the actual arguments.

Let M be an n-point metric space. Denote k′ = max{k, 2 + 2/ε}. By Theorem 3,
M contains a subspace N ⊂ M that is 3-equivalent to a (3k′)-hierarchically well-
separated tree, X, via a non-contractive bijection f : N −→X, and |N | � nc/log k′

=
s. Let h = s1/ log log n. Denote by T the tree defining X. We distinguish between
two cases.

Case 1: T has a vertex u with out-degree exceeding h. Let v0, . . . , vh be distinct
children of u. For each 0 � i � h take xi ∈ N such that f(xi) is a leaf of T which
is a descendant of vi. For every 0 � i < j � h, d(xi, xj) ∈ [∆(u)/3,∆(u)], so that
there is a unique integer c(i, j) ∈ {1, 2, . . . , �log1+ε 3�} for which

d(xi, xj) ∈
[

∆(u)
(1 + ε)c(i,j)+1

,
∆(u)

(1 + ε)c(i,j)

)
.

Set D = �log1+ε 3� and color the edges of the complete graph on {0, . . . , h} by
assigning the color c(i, j) to the edge [i, j]. By the classical Ramsey theorem
there is a subset N ′ ⊂{x1, . . . , xh} of size at least

log h/D log D � (cε/log(1/ε))(log s/log log n)

on which the induced complete subgraph is monochromatic. This subset is (1 + ε)-
equivalent to an equilateral space.

Case 2: All the vertices in T have out-degree at most h. In this case, by Lemma 8,
T contains a binary subtree S with at least s1/ log2 h = log n leaves. Set L = f−1(S).
Then |L| = |S| � log n and L is 3-equivalent to a binary (3k′)-hierarchically well-
separated tree S. In order to improve the distortion we change the labels of S.
Denote by ∆(·) the original labels on S (inherited from T ). We define new labels
∆′(·) on S as follows. For each vertex u ∈ S, denote by T1 and T2 the subtrees rooted
at u’s children. We define ∆′(u) = max{dM (x, y); x ∈ f−1(T1), y ∈ f−1(T2)}, and
claim that the resulting labelled tree is a binary k′-hierarchically well-separated
tree which is (k′/(k′ − 2))-equivalent to L. Indeed, let u, v ∈ S with v a child of
u. Since the distances in (S,∆) are larger than the distances in M by a factor
at most 3, ∆(u)/3 � ∆′(u). On the other hand, since ∆ defines 3k′-hierarchically
well-separated tree, ∆′(v) � ∆(v) � ∆(u)/(3k′), so that the resulting tree (S,∆′)
is indeed k-hierarchically well-separated tree. To bound the distortion, let x, y be
two distinct points in L. Thus f(x), f(y) are distinct leaves of S and assume that
lca(f(x), f(y)) = u, f(x) ∈ T1, f(y) ∈ T2, where T1 and T2 are subtrees rooted
at children of u. Then dM (x, y) � ∆′(u). On the other hand, fix a ∈ f−1(T1) and
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b ∈ f−1(T2) for which dM (a, b) = ∆′(u). Then

dL(x, y) � dL(a, b) − dL(a, x) − dL(b, y)
� ∆′(u) − ∆(lca(f(a), f(x))) − ∆(lca(f(b), f(y)))

� ∆′(u) − 2
∆(u)
3k′

� ∆′(u) − 2∆′(u)
k′ =

k′ − 2
k′ ∆′(u),

since k′ � k, and k′/(k′ − 2)� 1+ ε, L is (1+ ε)-equivalent to binary k-
hierarchically well-separated tree (S,∆′).

Proof of Theorem 4. The lower bound for Ek(α, n), α > 2, is contained in
Proposition 7. The upper bound for Fk(α, n), α, k > 2 can be derived from results of
[2], where it is proved that for 1< α < k, Ek(α, n)� 22

√
(log α/log k) log n. In order to

prove the upper bound on Ek(α, n) for 1< k � α, we use another lemma from [2]: for
any k > 1 and any h∈N, any n-point k-hierarchically well-separated tree contains
isometrically a subspace of size n1/h which is a kh-hierarchically well-separated
tree. It is easy to observe that if we start with a binary k-hierarchically well-
separated tree the resulting subspace is a binary kh-hierarchically well-separated
tree. Therefore, if 1< k �α, we take h = �1 + logk α�. Using the discussion above,
and the fact that h � 1, we deduce that

[Ek(α, n)]1/h � Ekh (α, n) � 22
√

(log α/h log k) log n.

As log α/h log k � 1, we conclude that Ek(α, n)� 22h
√

log n. For α, k > 2, by
Proposition 1,

Fk(α, n) � Ek/2

(
α k

k−2 , n
)

� 22[1+logk /2((k/k−2)α)]
√

log n.

The lower bound for Ek(α, n), α ∈ (1, 2), is contained in Proposition 8. The
upper bound for Fk(α, n), k > 2, α ∈ (1, 2) is contained in Proposition 6. The
extension of this upper bound for Ek(α, n), k � 1, α ∈ (1, 2), is contained in
Proposition 5.
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