
MARKET SHARE INDICATES QUALITY

AMIR BAN AND NATI LINIAL

Abstract. Market share and quality, or customer satisfaction, go hand in hand.
Yet it is hard to find in the literature a clear formal statement to the effect that
higher market share indicates higher quality. Indeed, such an inference would
need detailed information about customer behavior. Moreover, even when that
data is available, the validity of the inference is cast in doubt by common modes
of behavior such as herding, the tendency to consume products due to their
known popularity, or elitism, the opposite behavoir where customers associate
mass popularity with lower quality. We investigate a model where customers
are informed about their history with products and about global market share
data. We find that it is in fact correct to make a Bayesian inference that the
product with the higher market share has the better quality under few and rather
unrestrictive assumptions on customer behavior.

1. Introduction

Common wisdom holds that a full restaurant is a good one, or certainly better
than its empty neighbor. The purpose of this paper is to discover some minimal
assumptions on the rationaly of customers under which this folk wisdom can be
mathematically justified. For example, this conclusion certainly does not hold
in places where the (admittedly strange) general preference is for food of poor
taste. We formulate a simple model of a market in which customers have several
products available to them. Each product has an innate unknown quality which
is the probability that a customer who consumes it is satisfied. We find very mild
sufficient conditions under which a larger market share indicates higher product
quality.

Our approach is to model customer behavior with the least possible restrictions
on customers’ behavior. A large body of economical research indicates that cus-
tomers’ decisions use bounded rationality. Our approach also has the advantage of
being independent of any particular model of benefit-maximizing strategy.

Intuitively, quality goes hand in hand with market share, and indeed a manufac-
turer’s pursuit of quality is usually rationalized as a way of maximizing economic
benefit. Empirical studies do not show conclusive evidence, though they (e.g. An-
derson et. al. [1], Rust and Zahorik [5]) generally support a positive correlation
between quality and market share.

We model quality as a probability for customer satisfaction. We consider quality
to be a hidden, constant attribute of a product, which may be inferred, but not
directly observed or learned from an authority. This is a widespread scenario that
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customers realistically face. In the exceptions, e.g. when offered a Ferrari and a
Fiat, price or other differentiation will typically also exist.

We ascribe to each customer a strategy of whether to consume each of the
products, guided by market share and by one’s own past personal history. When
described as a behavioral strategy, i.e. by probabilities for consuming the product
for each of the customer’s information sets, we call it the customer’s partiality
strategy for that product. No connection between consumption of different prod-
ucts is assumed. E.g., a customer may consume all products simultaneously or
none. We make no assumption that customers have uniform strategies, or that
any customer’s strategy is optimal.

We make two mild assumptions on customers’ strategies, that customers (i) do
not prefer negative over positive experiences with products, and (ii) do not prefer
products with low market share over those with a higher one. Additionally, we
assume an undifferentiated market, where products are a priori equal in the eyes
of customers. Under these assumptions we can show the validity of inferences from
market share to quality.

1.1. Strategy Dependence on Personal History. When customers (illogi-
cally) prefer dissatisfaction over satisfaction, market share clearly does not indicate
quality. There are multiple ways to exclude or limit this from our framework. For
example, we could require that customers’ strategies be consistent with their av-
erage satisfaction with products. But this is already restrictive: It is, for example,
not unreasonable to prefer a product used satisfactorily 18 times out of 20 trials
over a product used just once satisfactorily; Or to give more weight to more recent
trials.

Therefore we adopt a tamer restriction, which we call monotonicity: Namely,
that customers recall the outcomes of their experiences with products, in the order
that they happened, and if that history is definitely superior, on an experience-by-
experience basis, their partiality strategy1 to the product will be equal or higher.
As an example, if a customer has a fail-success-fail history with a product (on the
3 occasions she elected to use it), then her partiality strategy after such a history
will not be higher than if her history would have been fail-success-success, as the
latter is superior by having a success where the former has failure, and is otherwise
the same. No restriction is made on strategy after, e.g., the history success-fail-
success (incomparable on an experience-by-experience basis), or success-success
(incomparable due to a different number of experiences). Nor does it restrict the
customer’s strategy to other products, or other customers’ strategies, as each can
be formed independently within our framework.

This is possibly the lightest restriction on customer strategies we could make
that conforms with common sense. When customers’ strategies are guided solely by
their history, we show it is sufficient to establish our result. Even for this restricted
scenario, the conclusion is deeper than suggested by the assertion’s simplicity:
Attempted proofs must deal with a side result to which we allude in the Discussion:
When quality varies with time, inferences from quality to market share or vice versa
are, as a rule, invalid.

1Here and hereafter we use “partiality strategy” as shorthand for the probability of choosing the
action of consumption under that strategy.
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1.2. Strategy Dependence on Market Share. Customers may base their strat-
egy on market share itself. This may take several forms: Customers may be fully
or partially informed of market share, by, e.g. knowing product sales figures, or
the ranking of the top-selling products. Smallwood and Conlisk[6] considered a
market that evolves based on products having an intrinsic probability for break-
down and customers switching products randomly weighed by a function of market
share. The present authors [2] considered a system where customers are influenced
by history and reputation, where “reputation” under a suitable choice of model
parameters represents market share. Word-of-mouth, i.e. asking or following oth-
ers, is in effect a sampling of market share. Ellison and Fudenberg[4] considered a
model of learning involving both personal history and word-of-mouth communica-
tion in which technologies perform stochastically based on an underlying quality
parameter. Information cascades, starting with Bikhchandani et. al.[3], consider
the inferences that observers can make on the quality of a service based on the
customers queueing for that service and how informed those customers are known
to be. They show this leads to herding, the phenomenon where customers accumu-
late due to the presence of others. Smallwood and Conlisk[6] as well as Ban and
Linial[2] also show that lower quality products can maintain higher market share
indefinitely.

Another potential feature of customer behavior we call elitism: Customers who
intentionally avoid the most popular products. This may be due to a wish to
differentiate oneself from the crowd, or to a belief that popular choices are second-
rate, or any other reason.

Herding and elitism seem to cast doubt on our thesis. Herding, in particular,
seems to pull the rug from underneath our sought conclusion. For example, if
more than half of the customers at any point in time consume the market-leading
product, and it alone, then market leadership is self-perpetuating regardless of
product qualities and regardless of how other customers behave. No monotonicity
assumptions are violated (for added credibility, assume leader-following customers
are one-shot with no experiences to rely on), yet market share indicates nothing re-
garding product qualities. However, as we demonstrate, herding poses no problem
to a market-to-quality inference: While a lower-quality product may sometimes
prevail in market share, this will always have a lower probability than the alter-
native, and market share data per se is of no help in recognizing that such an
anomaly is occurring. Defining a customer to be weakly herding if greater market
share makes her more likely to consume a product, or has no effect on her behavior,
we demonstrate that when all customers are weakly herding (in addition to being
monotone on their product histories), market share is a valid signal for quality.

As for elitism, we believe, but do not analyze in the current paper, that if
outweighed (in some sense) by herding, our thesis is still valid. Markets in which
customer elitism is dominant turn out to be chaotic and difficult to analyze. In the
Discussion we give an example where such a market does not adhere to our thesis.
However, such markets seem far-fetched and so of low economic significance.

1.3. No Other Differentiation. Our result applies to undifferentiated markets,
where all products are a priori equal in the eyes of customers. When customers
distinguish between products by price, brand name, etc., or in captive markets,
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market share may be a reflection of the existing differentiation rather than of
quality.

In our model, this translates to a requirement of anonymity of products in cus-
tomer strategies, meaning that customers’ strategies are invariant under a change
of product labels.

In differentiated markets we are nevertheless able to state and prove a partial but
significant result, namely, that the likelihood of market share leadership increases
with quality.

1.4. Organization of this paper. The rest of this paper is organized as follows:
Section 2 and 3 analyze markets where customers are guided entirely by their prod-
uct history, with section 2 devoted to describing the model and section 3 stating
and proving our proposition in such markets. Subsequently we analyze markets
where customers are aware of product market share and take it into account, with
section 4 devoted to refining the model for such markets, while section 5 states and
proves our proposition. Formally speaking the results in Sections 4 and 5 subsume
those of Sections 2 and 3, but we feel that this organization of the material makes
it easier for the reader to follow. In Section 6 we state and prove an auxiliary
theorem that is extensively used in our proofs. Conclusions are given in section 7.

2. Basic Model, When Only History Matters

In our model, customers make decisions regarding products in rounds of discrete
time t = 1, 2, . . .. At each round, a customer has an action set {C,N}, where
C := consume the product, N := do not consume the product. If she consumes
the product, she will, with probability given by the product’s quality q ∈ [0, 1], be
satisfied, in which case the round is called an S-round, or else dissatisfied, in which
case the round is called an F -round. If she chooses not to consume the product,
the round is called an N-round.

A customer’s t-deep history with a product, is a member of Ht := {S,N, F}t.
Histories of depth up to t are denoted H≤t :=

⋃t
k=0Hk, and the set of all histories

by H := H≤∞. For Z ∈ Ht we mark Z’s depth |Z| := t. We denote by H∗≤t the set
of histories of depth up to t that end in a consumption event.

The customer’s partiality strategy, σ : H → [0, 1], is her behavioral strategy given
her information set, which in this basic model is her history with the product at
the time of decision. The partiality strategy is completely specified by specifying
σ(Z), the probability for action C, for each history Z ∈ H.
ZV stands for (Z(1), . . . , Z(t), V ) ∈ Ht+1, with Z(k) standing for the event in

round k.
The k’th tail of history Z, denoted rk(Z), is the history (Z(1), . . . , Z(t− k)) ∈
Ht−k provided t ≥ k and the empty history otherwise. We use the shorthand r(Z)
for r1(Z). If Y is a tail of Z, Z is said to be an extension of Y .

We further define S(Z) (resp. F (Z), N(Z)) as the number of S-rounds (resp.
F,N -rounds) in Z, i.e., the number of indices i for which Z(i) = S (resp. F,N).
The consumption of Z is defined as con(Z) := S(Z) + F (Z). The digest of Z,
denoted dig(Z) ∈ Hcon(Z), is defined as the history that we obtain when we omit
all the N -rounds from Z while maintaining the order of the remaining rounds.

For Z ∈ H, we define the implementation set of Z which is denoted by Φ(Z).
This is the set of all Y ∈ H such that dig(Y ) = dig(Z).
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Let Z1, Z2 ∈ Ht, with con(Z1) = con(Z2), and let D1 := dig(Z1), D2 := dig(Z2).
We say that Z1 is superior to Z2, denoted Z1 � Z2 if there is no index i for which
D1(i) = F and D2(i) = S.

A partiality strategy σ(·) is called monotone if

σ(Z1) ≥ σ(Z2) whenever Z1 � Z2. (2.1)

3. The Main Theorem When Only Product History Matters

In the current section we focus on the situation of a monotone partiality strategy
that depends only on history. What can be said about the probability that the
consumption up to time t, is ≥ x for arbitrary t and x? As the following theorem
shows, this probability is a non-decreasing function of the product quality q.

Theorem 1. Fix a monotone partiality strategy σ, and nonnegative integers t, x.
Then

d

dq
P
[
con(Z) ≥ x|Z ∈ Ht

]
≥ 0 (3.1)

where the probability space is H.

3.1. Proof of Theorem 1. We define a Markov chain on histories, i.e. a Markov
chain with state space H that describes the possible transitions between histories
and their probabilities. All transitions are from a member Z ∈ Ht to an extension
Z ′ ∈ Ht+1 with the following probabilities

Z → ZS with probability q · σ(Z)
Z → ZN with probability 1− σ(Z)
Z → ZF with probability (1− q) · σ(Z)

(3.2)

Consider the probability of reaching Z ∈ H as we start from the empty history
and move along the Markov chain. It is convenient to express this probability as

c(Z)qS(Z)(1− q)F (Z).

We refer to c(Z) as the ex-ante function corresponding to strategy σ(·). Following
from (3.2), its value is recursively defined by:

c(Z) =

 1 Z = ∅
σ(r(Z))c(r(Z)) Z(|Z|) ∈ {S, F}[
1− σ(r(Z))

]
c(r(Z)) Z(|Z|) = N

(3.3)

For example c(FNSSN) = σ(∅)[1−σ(F )]σ(FN)σ(FNS)[1−σ(FNSS)] where
∅ denotes the empty history. Observe that c(Z) is a product of |Z| factors. The
factor has the form σ(·) for each consumption event, and 1−σ(·) where the history
has an N -event. The arguments of σ in the factors run over all |Z| tails of Z.

It will be convenient to use an alternative description of the event in (3.1). Note
that the consumption after t rounds is at least x iff the consumption is exactly x
after at most t rounds. Furthermore, the shortest history with consumption x ends
in a consumption event, i.e. is in H∗≤t, and all such histories in H∗≤t are mutually
disjoint events. In other words, the theorem can be equivalently stated as:

d

dq
P
[
con(Z) = x|Z ∈ H∗≤t

]
≥ 0 (3.4)
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Let us try and provide some intuition for our next lemma. It states that the sum
of the ex-ante function c(·) over the implementation set of a given digest grows as
that digest is improved (in the sense defined above for the monotonicity property),
provided the customer adheres to monotonicity. A customer’s history is a process
where both the customer and nature make random choices. The customer decides
what to consume and her random choices are controlled by her partiality strategy.
Nature chooses between success and failure, with randomness being controlled by
the product quality. A history digest thus lists nature’s choices, while the ex-ante
function represents the total probability of the customer’s choices, independently
of nature. A digest’s implementation set is therefore all histories with nature’s
choices given in advance.

By adopting this imaginary predetermination of nature’s choices, we understand
the implementation depth of a digest as the answer to the following question:
Given that (unknown to the customer), nature’s sequence of choices on product
satisfaction is given, how many rounds will it take the customer to “get through it”?
As shown in Lemma 1, and even more explicitly in Lemma 2, as this sequence of
choices improves (with failures being replaced by successes), a customer observing
monotonicity will “implement” the improved sequence more quickly.

The later parts of our proof show how this key property leads to a proof of the
entire theorem.

Lemma 1. Let D1, D2 ∈ {S, F}l be two histories satisfying D1 � D2. Let the
partiality strategy σ(·) be monotone, with c(·) the corresponding ex ante function.
Then for all positive t: ∑

Z∈H∗≤t∩Φ(D1)

c(Z) ≥
∑

Z∈H∗≤t∩Φ(D2)

c(Z) (3.5)

Proof. At the outset of the proof, we wish to justify its complexities, which may
perhaps suprise the reader, who will question their necessity. The problem stems
from the fact that the c(·) function is not monotone, even if the partiality strategy
σ(·) is, i.e. it is not true that c(Z1) ≥ c(Z2) whenever Z1 � Z2. The reason
is the presence of 1 − σ(·) factors in the definition of the ex-ante function (see
(3.3)) which decrease, rather than increase when the history argument is improved.
Indeed, were the ex-ante function monotone, the lemma could be trivially proved
by term-by-term comparison. However, this is not the case, and rather than being
trivial, the lemma states an inequality which is algebraically difficult to prove even
in simplified special cases.2

The non-monotonicity of the ex-ante function is key to understanding why not
only the lemma, but the main result is an algebraically advanced proposition. To
settle its veracity, we rely on a reduction of the partiality strategy to integer values.

2For example, for t = 3, D1 = SS,D2 = FS, mark:

0 ≤ a := σ(∅) ≤ 1

0 ≤ b′ := σ(F ) ≤b := σ(S) ≤ 1

0 ≤ c := σ(N) ≤ 1

0 ≤ d′ := σ(FS) ≤d := σ(SS) ≤ 1

0 ≤ e′ := σ(FN) ≤e := σ(SN) ≤ 1

0 ≤ f ′ := σ(NF ) ≤f := σ(NS) ≤ 1



MARKET SHARE INDICATES QUALITY 7

The reduction, and the proof of its validity, is detailed in a separate section, Section
6.

Let m = |H≤t|, and let us associate the coordinates of Rm with members of H≤t,
with each coordinate value identified with the strategy value σ(·) for that mem-
ber. We define a polytope P ⊆ Rm by the inequalities that determine monotone
partiality strategies:

∀i ∈ [m] 0 ≤ σ(Zi) ≤ 1 (3.6)

∀i, j ∈ [m], i 6= j, Zi � Zj σ(Zi) ≥ σ(Zj) (3.7)

Every monotone partiality strategy σ corresponds to a point in P , whose coor-
dinates are σ’s values for each history in H≤t. (Strategies for histories outside H≤t
are irrelevant to this lemma). Define F (σ) to be:

F (σ) :=
∑

Z∈H∗≤t∩Φ(D1)

c(Z)−
∑

Z∈H∗≤t∩Φ(D2)

c(Z) (3.8)

Then the lemma asserts:
min
σ∈P

F (σ) ≥ 0 (3.9)

We can apply Theorem 6 (Section 6) to our situation and conclude that it suffices
to prove our lemma for pure partiality strategies, that take only the values 0 or 1.
Identify each coordinate xi in the theorem with σ(Zi) here. The conclusion holds,
since, as we observe below, the function F satisfies the condition of the theorem.

By definition (3.3) c(·) is multilinear, being a product of up to t linear factors,
each involving σ(Z) for some Z ∈ H≤t. Therefore, by (3.8), F is multilinear, as
needed. We next show that F satisfies the condition that is required in Theorem
6. Each factor in the expression for c(·) involves a history of different depth. On
the other hand the monotonicity inequalities (3.7) compare only between same-
depth histories. Thus the different factors belong to different components of G, as
defined in Theorem 6.

It remains to prove the lemma for pure partiality strategies. This we now set
to do. When partiality strategy σ(·) is restricted to 0 or 1 values, then necessarily
so is the corresponding ex-ante function c(·). The lemma’s assertion, restated for
this case, is:

Given D1 � D2:

|{Z|Z ∈ H∗≤t ∩ Φ(D1), c(Z) 6= 0}| ≥ |{Z|Z ∈ H∗≤t ∩ Φ(D2), c(Z) 6= 0}| (3.10)

To prove this, we first show that both sides of (3.10) are at most 1. For suppose
that two distinct histories Z ′, Z ′′ contribute to the left-hand side. Since the digests
of the histories are the same, anywhere they differ one must have either an S or an
F round where the other has an N round. Consider the earliest such difference:
Since partiality strategy values are restricted to 0 and 1 values, one of the histories
has zero probability for that round, and so it is impossible for both c(Z ′) and c(Z ′′)
to be non-zero. Similarly the right-hand side cannot have two distinct histories.

The implementations of D1 are SSN , SNS and NSS and of D2, FSN , FNS and NFS. The
lemma claims the true but non-obvious:

ab(1− d) + a(1− b)e+ (1− a)cf ≥ ab′(1− d′) + a(1− b′)e′ + (1− a)cf ′
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Another way of reaching the same conclusion is to observe that, with partiality
strategies set to either 0 or 1, and with history digests set in advance, the Markov
chain for histories is deterministic. Under these deterministic circumstances, the
minimum depth at which a given digest is implemented is called the digest’s im-
plementation depth (which may be infinite). The number of histories contributing
to the left (right) side of (3.10) is 0 or 1 depending on whether the implementation
depth of D1 (D2) is > t or ≤ t, respectively.

Therefore it is enough to prove that when the implementation depth of D2 is
≤ t, so is the implementation depth of D1. The following sub-lemma settles this
point:

Lemma 2. Let D1 � D2 be two l-deep histories, D1, D2 ∈ {S, F}l. Let the
partiality strategy σ(·) be monotone and pure, and let c(·) be the ex ante function
based on it. If there exists Z2 ∈ Φ(D2) with depth t such that c(Z2) = 1, then there
also exists Z1 ∈ Φ(D1) with depth ≤ t such that c(Z1) = 1.

Proof. By induction on the history’s depth t. When t = 0 the assertion is vacuously
true. Assume the lemma proven for histories of depth up to t − 1. Let Z2 be a
t-deep history with digest D2 and c(Z2) = 1.

Assume that the lemma is not true and the implementation depth of D1 is
greater than t. If Z2(t) = N , then r(Z2) has the same digest as Z2 and depth
t − 1, so invoking the induction hypothesis causes a contradiction. Otherwise, as
Z2 ends in a consumption event then (i) σ(r(Z2)) = 1 (ii) dig(r(Z2)) = r(D2).
Since r(Z2) is (t− 1)-deep and r(D1) � r(D2), by the induction hypothesis there
is an implementation of r(D1) in depth ≤ t− 1. The only way for there not to be
an implementation of D1 in depth ≤ t is if σ(r(Z1)) = 0. But r(Z1) � r(Z2) so
σ(r(Z1)) < σ(r(Z2)) violates monotonicity: A contradiction. �

This proves (3.10) and the lemma for pure partiality strategies, which, as already
demonstrated, is sufficient to prove the lemma. �

Lemma 3. Let u, v be positive integers. Let the partiality strategy σ(·) be mono-
tone, and let c(·) be the ex ante function based on it. Then for all positive t:

(u+ 1)
∑
Z∈H∗≤t

S(Z)=u+1
F (Z)=v

c(Z) ≥ (v + 1)
∑
Z∈H∗≤t

S(Z)=u
F (Z)=v+1

c(Z) (3.11)

Proof. Let Y be a history digest with S(Y ) = u + 1 and F (Y ) = v. Let Y ′

be derived from Y by altering one S round in Y to F , so that S(Y ′) = u and
F (Y ′) = v + 1. Moreover, Y � Y ′. By lemma 1:∑

Z∈H∗≤t∩Φ(Y )

c(Z) ≥
∑

Z∈H∗≤t∩Φ(Y ′)

c(Z) (3.12)

Sum this inequality over all such possible pairs (Y, Y ′) ∈ H∗≤t × H∗≤t. On the
left-hand side each history Z ∈ H∗≤t with S(Z) = u + 1, F (Z) = v appears u + 1
times, as each has u + 1 S-rounds that can be changed to F . On the right-hand
side each history Y ′ ∈ H∗≤t with S(Y ′) = u, F (Y ′) = v + 1 appears v + 1 times, as
each has v+ 1 F -rounds that could be changed from S. Hence the assertion of the
lemma is this sum-total inequality. �
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We now proceed to prove the theorem:

Proof. Multiply both sides of (3.11) by qu(1 − q)v. This is a positive quantity as
0 ≤ q ≤ 1. We get:

(u+ 1)
∑
Z∈H∗≤t

S(Z)=u+1
F (Z)=v

c(Z)qu(1− q)v ≥ (v + 1)
∑
Z∈H∗≤t

S(Z)=u
F (Z)=v+1

c(Z)qu(1− q)v (3.13)

Equivalently:

∑
Z∈H∗≤t

S(Z)=u+1
F (Z)=v

c(Z)S(Z)qS(Z)−1(1− q)F (Z) ≥
∑
Z∈H∗≤t

S(Z)=u
F (Z)=v+1

c(Z)F (Z)qS(Z)(1− q)F (Z)−1

(3.14)

Given a positive integer x, sum (3.14) over all pairs of positive integers u, v with
u+ v = x− 1. This yields:∑

Z∈H∗≤t

con(Z)=x

c(Z)S(Z)qS(Z)−1(1− q)F (Z) ≥
∑
Z∈H∗≤t

con(Z)=x

c(Z)F (Z)qS(Z)(1− q)F (Z)−1

Or:

∑
Z∈H∗≤t

con(Z)=x

c(Z)
[
S(Z)qS(Z)−1(1− q)F (Z) − F (Z)qS(Z)(1− q)F (Z)−1

]
≥ 0

⇒
∑
Z∈H∗≤t

con(Z)=x

c(Z)
d

dq

[
qS(Z)(1− q)F (Z)

]
≥ 0

⇒ d

dq
P
[
con(Z) = x|Z ∈ H∗≤t

]
≥ 0

as claimed. �

It follows from Theorem 1 that the expected consumption is non-decreasing in
the quality:

Corollary 1. If the partiality strategy is monotone, then for any time t:

d

dq
E
[
con(Z)|Z ∈ Ht

]
≥ 0 (3.15)

where the probability space is H.

Proof. Since:

E
[
con(Z)|Z ∈ Ht

]
=
∞∑
x=1

P
[
con(Z) ≥ x|Z ∈ Ht

]
(3.16)

This follows from Theorem 1. �
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Having proved Theorem 1 for the consumption of a single customer, we state
and prove an equivalent theorem for an entire market, i.e. that, provided each
customer’s partiality strategy is monotone, a product’s market share (i.e. its total
consumption) stochastically dominates the market share of a product of lesser
quality:

Theorem 2. Let each of n customers have a monotone partiality strategy. Given
a time t and an integer x:

d

dq
P
[ n∑
j=1

con(Zj) ≥ x|∀j ∈ [n], Zj ∈ Ht

]
≥ 0 (3.17)

where the probability space is Hn.

Proof. The proof proceeds by induction on n. For n = 1 this is just Theorem 1. As-

sume the statement true for up to n−1 customers. Mark an(x) := P
[ n∑
j=1

con(Zj) ≥

x|∀j ∈ [n], Zj ∈ Ht

]
and b(y) := P

[
Zn ≥ y|Zn ∈ Ht

]
. Then:

d

dq
an(x) =

d

dq

∞∑
y=−∞

an−1(x− y) P
[
Zn = y|Zn ∈ Ht

]
=

=
d

dq

∞∑
y=−∞

an−1(x− y)b(y)− d

dq

∞∑
y=−∞

an−1(x− y)b(y + 1) =

=
∞∑

y=−∞

d

dq
an−1(x− y)b(y) +

∞∑
y=−∞

an−1(x− y)
d

dq
b(y)−

−
∞∑

y=−∞

d

dq
an−1(x− y)b(y + 1)−

∞∑
y=−∞

an−1(x− y)
d

dq
b(y + 1)

Changing variables in the last term y + 1→ y and combining, this results in:

∞∑
y=−∞

d

dq
an−1(x− y) P

[
Zn = y|Zn ∈ Ht

]
+

∞∑
y=−∞

P
[n−1∑
j=1

con(Zj) = x− y|∀j ∈ [n− 1], Zj ∈ Ht

] d
dq
b(y) ≥ 0

since all factors in the above expression are non-negative. �

The main result can now be stated and proved: If two products are interchange-
able in the eyes of the customers, and if there is no prior cause to believe that
one of the products has the better quality, then from the observation of a higher
market share for one of the products one can infer that it has the better quality.

Theorem 3. Let the partiality strategies of all customers for products 1 and 2
be monotone, and let each customer’s strategy for product 1 be the same as for
product 2. Let products 1, 2 have possibly different qualities q1, q2 respectively, with
symmetric prior. Let the history of customer j ∈ [n] with product i ∈ [m] be



MARKET SHARE INDICATES QUALITY 11

Zij ∈ Ht. Then:

P
[
q1 ≥ q2|

n∑
j=1

con(Z1j) >
n∑
j=1

con(Z2j)
]
≥ P

[
q2 ≥ q1|

n∑
j=1

con(Z1j) >
n∑
j=1

con(Z2j)
]

where the probability space is Hmn.

Proof. Mark ω1 :=
n∑
j=1

con(Z1j) and ω2 :=
n∑
j=1

con(Z2j).

As the products are interchangeable P[ω1 > ω2|q1 = q2] = P[ω2 > ω1|q1 = q2].
By theorem 2:

P[ω1 > ω2|q1 ≥ q2] ≥ P[ω1 > ω2|q1 = q2] (3.18)

P[ω2 > ω1|q1 ≥ q2] ≤ P[ω2 > ω1|q1 = q2] (3.19)

Therefore:

P[ω1 > ω2|q1 ≥ q2] ≥ P[ω2 > ω1|q1 ≥ q2] (3.20)

As the products are interchangeable, P[ω2 > ω1|q1 ≥ q2] = P[ω1 > ω2|q2 ≥ q1],
therefore:

P[ω1 > ω2|q1 ≥ q2] ≥ P[ω1 > ω2|q2 ≥ q1] (3.21)

¿From which the theorem follows by Bayes’ theorem and the symmetric prior
on q1, q2. �

4. Model with Market Share Observations

We now generalize our model to the case where the market share of the products
is known to customers. Customers can base their partiality strategies on market
share information, as well as on their individual history with the products. We
need to define market share:

Let there be n customers and m products. Let Zij ∈ Ht be customer j’s t-deep
history with product i. We define a (t-deep) history ensemble Z as a set of histories
for each customer-product combination Z := {Zij ∈ Ht,∀i ∈ [m], j ∈ [n]}.

The set of t-deep history ensembles is denoted by Gt.
The τ -deep (0 ≤ τ ≤ t) tail of a history ensemble Z is defined as rt−τ (Z) :=
{rt−τ (Zij) ∈ Hτ ,∀i ∈ [m], j ∈ [n]}.

Given a t-deep history ensemble Z, and an initial market shareA := (A1, . . . , Am),
the market share of product i ∈ [m] after round τ is the total number of units con-
sumed of product m up to round τ , and is denoted by Ωi(Z,A, τ):

Ωi(Z,A, τ) = Ai +
n∑
j=1

con(rt−τ (Zij)) (4.1)

All customers are aware of the round-τ market share of all products3 when they
make their consumption decisions at round τ + 1.

Ω(Z,A, τ) denotes the vector of all product market shares
(Ω1(Z,A, τ), . . . ,Ωm(Z,A, τ)).

The initial market share vector A ≡ Ω(Z,A, 0) is the market share vector before
round 1, and its value is extraneous to the model.

3See the Discussion for some comments on how things behave when customers may have more
information about past market shares.
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The partiality strategy of customer j ∈ [n] to product i ∈ [m] after round t,
σij(Zij,Ω(Z,A, t)), is defined as the probability that the customer will consume
product i at round t+1. It is a behavioral strategy that depends on the customer’s
information set which consists of Zij, the customer’s history with product i, and
the market share Ω(Z,A, t) known after round t.

We generalize the definition of a t-deep history ensemble to a t-deep partial
history ensemble, where member histories do not necessarily have the same depth:
Z := {Zij ∈ H≤t,∀i ∈ [m], j ∈ [n]}.

The set of t-deep partial history ensembles is denoted by G≤t, and the set of all
history ensembles by G := G≤∞.

A t-deep partial history ensemble Z is said to occur if, at time t, all actual
histories are extensions of their respective partial histories in Z. The set of actual
t-deep histories that extend a t-deep partial history ensemble is denoted by Ψt(Z):

Ψt(Z) := {Y ∈ Gt|∀i ∈ [m], j ∈ [n],∃tij ≥ 0, rtij(Yij) = Zij} (4.2)

We define the digest of a history ensemble to be the ensemble of digests of each
of its histories: D = dig(Z)⇒ ∀i ∈ [m], j ∈ [n], Dij = dig(Zij).

Define:

Si(Z) :=
n∑
j=1

S(Zij) (4.3)

Fi(Z) :=
n∑
j=1

F (Zij) (4.4)

Qi(Z) := q
Si(Z)
i (1− qi)Fi(Z) (4.5)

Q(Z) :=
m∏
i=1

Qi(Z) (4.6)

We define monotonicity similarly to how we defined it in Section 2: A partiality
strategy σij is monotone if for every market share vector ω and for every history
pair Z1, Z2 satisfying Z1 � Z2, σij(Z1, ω) ≥ σij(Z2, ω).

We introduce a condition on customers’ response to market data that we call
weak herding. As we show, if weak herding holds and if customers are monotone,
then a result similar to Theorem 3 holds. Namely, market share still indicates
quality. Compared with the previous sections, customers are less restricted in
forming their partiality strategies under these assumptions.

A customer j is called weakly herding if for every product i, time t, t-deep history
Zij and market share vector ω = {ω1, . . . , ωm}, σij(Zij, ω) is non-decreasing in ωi.
A customer j is called competitively weakly herding if for every product i, time t,
t-deep history Zij and market share vector ω = {ω1, . . . , ωm}, σij(Zij, ω) is non-
decreasing in ωi and non-increasing in ωk for all k 6= i. In particular, a customer
who, as in our basic model, is unaware of market share or disregards it, is both
weakly herding and competitively weakly herding.

Weak herding is a natural response to market share data: The more a product
has been consumed, the more a customer who is aware of that fact is disposed
to consume it. Competitive weak herding makes it possible to base partiality
strategies on a product’s order in market share data, e.g. on whether or not a
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product is the market leader in consumption. We shall be able to prove our thesis
for both kinds of responses, though for competitive weak herding we shall have to
limit the number of products.

Additionally, we define anonymity for products, the property that products are
a priori equal in the eyes of customers. For anonymous products, partiality strate-
gies do not depend on the label of a product but only on its data. Formally, let Z =
((Z11, . . . , Z1n), (Z21, . . . , Z2n), . . . , (Zm1, . . . , Zmn)) and ω = (ω1, ω2, . . . , ωm). De-
fine the permutationsK12(Z) := ((Z21, . . . , Z2n), (Z11, . . . , Z1n), . . . , (Zm1, . . . , Zmn))
and K12(ω) := (ω2, ω1, . . . , ωm). Then products 1, 2 are anonymous if, for each cus-
tomer j, for each history Z and for each market share vector ω:

σ1j(Z, ω) = σ2j(K12(Z), K12(ω)) (4.7)

5. Theorem with Market Share Observation

Theorem 4. (1) Assume that all customers are monotone and weakly herding
and fix some initial conditions A = (A1, . . . , Am). Then for all times t:

d

dq1
P
[
Ω1(Z,A, t) > Ω2(Z,A, t)|Z ∈ Gt

]
≥ 0 (5.1)

where qi ∈ [0, 1] is the quality of product i for i = 1, . . . ,m, and the proba-
bility space is G.

(2) The same holds when all customers are competitively weakly herding, rather
than weakly herding, and there are two products (m = 2).

Proof. Our proof is modeled on the proof of Theorem 1, but with significant
changes. The proof proceeds in two steps: First, we show that it suffices to prove
the theorem when all partiality strategies are pure (0/1 valued), and then prove it
for pure partiality strategies.

Following (3.2), we note that, for every customer-product pair, histories form
a Markov chain describing the possible transitions between histories and their
probability. Further following (3.3), we define a customer-product specific ex-ante
function cij(Z,A) of customer i, product j. The definition is similar to that given
by (3.3):

cij(Z,A) =

 1 Zij = ∅
σij(r(Z),Ω(Z,A, t− 1))cij(r(Z), A) Zij(t) ∈ {S, F}[
1− σij(r(Z),Ω(Z,A, t− 1))

]
cij(r(Z), A) Zij(t) = N

(5.2)

where t = |Zij|.
The total ex-ante function c(Z,A) is defined as the product of all customer-

product specific ex-ante functions. The ex-ante probability of a history ensemble,
i.e. the probability of its occurrence, is then calculated from the total ex-ante
function and from the product qualities:

c(Z,A) =
m∏
i=1

n∏
j=1

cij(Z,A) (5.3)

P[Z] = P[Ψt(Z)] = c(Z,A)Q(Z) (5.4)
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The theorem, therefore, asserts that:

d

dq1

∑
Z∈Gt

Ω1(Z,A,t)>Ω2(Z,A,t)

c(Z,A)Q(Z) ≥ 0 (5.5)

Equivalently: ∑
Z∈Gt

Ω1(Z,A,t)>Ω2(Z,A,t)

c(Z,A)

[
S1(Z)

q1

− F1(Z)

1− q1

]
Q(Z) ≥ 0 (5.6)

We now proceed to apply Theorem 6 (see Section 6): We consider a set of
variables x consisting of all partiality strategy values of σij,∀i ∈ [m], j ∈ [n], each
for all possible histories in H≤t and for all possible market share vectors (with
values that w.l.o.g. may be limited below some bound). We define F (x) as the
left-hand side of (5.6):

F (x) :=
∑
Z∈Gt

Ω1(Z,A,t)>Ω2(Z,A,t)

c(Z,A)

[
S1(Z)

q1

− F1(Z)

1− q1

]
Q(Z) (5.7)

Let us return to the notion of a partiality strategy. Given all the relevant data,
i.e., history and market share information it outputs a probability (of a specific
customer consuming the specific product in the next round). Let M denote the
number of such possible data sets4. We consider the polytope P ⊆ RM of all
possible ensembles of (all customers-products’) partiality strategies. Since strategy
values are probabilities, P ⊆ [0, 1]M . Monotonicity and weak herding are expressed
by linear inequalities as follows: For each history pair Z,Z ′ ∈ H≤t, and for each
market share vector pair ω, ω′, and for each product i ∈ [m] and each customer
j ∈ [n]:

(Z � Z ′) ∧ (ωi ≥ ω′i)⇒ σij(Z, ω) ≥ σij(Z
′, ω′) (5.8)

While monotonicity and competitive weak herding are expressed by linear in-
equalities as follows: For each history pair Z,Z ′ ∈ H≤t, and for each market share
vector pair ω, ω′, and for each product i ∈ [m] and each customer j ∈ [n]:

(Z � Z ′) ∧ (ωi ≥ ω′i) ∧ (∀k 6= i, ωk ≤ ω′k)⇒ σij(Z, ω) ≥ σij(Z
′, ω′) (5.9)

This is a complete decription of polytope P , since the partiality strategies of
different customers are independent of each other. The same is true for different
products, as product anonymity has not been required in the current theorem.

The function F (x) satisfies the conditions of Theorem 6. The ex-ante function
c(Z,A) is multilinear in x (its coefficients in the terms of F (x) are scalar constants
in the current context). Furthermore, note that (5.8) and (5.9) have inequalities
only between histories of the same depth, as monotonicity is defined only for
same-depth histories, and involves only same-customer, same-product partiality
strategies. Since each customer-product specific ex-ante function has only one
factor for each depth, each term of F (x) depends on at most one member of each
connected component of G, the graph with vertex set [M ] and edges defined by
(5.8) (for weak herding) or by (5.9) (for competitive weak herding).

4Specifically, M < mn3t+1(2tn)m.
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Consequently, F (x) attains its minimum at some all-integer x. Therefore, it is
enough to prove the theorem for pure (0/1-valued) partiality strategies.

This we now set to do. The theorem, stated in the form of (5.6), restricted to
pure partiality strategies, reads as follows:∑

Z∈Gt
Ω1(Z,A,t)>Ω2(Z,A,t)

c(Z,A)=1

[
S1(Z)

q1

− F1(Z)

1− q1

]
Q(Z) ≥ 0 (5.10)

Definition 1. For Z ∈ H, we denote by Φ−(Z) the contraction set of Z. This is
the set of all Y ∈ H such that dig(Y ) = rm(dig(Z)) for some m ≥ 0.

Note that the contraction set of a history is the union of the implementation
sets of that history and of all its tails.

Here is an informal explanation of the following lemma. Consider a t-deep
history ensemble in which each individual history has a t-deep implementation. If
this history ensemble is improved (i.e. some F -events are changed to S-events) with
respect to product 1, then in the improved history ensemble: (i) Implementation
depths of all customer histories of product 1 are shortened or unchanged (i.e. are
at most t) (ii) Implementation depths of all customer histories of products other
than 1 are lengthened or unchanged (i.e. may be only partially implemented by
time t).

We refer the reader to the preamble we gave to Lemma 1 in Section 3, and note
that the current lemma is the analog of Lemma 2, in the current more complex
setting: Fixing the digests in a history ensemble may be viewed as predetermining
nature’s choices in advance, and then asking how much time it will take the mar-
ket (compared to a single customer in Section 3) to “get through it”, under the
assumption that all customers observe monotonicity and weak-herding.

Lemma 4. (1) Let Z ′ ∈ Gt and let D′ = dig(Z ′) be the ensemble of all digests
of histories in Z ′. Assume c(Z ′, A) = 1. Let D ∈ G≤t be some other
ensemble of digests satisfying ∀j ∈ [n], D1j � D′1j and ∀i 6= 1, Dij = D′ij.
Suppose that all customers are weakly herding, and all partiality strategies
σij(·), ∀i ∈ [m], j ∈ [n] are monotone and pure. Let c(·) be the ex ante
function corresponding to these strategies and to some given initial market
share vector A = (A1, . . . , Am).

Then:
(a) There exists a t-deep partial history ensemble Z ∈ G≤t such that

c(Z,A) = 1, where ∀j ∈ [n], Z1j ∈ H≤t∩Φ(D1j), and ∀j ∈ [n], i 6= 1, Zij ∈
Ht ∩ Φ−(Dij)).

(b) For every Y ∈ Ψt(Z), product 1’s market share in Y is at least as large
as in Z ′, while for products other than 1, the market share in Y is at
most as large as in Z ′.

(c)

Q(Z)

Q1(Z)
≥ Q(Z ′)

Q1(Z ′)
(5.11)

(2) The same holds when all customers are competitively weakly herding, rather
than weakly herding, and there are two products (m = 2).
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Proof. We first note that part 1a of the lemma implies part 1b, since

Ω1(Y,A, t) ≥ A1 +
n∑
i=1

con(Z1i) = A1 +
n∑
i=1

con(Z ′1i) = Ω1(Z ′, A, t)

(5.12)

∀i 6= 1 :Ωi(Y,A, t) = Ai +
n∑
i=1

con(Zij) ≤ Ai +
n∑
i=1

con(Z ′ij) = Ωi(Z
′, A, t) (5.13)

We prove part 1a (and hence also part 1b) by induction on t. For t = 0 the
claim is vacuously true. Assume part 1a and part 1b proven for t − 1, and we
proceed to the induction step:

Consider the ensemble r(Z ′) ∈ Gt−1. Its ensemble of digests d′ := dig(r(Z ′)) has
a digest for each i ∈ [m], j ∈ [n] that is either (i) equal to D′ij whenever the last
round of the specific history was an N -round, i.e. when Z ′ij(t) = N , or (ii) equal
to r(D′ij) otherwise, i.e. when Z ′ij(t) ∈ {S, F}.

Construct the history ensemble d from D as follows: For each i ∈ [m], j ∈ [n], if
Z ′ij(t) = N set dij = Dij, otherwise set dij = r(Dij). Clearly d ∈ G≤t−1, and we may
apply the induction hypothesis on r(Z ′), and on d, as d satisfies the requirements
on D, namely, for each j ∈ [n], d1j � d′1j, and for each i 6= 1, j ∈ [n], dij = d′ij.

By part 1a there therefore exists z ∈ G≤t−1 such that c(z, A) = 1, where
∀j ∈ [n], z1j ∈ H≤t−1 ∩ Φ(d1j), and ∀j ∈ [n], i 6= 1, zij ∈ Ht−1 ∩ Φ−(dij)).

We shall prove that for every j ∈ [n], D1j has an implementation depth at most t.
If d1j = D1j, then z1j is such an implementation with depth ≤ t−1 < t. Otherwise,
i.e. if Z ′1j(t) 6= N , then as shown above d1j = r(D1j) has an implementation z1j

with depth ≤ t − 1. Furthermore, Z ′1j(t) 6= N implies σ1j(r(Z
′
1j),Ω(r(Z ′), A, t −

1)) = 1.
Since r(D1j) has an implementation z1j of depth at most t−1, the only way that

D1j will not have an implementation of depth ≤ t is for customer j to have zero
partiality strategy for product 1 at all times starting at the depth of z1j and up to
and including t− 1. But this is not possible: A customer who has zero partiality
strategy up to time t− 1 will necessarily have non-zero partiality strategy at time
t−1, by the combination of monotonicity (as z1j � r(Z ′1j)) and weak-herding (due
to (5.12)) resulting in σ1j(z1j,Ω(z, A, t− 1)) ≥ σ1j(r(Z

′
1j),Ω(r(Z ′), A, t− 1)) = 1.

It remains to prove that for each i 6= 1, Zij is in the contraction set of Z ′ij, or,
equivalently, that the depth of dig(Zij) is not greater than the depth of D′ij =
dig(Z ′ij). Note that for weak herding, there is nothing to prove: Changing 1’s his-
tories has no effect on the partiality strategies for other products. So the following
is for competitive weak herding, and m = i = 2:

Assume to the contrary that dig(Zij) is deeper than dig(Z ′ij). Consider the
lemma applied to r(Z) ∈ Gt−1 as above, and note that for i 6= 1, zij = r(Zij) ∈
Ht−1. By the induction hypothesis, dig(zij) is not deeper than d′ij = dig(r(Z ′ij)).
This is possible only if dig(zij) = d′ij, Zij(t) 6= N and Z ′ij(t) = N . This entails
σ(zij,Ω(Z,A, t−1)) = 1 and σ(r(Z ′ij),Ω(Z ′, A, t−1)) = 0. Noting that r(Z ′ij) � zij
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(because dig(r(Z ′ij)) = d′ij = dig(zij)) and (5.13), this violates the combination of

monotonicity and competitive weak herding5: a contradiction.
This proves part 1a and part 1b of the lemma.
The last part (5.11) is a consequence of the first: For each product i 6= 1, Z ′ij

is an implementation of Dij, while Zij is in the contraction set of Dij. Therefore

Qi(Z) ≥ Qi(Z
′). Multiplying for each i 6= 1 we get Q(Z)

Q1(Z)
≥ Q(Z′)

Q1(Z′)
. �

Continuing to prove our theorem, fix an initial market share vector A and a
round t. Define Xt(A) ⊂ Gt to be the set of t-deep history ensembles which are
summed in (5.10), i.e.:

Xt(A) := {Z ∈ Gt,Ω1(Z,A, t) > Ω2(Z,A, t), c(Z,A) = 1} (5.14)

We call two partial history ensembles Z,Z ′ ∈ G≤t intersecting, denoted Z v Z ′

if the following condition holds: In each pair of corresponding history elements
one is in the contraction set of the other i.e. ∀i ∈ [m], j ∈ [n], Zij ∈ Φ−(Z ′ij) or
Z ′ij ∈ Φ−(Zij). (Note that v is not an equivalence relation, since it is symmetric,
but not transitive).

We now claim that Xt(A) contains no intersecting pairs Z v Z ′. Otherwise,
there are two corresponding histories in Z and Z ′ where one has an N -round
where the other has either an S- or an F -round. Let us consider, then, the earliest
difference between the two history ensembles. Since the partiality strategy is pure,
one of these would have zero probability at the point of difference, leading to a
zero ex-ante probability for the entire history ensemble. As all Z ∈ Xt(A) satisfy
c(Z,A) = 1 by assumption, this is impossible.

A spot improvement of Xt(A) is a pair of history ensembles (Z ′, Z) where Z ′ ∈
Xt(A), and Z ∈ G≤t is a partial history ensemble whose digest can be derived from
Z ′’s by (i) changing exactly one F -event of one of dig(Z ′)’s product 1’s histories
to an S-event, leaving all other product 1 histories unchanged (ii) Optionally con-
tracting all histories other than product 1’s, i.e. ∀i 6= 1, j ∈ [n], Zij ∈ Φ−(Z ′ij). By
Lemma 4, there exists such a Z with c(Z,A) = 1. Due to the derivation of the spot
improvement we have S1(Z) = S1(Z ′) + 1 and F1(Z) + 1 = F1(Z ′), so, multiplying

both sides of (5.11) by q
S1(Z′)
1 (1 − q1)F1(Z′), a positive quantity as 0 ≤ q1 ≤ 1, we

have:
Q(Z)

q1

≥ Q(Z ′)

1− q1

(5.15)

Let us rephrase this in terms of exclusively non-partial t-deep history ensembles.
Z ′ is already t-deep and not partial. For Z, recall from (5.4) that:

Q(Z) =
∑

Y ∈Ψt(Z)

Q(Y ) (5.16)

Therefore:
1

q1

∑
Y ∈Ψt(Z)

Q(Y ) ≥ 1

1− q1

Q(Z ′) (5.17)

All histories in (5.17) are in Xt(A): Z ′ is there by definition of the spot improve-
ment. By (5.12) ∀Y ∈ Ψt(Z),Ω1(Y,A, t) ≥ Ω1(Z ′, A, t), while for all products

5It is here that the case m > 2 fails. The presence of a 3rd product, whose market share has
possibly decreased, would prevent citing competitive weak herding.
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other than 1, including product 2, by (5.13) Ω2(Y,A, t) ≤ Ω2(Z ′, A, t). Therefore
Ω1(Y,A, t) > Ω2(Y,A, t)⇒ Y ∈ Xt(A).

Let us sum (5.17) over all possible spot improvements.
As noted above, on both sides this grand total will be over members of Xt(A).

We investigate the multiplicities of each such member on each side:
On the right-hand side, each member Z ∈ Xt(A) is summed exactly F1(Z) times,

the number of different ways a 1’s history F -event may be changed into an S-event.
On the left-hand side, we claim that each member Z ∈ Xt(A) is summed at most

S1(Z) times, arguing as following: For Z to appear on the left-hand side, it must
have been an extension of (i.e. in the Ψt(·) set) of a spot improvement of some
other Z ′ ∈ Xt(A). This means it had exactly one of its S-events changed from an
F -event in Z ′. Now it is impossible for Z to be derived by a change of the same S-
event from two different Z ′, Z ′′ ∈ Xt(A), as this would entail Z ′ v Z ′′: For observe
that Z ′ 6v Z ′′ ⇒ Ψt(Z

′) ∩ Ψt(Z
′′) = ∅, and furthermore no member of Ψt(Z

′) is
in the implementation set of any member of Ψt(Z

′′), and vice versa. But Z ′ v Z ′′

contradicts the observation that no two members of Xt(A) are intersecting.
Therefore this grand total sum of (5.17) may be written as:∑

Z∈Xt(A)

S1(Z)

q
Q(Z) ≥

∑
Z∈Xt(A)

F1(Z)

1− q
Q(Z) (5.18)

Which, reminding ourselves of the definition of Xt(A) (5.14), results in (5.10),
which is our theorem restricted to pure partiality strategies. As already shown,
this is sufficient to prove (5.6) and the theorem. �

We now state and prove the main result:

Theorem 5. (1) Let there be m products, and let products 1, 2 be anonymous
but have possibly different qualities q1, q2 respectively, with symmetric prior
on their quality and initial market share. Let all customers have mono-
tone partiality strategies to these products, and let all customers be weakly
herding. Let ω1, ω2 be the observed market share after time t of 1 and 2,
respectively. Then:

P[q1 ≥ q2|ω1 > ω2] ≥ P[q2 ≥ q1|ω1 > ω2] (5.19)

(2) The same holds when all customers are competitively weakly herding, rather
than weakly herding, and there are two products (m = 2).

Proof. The observed market share is the result of some history ensemble Z ∈ Gt
and some initial market share vector A = (A1, . . . , Am), such that:

ω1 = Ω1(Z,A, t) (5.20)

ω2 = Ω2(Z,A, t) (5.21)

As the two products are anonymous, and the market share prior is symmetric,
we must have P[ω1 > ω2|q1 = q2] = P[ω2 > ω1|q1 = q2]. By theorem 4:

P[ω1 > ω2|q1 ≥ q2] ≥ P[ω1 > ω2|q1 = q2] (5.22)

P[ω2 > ω1|q1 ≥ q2] ≤ P[ω2 > ω1|q1 = q2] (5.23)

Therefore:

P[ω1 > ω2|q1 ≥ q2] ≥ P[ω2 > ω1|q1 ≥ q2] (5.24)
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By anonymity, P[ω2 > ω1|q1 ≥ q2] = P[ω1 > ω2|q2 ≥ q1], therefore:

P[ω1 > ω2|q1 ≥ q2] ≥ P[ω1 > ω2|q2 ≥ q1] (5.25)

¿From which the theorem follows by Bayes’ theorem and the symmetric prior
on q1, q2. �

6. Justifying the Assumption of Pure Partiality Strategies

In this section we state and prove a result that is used in previous sections to
reduce the proof of certain inequalities to the case of pure partiality strategies.
We recall that a multinear polynomial is a multivariate polynomial where every
monomial is a product of distinct variables.

Theorem 6. Let P ⊆ RM be a polytope that is defined as follows

∀i ∈ [M ] 0 ≤ xi ≤ 1 (6.1)

∀(i, j) ∈ H xi ≤ xj (6.2)

for some H ⊆ [M ] × [M ]. Let G be a graph on [M ] where ij is an edge iff
(i, j) ∈ H or (j, i) ∈ H. Let F be a multilinear function on RM such that xi and
xj appear in the same monomial in F only if vertices i and j belong to different
connected components of G.

Then F (x) attains its minimum over P at a point x∗ all whose coordinates are
integers, i.e. ∀i ∈ [M ], x∗i ∈ {0, 1}.

Proof. Associated with every x′ := {x′1, . . . , x′M} ∈ P and a set S ⊆ [M ] is the
following subset of P that we call the segment of x′ and S in P . It is defined by
the following equations:

∀i, j ∈ S xi = xj (6.3)

∀i /∈ S xi = x′i (6.4)

This is easily seen to be the intersection of P and a line and is, therefore, a
(possibly empty) one-dimensional sub-polytope of P . It is defined by the require-
ments that all coordinates in S are equal to each other, while the other coordinates
are held constant. We call the value that is common to all coordinates in S the
segment variable. We say that F (x) is linear over a segment if it is linear in that
segment’s variable.

Note that a multilinear polynomial need not be linear over a given segment.
For example, take the multilinear function f(x1, x2) = x1x2 − x1 and the two-
dimensional polytope 0 ≤ x1 ≤ x2 ≤ 1. Consider the segment x1 = x2 = y
where y denotes the segment variable. Note that f is not linear but quadratic over
this segment6. Nevertheless, due to the restrictions placed on F (x) the following
proposition holds:

Proposition 1. Let x′ ∈ P and let S be contained in some connected component
C of G. Then F (x) is linear over the segment in P of x′ and S.

Proof. By our assumption about F and since S ⊂ C, every monomial of F contains
at most one variable xi with i ∈ S. The conclusion follows. �

6Indeed, in this case, f attains its minimum at non-integral values x∗1 = x∗2 = 1
2
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For x′ ∈ P we consider the set of coordinates i for which 1 > xi > 0. We divide
the set of such coordinates into disjoint bundles, where each bundle S is a maximal
set with the following properties:

(1) All x′i with i ∈ S have the same value yS /∈ {0, 1}.
(2) The set S is contained in a connected component of G.

Let x∗ ∈ P be a minimum of F (x) over P that has the least number of bundles.
If there are no bundles, then x∗ ∈ {0, 1}M , as claimed. Otherwise, let S be a
bundle. Namely, S ⊆ C for some component C of G, and x∗i = y∗ for each i ∈ S
for some y∗ /∈ {0, 1}.

We make several observations on J , the segment in P of x∗ and S:

• It is nonempty, since x∗ ∈ J .
• The point x∗ is not an endpoint of J . Otherwise, there is an inequality (6.2)

that x∗ satisfies with equality. Namely, xj = xk = y∗ where j ∈ S and
k 6∈ S. But this implies that k ∈ C contrary to the maximality of S.
• By Proposition 1 F (x) is linear over the segment.

A linear function that is defined on an interval takes its maximum only at an
endpoint unless the function is constant. Therefore, if y is the segment’s variable
it must appear with a zero coefficient, and F (x) is constant over the segment. Let
y = y0 6= y∗ be the segment variable’s value at an endpoint of the segment. The
possible values for y0 are 0, 1 and x∗k where k /∈ S. We modify the point x∗ by
changing, for all i ∈ S, the value of xi from y∗ to y0. This either eliminates the
bundle S or merges it with the bundle of k. Either way the number of bundles is
reduced by one, a contradiction. �

7. Discussion and Conclusion

We proved that market share indicates quality in the context of a model where
customers base their strategy on their history with products and on market share
data, under fairly weak restrictions on their behavior.

One consequence of the result is its guidance to the behavior of the customers
themselves: A new customer, with no previous experience of the products, is
advised to put her trust in market share data available. In a market in which
customer-product interaction is one-shot, and all customers are equally informed
about market share, all rational customers should behave alike.

The framework we used in deriving our results can be naturally generalized.
While the restrictions of monotonicity and weak herding were successful for reach-
ing the result, we do not claim that our formulation is the only one possible.
Different formulations may be attempted, perhaps introducing other considera-
tions into customer strategy. It should be apparent that generalizing our result
would require the proof of results similar to Lemmas 2 and 4. We believe that the
rest of our proof would carry through.

For example, we believe that the requirement that all customers obey weak
herding is too strict, and that some level of elitistic customer behavior does not,
in itself, invalidate the result. Namely, so long as elitism is outweighed (in some
sense, to be defined) by herding behavior, inferences from market share to quality
remain valid.
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If elitism becomes the norm, this may not be true, as is illustrated by the
following simple albeit artificial example:

Example 1. Let there be two products 1 and 2, with 1 the superior product: q1 >
q2. Let there be n customers, divided into two categories. Customer 1’s partiality
strategy to each product is 1 if she has no prior history with the product or if her
last experience with it was good, and 0 otherwise. Customer 1’s strategy ignores
market share. Customers 2 to n, on the other hand, are pure elitists: They will
consume a product unconditionally unless that product is a leader in market share,
in which case they will not consume it. The initial market share is A = {0, 0}.

We analyze this to show that, on the 3rd round, market share does not indicate
quality.

On the 1st round all customers consume all products. The market share after
the round is ω = {n, n}, so there is no market leader.

On the 2nd round, customers 2 to n will consume all products. Customer 1,
however, will do so only if her last round was a success. With probability q1(1−q2)
product 1 will lead in market share, while with a smaller probability q2(1 − q1)
(since q1 > q2) product 2 will lead in market share. In other cases (probability
q1q2 + (1− q1)(1− q2)), market share parity will continue.

On the 3rd round, if any product has larger market share, the elitists will stop
consuming it, but will continue consuming the other product. The result will be
that at the end of the round, market leadership will be reversed. As 1 is the better
product, and assuming n large enough, the conclusion is that at the end of round
3 higher market share indicates lower quality.

This example is artificial, inter alia, in that the negative result depends on the
round number. In the example, market share leadership will oscillate, and even
rounds will behave differently from odd rounds. We have not been able to find an
economically realistic scenario that invalidates our central thesis.

Another generalization is by the introduction of money, which does not play a
role in our current model due to the assumption of an undifferentiated market.
This may be readily achieved by factoring price into quality, so that customer
satisfaction is tied to perceived “value for money”. It is not necessary for all
customers to have the same sensitivity to price: The generalization (“market share
indicates value for money”) clearly holds if all customers, were they fully informed
about product qualities, agree that a certain product is preferable to another.

We were able to prove the case with competitive weak herding for two products
only. Whether the result in fact holds for 3 products or more needs to be clarified.
If the answer turns out to be negative, it will be interesting whether an alternative
for competitive weak herding exists in which customers are responsive to market
share ranking and for which the main result holds for any number of products.

Our analysis assumed that customers are aware of current market share only.
What happens if we allow for awareness of historic market share values? There
are two aspects to this: First, in the influence of market share data on customer
strategies: We defined weak herding as a restriction on customers’ response to
current market share. If this definition of weak herding remains unchanged, then
a weak-herding customer, even if aware of historic market share data, may only
use it as a tie-breaker in forming her strategies. It should be apparent that this
does not disturb the validity of the results, as stated. Second, and however, the
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statement “market share indicates quality”, interpreted as a statement about the
probability of better quality conditional on market share data not restricted to
current data, may be invalid. This is especially true if customers are aware of
trends. E.g. The leader in a market may be seen to be losing ground, while the
follower is seen to be gaining ground.

We modeled quality as an unchanging attribute of a product. What happens if
quality varies between rounds? The main result becomes moot. However it may be
asked whether the intermediate results that show that market share is monotoni-
cally non-decreasing in the quality (Theorems 1 and 4) remain true. Differentials
in the quality may be replaced by partial differentials in any particular round’s
quality. The answer to this turns out to be negative in the general case. (For
observe that the proof of Theorem 1 is based on the fact that all implementations
of a history digest Z share the same factor qS(Z)(1− q)F (Z) in their ex-ante prob-
abilities. In particular, Lemma 2 showing the shortening of implementations for
improved digests is of no use when the shorter history may have lower probability
than a longer one. Moreover, when this factor varies between implementations, a
counterexample to any puported equivalent of Theorem 1 may be constructed.)

The significance of Theorem 4 transcends the scope of our main result, apply-
ing to differentiated markets where products are differentiated by brand names,
price, etc. Though the differentiation means that inferring higher quality from
higher market share is not possible, improving quality will always result in higher
probability for market share leadership.
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