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ABSTRACT 
We consider the problem of embedding a certain finite metric space to 
the Euclidean space, trying to keep the bi-Lipschitz constant as small as 
possible. We introduce the notation c2 (X, d) for the least distortion with 
which the metric space (X, d) may be embedded in a Euclidean space. It 
is known that if (X,d) is a metric space with n points, then c2(X,d) 
0(logn) and the bound is tight. Let T be a tree with n vertices, and d be 
the metric induced by it. We show that c2(T,d) < 0(loglogn), that is we 
provide an embedding f of its vertices to the Euclidean space, such that 
d(x,y) <_ Ill(x) - f(Y)l[ -< c log log nd(x, y) for some constant c. 

1. I n t r o d u c t i o n  

E m b e d d i n g s  of  f in i te  m e t r i c  spaces  in to  n o r m e d  spaces  a r e  of  in t e res t  in t h e  local  

t h e o r y  of  B a n a c h  spaces  ([2, 3, 4]), in c o m b i n a t o r i c s  (e.g. [1] a n d  t h e  re fe rences  

t he r e in )  a n d  in t h e  t h e o r y  of  a l g o r i t h m s  [5]. In  o rde r  to  s t u d y  a gene ra l  me t r i c ,  
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one seeks first an approximation in the form of a metric that is induced from a 

norm. The quality of such an approximation is quantified by the d i s t o r t i o n  of 

the corresponding embedding, i.e., the bi-Lipschitz constant of the mapping. 

Definition 1.1: Let (X,d) be a metric space, (Y, li il) a normed space and 

f : X ~ Y a mapping. The e x p a n s i o n  of f is 

H/(x) -/(y)ir 
sup d(x, y) x,yEX 

The sh r i n kag e  of f is 
d(x,y) 

s u p  
x,y X il/(x) --/(Y)II 

and the d i s t o r t i o n  of f is the product of its expansion and its shrinkage. 

The following is a basic result in this area. The existential part is due to 

Bourgain [2] and the tightness is from [5]. If (X, d) is a finite metric space, 

we denote by c2(X) the least distortion with which (X, d) may be embedded in 

Euclidean space 12 (regardless of dimension). 

THEOREM 1.2: I f(X,  d) is a metric space with n points, then c2(X) <<_ O(logn).  

The bound is tight. 

In view of this theorem, it is interesting to study the parameter e2 for various 

families of finite metric spaces and to understand when it is small or large. In 

attempting to develop a metric theory of superreflexivity, Bourgain determined 

c2 of the complete binary tree T,~ with n vertices (with the graph metric). 

THEOREM 1.2 (Bourgain): c2(Tn) = 0 ( ~ ) .  

We deal with general weighted trees. Given a tree T with a weight function w 

on the edges, a metric on V(T) is induced in the obvious way by interpreting the 

weights as edge lengths. Formally, let ~r(x, y) be the set of edges on the path that  

connects the vertices x and y. The distance d(x,y) = dT,~(x,y) is defined as 

~ee~(~,y) w(e). We also introduce the convention that if F is a set of edges, then 

Y~eeF w(e) is denoted by w(F). With this notation, dT,~(x, y) = w(Tr(x, y)). We 

write c2(T, w) for the least distortion of a Euclidean embedding of this metric 

space. Let l(T) denote the number of leaves of T. Our main result is: 

THEOREM 1.4: Let T be a tree and let w be any positive function on its edges. 

Then c2(T, w) < O(loglogl(T)). 

The proof of this theorem appears in the next section. Our construction 

essentially generalizes that  of Bourgain (although the analysis in the general 



Vol. 106, 1998 LOW DISTORTION EUCLIDEAN EMBEDDINGS OF TREES 341 

case gives a slightly worse bound than for his special case). Following the proof 

we make some remarks about  the connection between Bourgain's work and ours. 

2. C o n s t r u c t i n g  a g o o d  e m b e d d i n g  

It will be convenient to designate some (arbitrary) vertex r as the tree's root. 

Denote 7r(x, r) by 7r(x). The vertices of T are partially ordered "from the root" 

in the usual way: x ~ y if x lies on the path from y to r. A path  that  joins two 

>--comparable vertices is a m o n o t o n e  path. 

An embedding o f T  into R m is a map ¢ from V(T) to R m. Since we can 

translate an embedding by any fixed vector in l~ TM without affecting its distortion, 

we will restrict attention to embeddings that  map the root to the origin. It  is 

convenient to represent such an embedding by a map ~ on edges: for an edge 

(u, v) with v >- u, ¢(u,  v) = ¢(u) - ¢(v). Clearly, ¢ is determined uniquely by ~b 

via 

(1) ¢(x) = ¢(e) .  

To construct a good embedding for T, we will describe a map ¢ on edges; 

our embedding will be the map ¢ = ¢~ given by (1). Now, for any embedding f of 

a weighted graph G into any metric space M, the maximum of 

dM(f (x ) , f ( y ) ) /dG(x ,y )  is attained when x and y are adjacent, for if 

x = X o , X l , . . . , x k  = y is a shortest path from x to y in G then 

dM(f(x) ,  f(y)) < ~ i  dM(f(zi) ,  f(x~+l)) < max dM(f(xi) ,  f(xi+l)) 
d G ( a : , y )  - -  E i d G ( x i , x i + l )  - -  i d G ( X i , X i + l )  

In terms of the map ¢, we have 

PROPOSITION 2.1: The expansion of the map  ga¢ is the maximum of []¢(e)[[2/Iw¢ [ 
over all edges e of T. 

To motivate our construction, we describe a sequence of three choices for the 

function ~b, the last being the one that  attains the bounds in the theorem. 

2.1 A SIMPLE CONSTRUCTION. A simple choice for ~b maps E into the Euclidean 

space ]1~ E (whose coordinates correspond to T ' s  edges) under the map ~b(e) = 

w(e)g e where ,7 e is the unit vector corresponding to e. By Proposition 2.1, the 

expansion of the corresponding map ~b is 1. To bound the shrinkage of ~b, note tha t  

for any two vertices x,y ,  dT,,~(x,y) = ~eeTr(x,y)w(e), while ] [ ¢ ( x ) -  ¢(Y)[[2 = 

v~/~e'(x'Y) w(e) 2" The ratio ~e~(~ ,u )  w(e) /~ /~e~(~,y)  w(e) 2 is maximized 
y 
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when all of the w(e) are equal, and this leads to an upper bound on the shrinkage, 

and also on the distortion, of ~ .  This is in general much worse than  the 

distortion that  will be achieved. 

It  is easy to show that  the above construction is an isometric (distance pre- 

serving) embedding of the tree into ]~E under the 11 norm. On the other hand, 

paths are the only trees which embed isometrically into Euclidean space: Say 

that  a set S in a metric space is co l l inea r  if every three points in it satisfy the 

triangle inequality with equality. In Euclidean space, this definition coincides 

with the usual meaning of collinearity. If T is not a path, let x be a vertex with 

three distinct neighbors Yl, Y2, Y3. Suppose ¢ is an isometric embedding of T into 

some Euclidean space. Since the sets {x, Yl,Y2} and {x, Yl,Y3} are collinear in 

T, their images under ¢ are collinear as well. This implies that  the whole set 

{¢(x), ~b(yl), ¢(y2), ¢(Ya)} resides on a line, whence the metric on {Yl, y2, Ya} is 

distorted by ¢. 

Wha t  we can do, however, is to employ the next mechanism: take a decom- 

position of the tree's vertices to relatively few simple parts that  intersect in at 

most one vertex, map each part  isometrically, and "glue the parts  together" in 

an efficient way. This is just what we do in the next two constructions. 

2.2 AN IMPROVED CONSTRUCTION. We start  this construction by partit ioning 

the edges of T into a collection ~' of monotone paths. The description of this 

parti t ion is given below. For an edge e, let Pe = P¢(T') denote the unique pa th  of 

:P containing e. We map E into R p , i.e., there is one coordinate corresponding to 

each member  of P C P and gP is the unit vector corresponding to this coordinate. 

We define the mapping ~b via ¢(e) = w(e)~ P~ . As before, the corresponding 

embedding ¢¢ has expansion 1. To bound the shrinkage, we first introduce some 

notation: 

• The set of edges common to a path  P E :P and to the path  It(x, y) between 

x and y is denoted by 7rp(x,y). 

• A~,y = A~,y (p)  is the set of paths P E T' that  meet the pa th  between x 

and y. The cardinality IA~,yl is denoted 5~,y. 

• For a vertex x, we index the paths in A~,r as P°(z) ,  P l ( x ) , . . . ,  P ~ . ~ - l ( x )  

according to the order at which they are encountered in traversing from x 

to r. 

• For a vertex x, we write T'p(X) for 7rp(X, r), A~ for A~,~ and 5~ for 5~,~. 

• The  maximum of 5~ (over all vertices x) is called 5 = 5('P). 

• If e is an edge, be denotes e's vertex that  is farthest from r. We write A~ 

for Ab~ and ~e for ~b~. 
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• T h e  d e p t h  of P E 5 ° is the number  of Q E 30 tha t  are ei ther  P or tha t  lie 

"above it" (this coincides with 5~ for any e E P) .  

To bound  the  shrinkage, consider any two vertices x and y: 

¢ ( y )  - ¢ ( z )  = 
PEA~,u 

whence 

[ I¢ (Y) -  ¢(x){I = 1 / p ~  [w(TrP(X'Y))]2 
V E z,~ 

1 
-- Z 

PEA~:, v 

_ dT,w(X,y) 

Thus  the dis tor t ion of this m a p  is a t  mos t  m a x  5X/~,y , where the  m a x i m u m  is 

over all pairs of vertices x, y. Since 5x,y <_ 5x + by, the  dis tor t ion does not  exceed 

\ / 2 5 ( 3 0 ) .  

Thus,  in order  to minimize the distortion, we seek a par t i t ion 30 in which 5(30) 

is small. 

LEMMA 2.2: Every rooted tree T has a partition 30 into monotone paths with 
5(30) < log2(e/(T ) - 2). 

Proof: By induction on [E(T)I. If T is a path ,  the result  is trivial.  Hencefor th  

we may  assume IE(T)I > 1 and l(T) > 2. 

Let s be  the ver tex closest to the root  r (possibly r itself) having a t  least  2 

children, and let sl, s2 , . . . ,  Sd be the children of s. Let Ti be the  tree rooted  at  

s consisting of s together  with the subtree  of T rooted at  si. By the  induct ion 

hypothesis ,  the  edges of each Ti have a par t i t ion  30i into monotone  pa ths  such 

tha t  5(Pi)  _< log(21(Ti) - 2). 

In the  case s = r we define the par t i t ion  P = [.Ji P~ of E(T) and we have 

5(30) = max~ 5(30~) < maxi  log(2/(T/) - 2) < log(2/(T) - 2). 

W h e n  s ¢ r, say tha t  l(T1) = max~ l(Ti). The  par t i t ion  3 ° of E(T)  is ob ta ined  

by the  following modificat ion of [.Ji Pi: Let  Q be tl~e p a t h  of 301 t h a t  contains  

the ver tex s. Replace Q by the pa th  Q' t ha t  is the concatenat ion  of Q and the  

pa th  f rom s to r. Now, for any vertex v of T1, by(P)  = 5,(301) and for i > 1 and 
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any vertex v of Ti, 5v(50) = 1 + 5v(~i). Hence 

5(7 )) = max{5(50,), 1 + max 5(P~)} 
i > 2  

_< max{log(2/(T1) - 2), m>_a2x log(4/(Ti ) - 4)} 

_< log(2/(T) - 2). 

The last inequality follows from l(T) - 1 = ~i( l (Ti)  - 1) > 2 maxi_>2 l(Ti) - 2. 

COROLLARY 2.3: The construction just described has distortion O( lox/]~T)). 

2.3 THE FINAL CONSTRUCTION. The construction that  achieves the bound of 

Theorem 1.4 is a modification of the previous construction. Recall that  previously 

¢(e) was defined as w(e) times the unit vector gP~. In the modified version, ¢(e) 

will be w(e) times a weighted sum of unit vectors gP where P ranges over all 

paths in Ae. More specifically, we fix positive constants a0, al ,  a 2 , . . . ,  a s - 1  (to 
be specified later) and define 

ae --1 

¢(e) = w(e) E 
i = 0  

As before, the embedding ¢ is induced from ~b via (1). 

Note here that  if e and e' are in the same member of 5 o, then ~b(e)/w(e) = 
¢(e')/w(e'),  since Pi(b~) = Pi(be,). Consequently, the restriction of ¢ to any 

path  in 50 is indeed an isometry (times some constant). 

We proceed to bound the expansion of this map. Let a = (a0, al ,  a 2 , . . . ,  aa-1).  

LEMMA 2.4: expansion(C) < Ilal]2. 

Proof'. By Proposition 2.1, it suffices to find out the expansion of edges e. But  

5e- - I  5 - 1  

I1¢(e)il2 = w(e)( E a~) ½ < w(e)(~'-'a?~½ - , z _ , , ,  =wea2.()iiLi 
i=O i--=0 

Next we bound the shrinkage. 

LEMMA 2.5: shrinkage(C) < v~llbll2, where b is the (unique) vector satisfying 

J 
(2) V 0 < j < 5 ,  E a i b j - i = l "  

i = 0  
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We refer to the above condition as the convolution condition. 

Proof: Let W = Wi,j be the following 5 by 5 matrix:  

Wi j : { aj_i if j >_ i, 
' 0 otherwise, 

and let 

c ( w )  = sup{ rlxltl 
IlWxll2 : x e (R+) ~ "-{6}}.  

To prove Lemma 2.5 we first prove 

CLAIM 2.6: shrinkage(C) < v~C(W). 

Proof'. We first check the shrinkage of the distance between ;,--comparable ver- 

tices, say v and its descendant  v'.  The  supports  of bo th  ¢(v) and ¢(v ' )  are 

contained in Av,. Ignoring some zero coordinates, we view ¢(v ' )  - ¢(v) as a 

5-dimensional vector, where the coordinate corresponding to a pa th  P C A, ,  is 

enumerated  by the P ' t h  depth.  The remaining highest 5 - 5,, coordinates are 

zero. 

Let U (~''~) denote  the project ion onto Av,,~ (viewed as a linear t ransformat ion 

from ~ P  to R~).  

Now, let y and z be the vectors in R ~ defined by 

YJ= E we and z j =  E we. 
eETr(v,v r) e~Tr(v,v') 

~e=j ~e=j4-*hvr -~v l  v 

In words, for each pa th  P of depth  j in Av,,, , yj : w ( T r p ( v , v ' ) ) ,  and 5 is just  

ff when we shift the indexing of the coordinates by 5., - 5,,,v. 

By definition d(v',v) = ilffill = ]12111. Also, it is not  hard to see tha t  the 

nonzero coordinates  of ¢(v ~) - ¢(v) are the same as the nonzero coordinates of 

Wff and so l i e ( v )  - ¢ ( v ' ) l l =  - -  IIWy-]12. 

Similarly, the nonzero coordinates of U(~" ' ) (¢(v  ') - ¢(v)) are the same as the 

nonzero coordinates  of W Z  and so IIf(v',~')(C(v') - ¢(v))112 -- IIWz-ql2. 

Therefore 

d(v',v) d(v',v) Ilzl[1 

I I ¢ ( v ' )  - ¢(v)112 -< IIu(v',~)(¢(v') - ¢(~))1L2 IlWzll~ < c ( w ) .  

Note tha t  the above not  only shows d(v', v)/ll¢(v' ) -¢(v)112 < C(W) ,  but  also 

tha t  the inequality remains t rue even when we replace the denominator  by the 
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length of the projection of ¢(v') - ¢(v) on the coordinates in Av,,v. We will use 

this in proving the claim for a pair of >--incomparable vertices. 

Let v~,v '' be two >--incomparable vertices, and let v be their lowest (farthest 

from the root) common ancestor. 

Since the paths of 3 ° are monotone, the vectors U(V"v)(¢(v) - ¢(v')) and 

U(V"'~)(¢(v '') - ¢ (v ) )  have disjoint supports, and are therefore perpendicular. 

Now 

c ( w ) 2 ] l ¢ ( v  ') - ¢(v")ll~ 
I l I !  l l  

> c ( w ) 2 1 1 u  (~ , ' ) ( ¢ (v  ) - ¢ (v ) )  - u (~ ,~) (¢(v  ) - ¢(v))ilN 

= c ( w )  ~ ( l l g ( ~ " ~ ) ( ¢ ( v ' )  - ¢(v)) l l~  + ItU(°"'v)(¢(v") - ¢(~))11~) 

_> d2(v',v) +d2(v",v) 1J2,(v "'). 

Thus to prove Lemma 2.5 it suffices to show C(W) < I]bl]2, where b is the 

vector satisfying the convolution condition (2). Let us first note that  C(W) is 

the smallest C for which 

x t (WtW - 1 -~--~J)x > 0 holds for all x C (R+) ~ 

(where J is the all-1 matrix).  The matrix M = WtW is clearly positive definite 

(W is nonsingular), so the minimal C for which this condition holds is at most 

0 :~ ,  where/9 is the smallest positive number for which M -  0J  is singular. 

We thus proceed to consider the equation det (M - 0J) = 0. Let A and B be 

two n × n matrices, and let S be a subset of {1, 2 , . . . ,  n}. We denote by As(A , B) 
the n × n matrix whose i-th column is either the i-th column of A or the i-th 

column of B according to whether i ~ S or i E S. It  is easy to see that  

det(A + B) = ~ det(As(A,  B)). 
sc_{1,2,...,~} 

In the present case A = M and B = -OJ. Since B has rank 1, the only 

contribution in the sum is due to S such that  IS I _< 1, i.e., 

6 

de t (M - O J) = det M + Z det(A{ i} ( M , - O  J)). 
i = 1  

Recall Cramer ' s  rule, that  if Q is a square nonsingular matrix, and Qx = y, then 

xi = det Q(i)(y)/det Q, where Q(i)(y) is the matrix attained by replacing the 

i-th column of Q by y. 
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This implies tha t  det(A(i} (M, -OY))  is just  - 0 .  det M -  (M -1 l')i. 

Summing it all up, we conclude 

d e t ( M  - O J) = de t (M)  - 0 .  de t (M) • ltM-11 = de t (M)(1  - 0 .  ltM-11) 

and so 0 - - - -  ( l t M - 1 1 ) - I  is the only value for which M -  OJ is singular. It follows 

tha t  

. . M - - 1  

Now 

( E. . M-li,j ) ½ ~-- (ltM-11)½ = HI'tW-11]2" 

But  l tW- t  is just  the (unique) solution to the system 

btW = ~t. 

In other  words, b is the vector satisfying the convolution condition (2), as claimed. 

LEMMA 2.7: The vectors ak = bk = (2k)2-2k with k = 0 , 1 , . . . , 6 -  1 satisfy 
condition (2). k-hrthermore, Ilall~ = Ilbll~ = O((logS)½). 

Proof: Consider the generat ing function for the (infinite) series (ak), i.e., 

f(x) = ~-~, (2:)2-2kx k. 
k = 0  

But  f(x) = (1 - x ) - ½ ,  which can be viewed either as an identity in formal power 

series, or as the Taylor series of a real function in the range Ixl < 1. Thus  

f2(x) = (1 - x) -1 = ~ = 0  xi which means 

J 
Vj >_0 E a i b j - i = l  

~-~0 

and, in particular,  if we let a and b be the first 5 terms of the infinite series 

(~k)2-2k, then condit ion (2) will hold. Now, since 

= 

the l~ norm of a and b is O((log~)½). 



348 N. LINIAL, A. MAGEN AND M. E. SAKS Isr. J. Math. 

Proof of Theorem 1.4: Combining Lemmas 2.4, 2.5 and 2.7, we conclude that  

expansion(C) -= O((log (f)½) and shrinkage(C) -- O((log 6) ½), and so the distor- 

tion of ¢ is O(log (f) -- O(log log l(T)). 

Our mapping essentially reduces to Bourgain's embedding for complete binary 

trees [3]. In that  case, the members of ~ are the individual edges. Bourgain's 

construction uses ak --- k-½ which asymptotically is the same as the present 

choice. Bourgain's result, that  the distortion is only O(~/loglogl(T))  in this 

special case, may be attained by noting that the only vectors z that  arise in 

Claim 2.6 are vectors of l 's  followed by O's. 

How large can c~(T) get for n-vertex trees? The answer lies between v ~ g  log n 

(Bourgain's lower bound for complete binary trees) and our present log log n 

bound. We are still unable to close this gap. 
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Note added in proof: After the completion of this work, we were informed that  

J. Matousek has an unpublished result, which is a tight bound for this problem, 

namely that  C2(T) <: 0 ( ~ )  for every n-vertex tree T. 
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