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A global classi®cation of all currently known protein sequences is per-
formed. Every protein sequence is partitioned into segments of 50 amino
acid residues and a dynamic programming distance is calculated between
each pair of segments. This space of segments is initially embedded into
Euclidean space. The algorithm that we apply embeds every ®nite metric
space into Euclidean space so that (1) the dimension of the host space is
small, (2) the metric distortion is small. A novel self-organized, cross-vali-
dated clustering algorithm is then applied to the embedded space with
Euclidean distances. We monitor the validity of our clustering by ran-
domly splitting the data into two parts and performing an hierarchical
clustering algorithm independently on each part. At every level of the
hierarchy we cross-validate the clusters in one part with the clusters in
the other. The resulting hierarchical tree of clusters offers a new represen-
tation of protein sequences and families, which compares favorably with
the most updated classi®cations based on functional and structural data
about proteins. Some of the known families clustered into well distinct
clusters. Motifs and domains such as the zinc ®nger, EF hand, homeobox,
EGF-like and others are automatically correctly identi®ed, and relations
between protein families are revealed by examining the splits along the
tree. This clustering leads to a novel representation of protein families,
from which functional biological kinship of protein families can be
deduced, as demonstrated for the transporter family. Finally, we intro-
duce a new concise representation for complete proteins that is very use-
ful in presenting multiple alignments, and in searching for close relatives
in the database. The self-organization method presented is very general
and applies to any data with a consistent and computable measure of
similarity between data items.
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Introduction

Ongoing sequencing efforts have already uncov-
ered the sequence of over 50,000 proteins, and the
number is growing rapidly. These ®ndings are
complemented by many attempts to develop algo-
rithmic/computational tools to analyze and or-
ganize the data. There has been considerable
progress in the design of algorithms and software
for pairwise sequence comparisons (Smith &
Waterman, 1981; Lipman & Pearson, 1985;
Altschul et al., 1990). On a larger scale, tools have
been developed for comparisons that involve a
small number of sequences (Gribskov et al., 1987;
Taylor, 1990). Only a few computational studies
have considered all, or many, of the known se-
quences. These studies focus on (1) searching for

motifs, signature sequences and domains (Henikoff
& Henikoff, 1991; Sheridan & Venkataraghavan,
1992; Harris et al., 1992; Sonnhammer & Kahn,
1994; Han & Baker, 1995; Hanke et al., 1996), (2)
improving mutation matrices (Gonnet et al., 1992;
Henikoff & Henikoff, 1992), (3) automatic classi®-
cation of protein sequences into families (Wu et al.,
1992, Ferran et al., 1994), (4) extraction of similarity
relationships between protein sequences (van Heel
et al., 1991; Watanabe & Otsuka, 1995).

Due to our limited understanding of the global
organization of protein sequences, actual analyses
are currently restricted to local considerations,
based on pairwise ``distances'' among sequences.
A new sequence is analyzed by extrapolating the
properties of its ``neighbors''. From the perspective
of computational learning theory, this is a naive
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``nearest-neighbor classi®er`` approach to modeling
and to generalization from a model to new se-
quences (Cover & Hart, 1967).

We seek a globally consistent organization of the
sequences that would reveal relationships among
protein families and yield deeper insights into the
nature of newly discovered sequences. By incor-
porating several recent developments in the theory
of metric embedding, ef®cient graph algorithms,
and unsupervised learning we could, for the ®rst
time, deal with the universe of all protein se-
quences. Here, we present a novel, computation-
ally feasible method that yields a global model of
the universe of protein sequences, and generalizes
well to new sequences.

A metric derived from the Smith-Waterman
(SW) dynamic programming measure of similarity
(Smith & Waterman, 1981) turns the space of pro-
tein sequences into a ®nite metric space. Our re-
sults are based only on the metric properties of this
space, incorporating no further biological infor-
mation.

We begin by embedding the metric space in
hand into Euclidean space, using the embedding
algorithm described by Linial et al. (1995). Follow-
ing the steps of this algorithm, we select at ran-
dom, from the distribution de®ned in the above
algorithm, certain sets of segments. Then each seg-
ment is associated with a vector whose com-
ponents are the distances between the segment and
the chosen subsets (where the distance between a
segment and a subset is de®ned to be the mini-
mum distance from segments in the subset). This
representation maps the space of all segments to a
Euclidean space (the embedding space) with small
distortion (for more details, see Theory).

The embedded space is further analyzed and a
statistical clustering model of the sequences is con-
structed. A key aspect of this stage is that the
model's generalization power is closely monitored,
so as to avoid the common pitfall of over®tting the
noise of the original similarity measure. We moni-
tor the model's generalization power by splitting
the data into two random subsets and performing
an hierarchical clustering algorithm independently
on these two randomly chosen subsets of the data.
At each level of the hierarchy we cross-validate the
results by demanding that the clusters in the two
sets perfectly agree (as explained in the next sec-
tion). This clustering is hierarchical, and thus offers
additional insight into the large-scale organization
of the space of all protein sequences.

This clustering reveals signi®cant biological sig-
natures. Some families were clustered automati-
cally into a few very speci®c and distinct clusters.
Known motifs within proteins were automatically
identi®ed, and were clustered as well into distinct
clusters. This tree of clusters provides some in-

sights on relations between protein families, re-
lations that are suggested by examining the splits
along the tree. At a higher level of analysis we in-
troduce new tools for representing and analyzing
protein familes and their relations, as well as a
new concise representation for protein sequences
that is very effective in presenting multiple align-
ments for complex protein families, and can be
used in searching for close relatives.

In the next two sections we introduce the theor-
etical foundation of our work, and the results of
the clustering of all protein sequences, as well as
their biological signi®cance.

Theory

A suf®ciently large data set of proteins is an ob-
vious prerequisite for a meaningful globally con-
sistent organization of the sequences. The sheer
volume of data makes such an undertaking very
demanding in terms of computational complexity.
There are many further obstacles on the way to
self-organizing all protein sequences: (1) no ef®-
cient encoding is known for long sequences of
amino acid residues; (2) standard measures for
sequence similarity do not capture long-range fea-
tures; (3) it is dif®cult to evaluate the quality and
validity of models in this area, and in particular,
their power to predict, or generalize beyond the
available training data. Indeed, our results could
not be achieved without incorporating several re-
cent developments in the theory of metric embed-
ding, ef®cient graph algorithms, and unsupervised
learning.

Metric embedding

A metric derived from the Smith-Waterman
(SW) dynamic programming measure of similarity
(Smith & Waterman, 1981) turns the space of pro-
tein sequences into a ®nite metric space{. Our
underlying hypothesis is that the global structure
of this metric space encodes much relevant
information beyond what is revealed by local con-
siderations that involve only speci®c pairwise
comparisons.

A major tenet of this research is that in exploring
metric spaces, there is much to be gained if the me-
tric space under consideration is Euclidean. Con-
sider the problem, encountered by most clustering
methods, of selecting a typical representative of a
point set. While this problem has no satisfactory
general solution, in Euclidean spaces, the set's cen-
troid is an obvious choice. Other basic Euclidean
geometric constructs, such as directions are of
great help as well. In this view, we begin by em-
bedding the metric space in question into Eucli-
dean space. A recently developed algorithm (Linial
et al., 1995) yields embeddings where (1) distances
in the Euclidean space are in good agreement with
the original metric, and (2) the dimension of the
host space is relatively small.

{ While this measure may fail to satisfy the
triangle inequality, such failures occur with frequency
below 10ÿ7, and hardly affect our results.
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Defining the metric space

Distance measures among sequences that are
based on dynamic programming are overly sensi-
tive to differences in lengths among proteins.
Moreover, they may fail to account for multi-trait
phenomena in proteins, since they are derived
from local considerations. Therefore, we chose seg-
ments of 50 amino acid residues, and not complete
proteins, as our basic building blocks. Protein
sequences in SWISSPROT (Bairoch & Boeckman,
1992) release 30 (12/94), with fewer than 50 amino
acid residues were eliminated. Each of the 38,106
remaining longer sequences was divided into seg-
ments of 50 residues with a 50% or higher overlap
among consecutive segments, yielding a total of
544,000 segments. This partition into segments
maps most functional and structural domains into
one or two segments{, and the term segment
always refers here to one of the above.

All pairwise similarity scores between segments
were computed using Compugene's Bioccelerator
(Compugen, 1996), which performs the SW
dynamic programming algorithm (Smith &
Waterman, 1981), with the Blosum62 mutation
matrix (Henikoff & Henikoff 1992){. If s(u, v) is the
SW similarity score between the segments u, v,
then their distance is de®ned via d(u, v) � s(u, u)
� s(v, v) ÿ 2s(u, v).

Euclidean embedding

To explain the mathematical background of our
work, some de®nitions are in order ®rst. Consider
a ®nite metric space (X, d) where X has n points.
An embedding of X associates a vector f(x) with
every point x in X. The embedding f is said to have
distortion 4C, if for every two points x and y from
X:

C k f �x� ÿ f �y� k � d�x; y� � k f �x� ÿ f �y� k
A key result in the area of metric embedding was
found by Bourgain (1985). According to this re-
sults, every metric space (X, d) with n points can
be embedded in Euclidean space, so that the em-
bedding has distortion at most O(log n). These
ideas were further expanded by Linial et al. (1995),
where they developed an algorithm that ®nds, for
every such X, an embedding f into Euclidean
space. The two main features of this embedding
are: (1) the host Euclidean space is only O(log2 n)-
dimensional, (2) the distortion of f is only O(log n).

The description of the algorithm from Linial et al.
(1995) follows: we ®rst select uniformly at random
log2 n subsets of X. Speci®cally: log n subsets of
size 1, log n subsets of size 2, log n subsets of size
4, and so on, for every power of 2 until log n sub-
sets of size 2log(n) ÿ 1. Then, every element u from X
is associated with a real vector of log2 n coordi-
nates. Each of these coordinates corresponds to one
of these subsets. If u is an element, and S is one of
the randomly selected subsets, than the value of
the coordinate corresponding to S in the vector as-
sociated with u is d(u, S), where d(u, S) denotes the
minimum of d(u, v) over all elements v in S.

This algorithm is randomized, and makes certain
random choices. For any given X, almost all ran-
dom choices lead to an embedding with the above
features. In particular, the probability that the dis-
tortion exceeds log n is less than 1/n2. Moreover, if
in a certain run the algorithm happens to generate
an embedding with a worse distortion, then it may
be rerun and the new run will amost surely yield
an embedding with only a O(log n) distortion. For
a rigorous analysis of this embedding, see Linial
et al. (1995).

This Euclidean embedding algorithm was ap-
plied to the above metric space of all protein seg-
ments. Following the steps of this algorithm, we
selected at random certain sets of segments. These
sets are of varying sizes, as described above. As-
sociated with every segment u is, then, the log2 n-
dimensional vector (d(u, S)) with S ranging over all
randomly selected sets. The Euclidean embedding
of the collection of all segments maps every seg-
ment u to its corresponding log2 n-dimensional
vector.

Cross-validated hierarchical clustering

Data clustering has been the method of choice
for self-organizing point sets in Euclidean spaces
for many years (Duda & Hart, 1973). Yet only re-
cently has a clear distinction been made between
the two different roles of clustering. When concise
representation of data is sought (compression),
data should be clustered so as to minimize certain
global distortion measures, regardless of the actual
meaning and signi®cance of the cluster centroids
(this procedure is often called Vector Quantiza-
tion). In contrast, when clusters should serve as a
reliable model for generalization, great care should
be taken not to over®t the model to the random-
ness, noise and bias in sampling the training
points. It has been a major goal of computational
learning theory to provide conditions under which
good generalization can be derived from small
samples (e.g. see Kearns & Vazirani, 1994).

It is well known that over®tting to the training
data can be avoided via cross-validation, i.e. testing
the parameters of clusters against independent
validation data. Generalization in high-dimen-
sional spaces is a notoriously problematic task. A
major dif®culty is that representing an n-dimen-
sional object to a desired precision may require a

{ This choice of length is elaborated on in the
Discussion.
{ An alternative to the SW algorithm is the faster, but

less accurate edit distance metric. The two disagree at
about 20% of the cases, where SW yields improved
alignments (with gaps) and scores that differ by factors
up to 2. Fortunately, Compugene's Bioccelerator
hardware (Compugen, 1996) made the SW algorithm
computationally feasible.
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sample set of size exponential in n (``the curse of
dimensionality''). It is important to understand
that the drastic reduction in dimensions achieved
by the embedding algorithm does not automati-
cally guarantee the ability to properly generalize:
while our embedding algorithm maintains, with
small distortion, the distances among datum
points, nothing is proven so far about other points
from the original, high-dimensional distribution. In
other words, there is no guarantee that the whole
distribution is smoothly embedded in the lower-
dimensional space. This would follow only from
stronger assumptions on the sample set.

The validity of our clustering is thus monitored
by splitting the data into two random subsets and
the requirement that the clusters in the two sets
perfectly agree at every level of the cluster hierar-
chy. By Vapnik's theory (Vapnik, 1982), this perfect
correspondence between two independent samples
implies a tight upper bound on the probability that
these two independent cluster sets disagree on the
classi®cation of new independent points. Likewise,
a bound is obtained on the generalization error of
the model. Similar techniques were used by Pereira
et al. (1993) for distributional clustering of English
words, and for other studies in statistical model-
ing.

Our clustering approach resembles the familiar
hierarchical vector quantization (VQ) algorithm
(Gray et al., 1980; Gray, 1984): each datum point is
associated with the nearest centroid, and then the
centroids are re-estimated to minimize the distor-
tion within each cluster. This process is repeated
until convergence to a (usually local) minimum of
the distortion. To reduce the dependency on initial
conditions, the process begins with a single cluster.
Subsequently, at each iteration, the cluster of high-
est aspect ratio is split{.

The model's generalization power is monitored
by performing the algorithm on two randomly
chose subsets of the data and by aborting every
split on which the two processes ``disagree''{ . This
criterion is clearly very strict, and more relaxed cri-
teria for the matching are examined as well.

This clustering protocol is computationally inten-
sive and was performed using the MOSIX distribu-
ted system (Barak et al., 1995).

Results

The above algorithms were applied to the space
of 544,000 segments derived from those 38,106 pro-
teins of the SWISSPROT databank, with 50 amino
acid residues or more. The whole computational
process was fully automatic, without any human
interventions or biological consideration. On ter-
mination, when the cross-validation criteria al-
lowed no further splitting, the process yielded a
tree of 106 clusters. We feel safe to say that this
constitutes a genuine ``self-organization'' of all
those protein segments. All the biochemical, evol-
utionary and functional background that is used in
this procedure is reduced to the de®nition of the
SW (Smith & Waterman, 1981) measure of simi-
larity.

In order to evaluate the quality of this clustering,
we made various comparisons with a known par-
tial classi®cation of proteins, namely the protein
families in PROSITE (release 12.1 October 1994
(Bairoch, 1993). This list of about 700 groups of
related proteins comprises 46% of the proteins in
the databank}. Henceforth, a ``family'' of proteins
always refers to a class on this list and the nomen-
clature of PROSITE is adopted.

We will start by evaluating the hierarchical tree
in terms of the family composition within the clus-
ters. We will focus on several clusters that match
interesting motifs, or suggest the existence of bio-
logical features common to different families. In
the second part, we will incorporate the data ob-
tained from the distribution of protein segments
among the 106 clusters to create a new represen-
tation of families (referred to as ®ngerprints),
which induces quantitative indices of similarity be-
tween protein families. In the last part, we will in-
troduce a new method for representing full-length
proteins, based on the order of segments within a
protein, and the clusters into which these segments
were classi®ed. Thus, by incorporating the detailed
information from our clustering, a natural measure
of similarity emerges for complete proteins as well.
Moreover, this new representation is highly effec-
tive in visualization of domains shared by a group
of related proteins. The three levels of analysis rely
on the initial tree created by our algorithms, using
the properties of the tree such as the relative
position of a cluster in the tree, size of clusters,
geomtry of a cluster, and the Euclidean distance
between the centroids of the clusters.

Clusters of protein sequences

The tree of 106 clusters, generated by the hier-
archical clustering algorithm, is shown in Figure 1.
Inspection of the tree shows that while most clus-
ters were generated by a series of splits, corre-
sponding to a deeper level in the hierarchical tree,

{ Singular value decomposition (SVD; Press et al.,
1988) is applied to the covariance matrix of each current
cluster. The cluster of largest SVD principal component
gets split along the corresponding direction.
{ Agreement entails a one-to-one correspondence

between clusters of the ®rst set and those of the second
set, where corresponding clusters have (1) nearly equal
sizes, (2) nearly identical centroids, and (3) similar
singular value decompositions. A split that fails these
criteria gets aborted, and a split is performed on the
cluster of the next-longest principal axis. The process
terminates when all attempted splits get aborted.
} Although the PROSITE catalog is the most extensive

classi®cation of proteins in the SWISSPROT Data Bank,
it should be noted that the number of functionally or
structurally de®ned families in PROSITE is actually
smaller, since some PROSITE patterns match motifs
such as glycosylation sites, subcellular localization
signals, etc.
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a substantial number of clusters were created and
stabilized already after a few splits. The most ex-
treme example is in the case of globins, which com-
prise clusters 8 to 13, 81 to 84, 104 and 105. All
evolved very early during the clustering process.

Figure 2 offers a general view of the clusters'
complexity and the distribution of data among the
clusters. A cluster's complexity is measured by the
number of PROSITE families that contribute at
least one segment to it. About 56% of our clusters
correspond to a single family and another 12% of
the clusters are still of low complexity, with up to
20 families per cluster. At the high-complexity end,
over 200 families appear in 22% of the clusters. On
the other hand, the vast majority (90%) of the seg-
ments belong to highly complex clusters (over 200
families/cluster). Therefore, while most clusters are
small and have low complexity, they comprise

only a small fraction of the data. Several large clus-
ters may need further splitting (see Discussion).
However, despite their complex nature, some of
the large clusters are very informative (see below).

Table 1 provides a closer view of the clusters, in-
cluding their size and family composition. Many
conserved familes get classi®ed into a few distinct,
low-complexity clusters. Such families include glo-
bins (clusters 8 to 13, 81 to 84, 104 and 105), ribo-
nucleotide reductases (rubisco_large, clusters 14-15,
24 to 34, 76 to 80), immunoglobulins (ig_mhc, clus-
ters 20 to 23, 65 to 74), actins (clusters 54 to 57, 62
to 64, 75 and 99) and tubulins (clusters 16 to 19, 48
to 51). Certain families have almost all their
segments classi®ed to low-complexity clusters. For
example, 98% of the actin segments and 96% of the
rubisco_large segments fell into such clusters.
Other families, such as metallothionein, kazal

Figure 1. Hierarchical clustering of protein segments. Only major splits are shown, with the appropriate cluster num-
bers 1 to 106. Certain clusters, e.g. 8 to 13 are created already early in the process, but most clusters correspond to
deeper, more involved series of splits. Some of the conserved families that split from the rest at early stages are
shown. Subclassi®cation within family (e.g. hemoglobin alpha chain, hemoglobin beta chain, myoglobin, etc.) is not
indicated.
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serine protease inhibitor (kazal), and phospho-
lipase a2 (pa2_asp) have all, or almost all, their
segments in only one or two clusters. These cluster-
ing patterns illustrate that our method is sensitive
as well as selective.

Some of the families are composed of different
subfamilies. In most cases our clustering method
distinguishes between these subfamilies. For
example, hemoglobin alpha chains were clustered
to clusters 9, 10, 11, 81, 82 and 83, while hemo-
globin beta chains were clustered to clusters 8, 13,
84, 104 and 105, and myoglobins to clusters 39 and
50. For clarity, we refer to all of these as globins.
Such subclassi®cation was resolved for other
families as well. In the frame of this work we will
not pursue this issue further.

Note that the number of segments in a cluster
may differ from the number of proteins from
which they are derived. A high ratio between these
two parameters re¯ects the existence of repeats, or
redundancy, in these proteins. For example, in
cluster 35 this redundancy ratio is about 5.5. All
the proteins that have segments in this cluster are
classi®ed as zinc ®nger proteins. This high ratio re-
sults from four to eight repetitions of the signature
speci®c to zinc ®nger domains, all of which were
clustered into cluster 35 (see below). Another
example is cluster 88, where the segments to pro-
teins ratio is even higher, about 13. Though only
15% of the proteins within these clusters have a
PROSITE classi®cation, all of those segments are
repeated domains of structural proteins (mostly
collagens).

It should be emphasized that the process that
created the tree of 106 clusters (Figure 1 and
Table 1) is fully automatic, and no biological con-
sideration was made. Yet, the global organization
reveals many clusters that correspond to signi®cant
biological patterns.

Amino acid composition

The amino acid distribution was calculated for
each of the 106 clusters. In certain clusters, the
amino acid distribution hardly differs from their
distribution over the whole data bank, while other
clusters show marked variations. Both cases are
observed in large as well as in small clusters
(Figure 3(a) and (b), respectively). Certain pairs of
clusters have similar amino acid distributions,
although they represent distinct protein families
(not shown). Likewise, differences in the distri-
bution of amino acids account for certain clusters,
but certainly not for all of them. Consequently, this
distribution alone does not necessarily determine
biological properties. Only a few clusters exhibit
degenerate amino acid distributions. For example,
in clusters 87 and 88 glycine and proline are rela-
tively prevalent while all other amino acids are
underrepresented (Figure 3(c)), re¯ecting the de-
generacy of the proteins from which the relevant
segments are derived (Wootton, 1994).

Motifs and domains

Some clusters exclusively match well-de®ned
motifs within proteins. That is, segments that cor-
respond to a speci®c biological pattern were
grouped together to form a well-separated and
distinct cluster. Two speci®c examples are the zinc
®nger motif and the homeobox domain.

The zinc finger motif

The zinc ®nger motif is found in many DNA-
binding proteins (like transcription factors) in
which the zinc ®nger is the DNA-binding domain,
but also in certain proteins in which the role of the
zinc ®nger is unknown (see Cukierman et al.
(1995)). These proteins are characterized by 2 to 30
®nger-like sub-structures, each centered around a
zinc ion. Each ®nger is about 30 residues long,
with only a few highly conserved amino acids
within it.

Cluster 35 corresponds to this motif. All the seg-
ments classi®ed to it belong to proteins from the
zinc_®nger_c2h2 family (one of the two major zinc
®nger families). Moreover, these segments are ex-
actly the segments that contain the zinc ®nger pat-
tern (as de®ned by PROSITE), thus corresponding
to the zinc ®nger motifs in each protein
(Figure 4(a)).

Figure 2. Distribution of clusters according to their
complexity and distribution of data. Filled bars show
the distribution of clusters by the number of families
represented in them (``cluster complexity''). Open bars
show the distribution of segments according to the com-
plexity of the clusters containing them. For example, the
left open bar indicates that about 2.5% of the segments
are in clusters that represent only one family.
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The homeobox domain

The homeobox domain is a 60 amino acid resi-
due polypeptide sequence, found in nuclear, DNA-
binding proteins. This domain binds DNA through
a helix-turn-helix structure. Proteins that contain
the homeobox domain are likely to act as regula-

tors of transcription. Cluster 41 in our classi®cation
matches this domain. Out of 304 proteins in the
homeobox family, 194 are represented in this clus-
ter. Note that the segments within this cluster are
exactly those that contain the homeobox signature
(Figure 4(b)). The motif was extracted from the
complete proteins without any a priori information.

Table 1. Detailed description of clusters

Cluster
no.

No. of
segments

No. of
proteins

No. of proteins
with PROSITE

label
No. of

families Main families (PROSITE)

1 5206 3419 1993 249
2 67538 21897 9430 637
3 55403 19560 8398 613
4 38109 15286 6535 558
5 5935 2827 1217 202
6 19364 9256 4046 438
7 74082 23147 9999 650
8±13 915 464 464 1 Globin
14±15 380 198 198 1 Rubisco_Large
16±19 609 154 150 1 Tubulin
20±23 600 155 155 1 Ig_Mhc
24±34 2375 223 222 1 Rubisco_Large
35 895 167 159 1 Zinc_Finger_C2h2
36 129 67 67 1 Kazal
37 189 97 96 1 Cytochrome_C
38 337 209 203 3 Snake_Toxin, Tubulin, Metallothionein
39 369 151 150 2 Cytochrome_C, Globin
40 269 121 119 1 Cytochrome_B_Heme
41 780 361 194 2 Homeobox
42 3047 2006 1299 134
43 4119 2869 155 243
44 3838 2508 1288 193
45 4824 3289 1953 261
46 4104 2769 1746 167
47 4415 3179 1734 252
48 538 291 208 4 Tubulin, Insulin, Hsp20, Sasp_1
49 466 242 211 3 Gapdh, Cyto_B_Heme, Cooper_Blue
50 1202 611 356 10 Tubulin, Globin, Cyto_B_Heme, Rnase_Pancreatic
51 1170 617 345 8 Tubulin, 2fe2s_Ferredoxin, Histones, Globin
52 2380 1344 936 30
53 10830 5336 2529 345
54±56 500 103 103 1 Actin
57 230 126 125 2 Actin, Ribosomal_S12
58 4739 3192 1592 238
59 3278 2629 1197 216
60 3364 2434 1393 186
61 3285 2415 1498 167
62 172 101 100 1 Actin
63 155 128 127 2 Actin, Histones_H3_2
64 208 105 103 1 Actin
65±74 1479 156 156 1 Ig_Mhc
75 201 102 102 1 Actin
76±80 1104 247 222 1 Rubisco_Large
81±84 866 445 445 1 Globin
82 205 205 205 1
83 228 228 228 1
84 217 217 217 1
85 57893 20694 9231 637
86 34771 14752 6685 581
87 497 106 16 7 Collagens
88 1363 103 16 3 Collagens, C_Type_Lectin
89 4908 3497 2048 243
90 301 105 105 1 Pa2_Asp
91 2325 1373 899 64
92 4124 2814 1502 189
93 3592 2486 1451 185
94 4517 3048 1691 238
95 3498 2328 1260 203
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Clusters that match heterogeneous
biological signatures

Some clusters represent biological signatures
that are more heterogeneous but still very distinc-
tive. These clusters are of medium size (1000 to
6000 segments) and medium complexity (about 10
to 200 families represented in each cluster). Some
of them suggest a possible relation between the
contributing families. In other instances, a ®ner res-
olution might be attained through further splitting.
Two such examples are cluster 52 and cluster 5,
each of which predominantly represents one
known family.

Cluster 52; the EF hand motif and its relatives

There are 2380 segments in cluster 52, originat-
ing from 30 different families. Despite this rela-
tively large number of families, the amino acid
composition in this cluster deviates from the over-
all values (Figure 5(a)). Predominant in this cluster
is the family of proteins containing the EF hand
motif. The EF hand is a short domain of about 30
amino acid residues that coordinates calcium ions.
The motif is present in parvalbumin, calmodulin,
troponin-c and others, all of which are involved
in Ca2� signaling, thus regulating cellular activities.
These proteins often carry several EF domains.
Segments that correspond to these domains are
classi®ed to cluster 52 (see Figure 5(b)). In such do-
mains, glutamic and aspartic acids prevail (they
participate in coordinating the calcium ions) and
indeed these amino acids occur in cluster 52 above
the average (Figure 5(a)). In addition, the fre-
quency of amino acids that are absent from classi-
cal EF hands, such as proline and cysteine, is low.

Cluster 5; the EGF domain

Cluster 5 has about 6000 segments, which come
from over 200 families. It has a distinct amino
acids distribution (Figure 6(a)), where the represen-
tation of hydrophobic amino acids is low and histi-
dine, proline, tryptophan and cysteine abound. Of
1217 proteins that are classi®ed by PROSITE and
contribute to this cluster, 8% are EGF-like proteins.
However, these proteins contribute more than 30%
of the corresponding segments, and are thus the
predominant family. The EGF (epidermal growth
factor) domain is a small polypeptide chain of 53
amino acid residues. The EGF domain includes six
cysteine residues, which have been shown (in EGF)
to be involved in disul®de bonds. This amino acid
is highly abundant in this cluster (over three times
the overall frequency, see Figure 6(a)). In proteins
containing an EGF-like domain, only the EGF-like
domains are classi®ed to cluster 5, yet, each protein
contributes about ten segments on average, in ac-
cord with the repeated nature of this domain (see
Figure 6(b)).

Other families that are represented in this cluster
are protein kinase, c-type lectin, homeobox, chitin
binding, kringle, wnt1, and more. In most of them
cysteine abounds and is involved in disul®de
bonds. On the other hand, families of proteins rich
in cysteine are not necessarily classi®ed to this
cluster, e.g. kazal proteases, snake toxins, etc. (for
details see Table 1).

Kinship of protein families as inferred from the
clustering tree

Further information can be extracted from the
tree of 106 clusters, by examining the splits as they

Table 1ÐContinued

Cluster
no.

No. of
segments

No. of
proteins

No. of proteins
with PROSITE

label
No. of
familes Main families (PROSITE)

96 3908 2735 1621 205
97 205 101 85 1 Cytochrome B_Heme
98 140 61 53 1 Lactalbumin_Lysozyme
99 513 423 278 9 Actin, Cox2, Cyto_B_Heme, Chaperonins_Cpn10
100 3984 2758 1541 216
101 3305 2287 1236 199
102 2357 1537 985 109
103 4530 2963 1779 244
104±105 453 230 230 1 Globin
106 72461 23270 10250 652

Each cluster is speci®ed by its number (®rst column), the number of segments within it (second column) and the number of distinct
proteins from which these segments originate (third column). The other three columns (partially) characterize clusters in terms of the
PROSITE classi®cation of the proteins. The fourth column gives the number of proteins that have a PROSITE label. The complexity
of the cluster, i.e. the number of families that contribute these proteins, and major representative families are in columns 5 and 6,
respectively. Notes: (1) A protein that contributes a segment to some cluster is considered a ``member'' in this cluster. (2) A ``family''
of proteins is always one of the classes in the PROSITE list, and the PROSITE nomenclature is adhered to. Only 46% of the proteins
are classi®ed in PROSITE. Multi-trait behaviors of proteins are not accounted for. For family de®nition and biological signi®cance,
refer to the PROSITE dictionary. (3) Where consecutive clusters represent only one and the same family, these are presented in a
single record. (4) The number of segments in a cluster may differ from the number of proteins from which they are derived. A high
ratio between these two parameters re¯ects the existence of repeats, or redundancy, in these proteins (see clusters 35 and 88). (5)
Some families have almost all their segments in well-characterized, low-complexity clusters. Families with over 50% of their seg-
ments found in low-complexity clusters are underlined. (6) Subdivision within families was resolved but is not indicated.
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occur along the tree. As clusters that split from the
same root cluster may be biologically related, un-
known relations between families may be revealed
by examining the ``evolutionary'' process in the
®nal tree. Likewise, clusters that represent a small
number of families may hint at a connection be-
tween the families that they represent (e.g. clusters
48 to 51, 99 and more). We focus on only two clus-
ter groups. Yet, other possible connections ex-
tracted from the junctions in the tree are open to
interpretations, and may require further exper-
imental data.

Cytochromes and globins

Clusters 39 and 40 (together with cluster 41)
split from their ancestor cluster quite late in our
clustering process (Figure 1). Cluster 40 totally
matches the cytochrome b/b6 family (cytochrome
_b_heme), while cluster 39 is composed of cyto-
chrome c (45% of the segments) and globins (54.5%
of the segments), mostly myoglobins. Obviously,
cytochromes of the two types are related, but the
connection between globins and cytochromes
is more interesting and suggests an intrinsic
link. Indeed, an evolutionary relation between
globins and cytochromes was recently proposed
(Hardison, 1996).

Metal and DNA-binding proteins

Clusters 39 and 40 are only part of a more com-
plex structure. Figure 1 and Table 1 suggest an in-
teresting and complex relation that ties clusters 35
to 41. The most common feature is that almost all
families represented in those clusters bind metal
ions (zinc ®nger, cytochrome c, metallothionein,
cytochrome b/b6 and globins), or heme (cyto-
chrome b/b6, globins) or DNA (homeobox, zinc
®nger). These families differ in their biological role
(enzymes, transcription factors, etc.). Some of them
use cysteine to stabilize their 3-D structure, e.g.
zinc ®nger, snake toxins and kazal proteases. The
high frequency of cysteine in those families is re-
¯ected in the amino acid composition of these clus-
ters, but does not account for all of them (compare
Figure 7(a), (b) and (d) with (c). Note that other
clusters that are rich in cysteine (e.g. cluster 5,
Figure 6(a)) are not part of this super-structure.
Thus, no simple relation of amino acids compo-
sition ties all these clusters together. Rather, the

Figure 3. Amino acid distribution in selected clusters.
Amino acids are marked by the single-letter code, and
are grouped into biochemically related groups, separ-
ated by broken vertical lines. From left to right: amino
acid residues that are basic (K,R,H), acidic (E,D), polar
and uncharged(Q,N), small (S,T,A,G), proline (P), non-
polar hydrophobic (M,I,L,V), aromatic (F,W,Y), and
cysteine (C). The variance in frequency is quanti®ed as
the logarithm of the frequency of a given amino acid
within a cluster divided by its frequency throughout the
entire databank (no difference between the expected
value and the observed yields zero on this logarithmic
scale). (a) Many of the clusters display a unique amino
acid distribution. One example is cluster 53 with 10,830
segments. It is relatively rich in glutamine (Q), glutamic
acid (E) and alanine (A) and is underrepresented in all
aromatic residues (F,W,Y), histidine (H), proline (P) and
cysteine (C). (b) Some other clusters show a smooth dis-
tribution close to the overall amino acid distribution.

This is, for example, the case with cluster 51, even
though it has only 1170 segments and represents only a
small number of families. Note that the cluster size does
not indicate the amino acid distribution pro®le (compare
(a) and (b)). (c) Few of the clusters (e.g. cluster 87) con-
sist of segments with very low compositional complex-
ity (predominantly G and P). Most segments in this
cluster are part of proteins that play a structural role
(see Table 1) and have numerous repetitions.
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connection is complex and leaves some open ques-
tions.

``Fingerprints'' of biological families based on
cluster membership

It is not easy to characterize biological families,
say by a single consensus sequence or pattern.
Consequently, most families are very diverse and
populate many of our clusters. Therefore, the
nature of a family cannot be deduced by inspection
of a speci®c cluster. However, the distribution of
segments from proteins in a family among the var-
ious clusters is more revealing. This broader view
leads to an interesting novel representation of
families, that distinguishes well different families.
For example, families such as globin and gapdh
(glyceraldehyde-3-phosphate dehydrogenase) exhi-
bit a complex, yet well-de®ned distribution over
clusters (Figure 8(a) and (b)). The distribution of
segments from a family among clusters can be
viewed as a ®ngerprint of the family. The statistical
signi®cance of this representation is guaranteed,
again, by the cross-validation in the clustering pro-
cedure. Thus, not only membership in small clus-
ters is informative. Membership in large and
complex clusters may play a signi®cant role in
characterizing biological families.

Fingerprints of protein families allow quantitat-
ive comparisons among families: pick any distance
measure among probability distributions, e.g. KL-
divergence (Cover & Thomas, 1991) or variational

distance. The similarity between two protein
families is quanti®ed by the distance of their
®ngerprints. In this way we can ®nd, for each
family, its proximal families.

It should be noted that the kinship of protein
families, which is directly inferred from the tree
structure (as was suggested for the globins and the
cytochromes in the last section), is based on a local
common motif, while the new representation
re¯ects a global nature of all domains within a
family, and suggests a more thorough kind of simi-
larity, which projects to the biological function of
the family.

The power of this method is demonstrated on
several families of membrane proteins and trans-
porters, whose mutual distances turn out to be the
smallest (Figure 9). The four families (three trans-
porter subfamilies, and a family of membrane
proteins) share almost the same ®ngerprint, an evi-
dence for the close biological function they all
serve. Other transporters (e.g. antiporters{) and ion
channels (e.g. neurotransmitter-gated ion-channels)
resemble the ®ngerprints of the four families men-
tioned above to varying degrees. Thus, a connec-
tion is established among superfamilies within
many of the membranous proteins. Fingerprints
can be further analyzed by considering subfamilies
and their ®ngerprints, as well as by inspecting
superfamilies (unpublished results).

Higher-level measures of similarity
between sequences

Fingerprints capture the distribution of segments
in a family among the different clusters, but fail to
account for the order of segments within proteins.
Signi®cant information can be extracted for full-
length proteins as well, by mapping each protein

Figure 4. (a) The zinc ®nger motif.
Cluster 35 matches the zinc ®nger
domain. All segments in this clus-
ter are part of proteins that are
classi®ed as zinc_®nger_c2h2
according to PROSITE. Moreover,
these segments match exactly the
zinc ®nger domains in each such
protein. Out of 241 proteins in this
family, 159 contribute at least one
segment to this cluster. One such
example is sw:zkr1_chick (509
amino acid residues). In the rep-
resentation, the zinc ®nger domains
are denoted by ®lled boxes. The
segment boundaries are indicated
below. The number near each seg-
ment is the number of the cluster
to which this segment was classi-
®ed. The ten zinc ®ngers in this

protein are divided roughly into two blocks. Note that only the zinc ®nger domains are classi®ed to cluster 35
(circled). Part of the second block was classi®ed to cluster 91, which is also rich with zinc ®nger proteins. (b) The
homeobox domain. Cluster 41 matches the homeobox domain. Most segments classi®ed to this cluster correspond to
the homeobox domain in 193 different proteins. One of them is sw:hxd3_human (416 amino acid residues). Cluster 41
contains exclusively the homeobox signature (marked in black).

{ This family is not part of PROSITE list: 30 proteins
in SWISSPROT that are de®ned as antiporters were
grouped, and the corresponding ®ngerprint was created,
based on the distribution of the proteins' segments
among the clusters.
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to the sequence of clusters in to which its segments
fall. In other words, every protein is encoded by a
``word'' over an alphabet of 106 ``characters'' (the
clusters). A natural similarity measure on full-
length proteins emerges. Namely, apply dynamic
programming, where the similarity score between
characters depends only on the distance among the

clusters' centroids and the clusters' sizes{. Penalties
for gaps are high, since even a single omission en-
tails a gap of 25 amino acid residues. We denote
this new way of comparison between complete
proteins as BMR, ``best matching route''.

A multiple alignment of the different members
of the acetylcholine receptor (AChR) family using
this representation is shown in Figure 10. An
examination of the string of clusters' numbers
already shows a subdivision within the acetyl-
choline receptors, dividing alpha, beta, delta, epsi-
lon and gamma subunits into small related groups.

Figure 5. (a) Amino acid distribution in cluster 52.
Acidic amino acid residues (E and D) are more frequent
than their average frequency over all the database,
while N, P, W and C are underrepresented. For details
on the representation see Figure 3. (b) Cluster 52, the EF
hand domain. The predominant family in cluster 52 is
the family of proteins containing the EF hand motif. The
motif is present in parvalbumin, calmodulin and tropo-
nin-c (one protein is shown from each subfamily). These
proteins often carry several EF domains (denoted by
®lled boxes). Note that all the segments that correspond
to these domains are classi®ed to this cluster. For details
on the representation, see Figure 4.

Figure 6. (a) Amino-acids' distribution in cluster 5.
Despite the large size of this cluster (5935 segments) and
its high complexity (over 200 families), it shows a
unique amino acid distribution, with prevalent cysteine,
histidine, tryptophan, proline and glycine. All these resi-
dues impose major structural features. All hydrophobic
amino acids are underrepresented. For details on the
representation, see Figure 3. (b) Cluster 5, the EGF motif
and related patterns. Cluster 5 is rich with proteins con-
taining the EGF-like domain. One such example is
sw:lmg1_mouse±laminin gamma-1 chain precursor
(laminin b2 chain). Laminin is a complex glycoprotein,
consisting of three different polypeptide chains, which
are bound to each other by disul®de bonds into a cross-
shaped molecule. The protein contains EFG-like
domains, denoted by the ®lled boxes. Each box matches
several tandem repeats. Note that all the segments
classi®ed to cluster 5 correspond to the EGF domain.
Four segments were classi®ed to cluster 6 (which is the
closest cluster to cluster 5). This is due to the fact that
some of the EGF repeats are less conserved, and may
exhibit a slightly different composition (see PROSITE
documentation on the EGF-like motif ). For details on
the representation, see Figure 4.

{ The charge for switching from cluster i to cluster j is
taken as c log(p(i)p( j)) � d(i, j). Here p(i) and p( j) are the
clusters' relative sizes, and d(i, j) is their Euclidean
distance. The constant c is optimized for best
performance. This measure accounts for the difference
in clusters' sizes and the fact that the presence of a
small cluster in the clusters' sequence is more signi®cant
than the presence of a large cluster.
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While few of the segments are common to all sub-
units, most of them are common to subsets of
these different subunits. Note that while the visual-
ization of the multiple alignment of the complete
proteins is not practical in this case (the average
length of proteins in this family is 500 amino acid
residues), and lacks the clarity needed to under-
stand the complicated connections that reside
between the different subunits, this new represen-
tation of complete proteins reduces signi®cantly
the details, while maintaining the important infor-
mation within. The BMR algorithm can be applied
to generate a quantitative measure of similarity
among the AChR subfamilies (unpublished re-
sults).

Figure 7. Clusters 35 to 38. These four clusters have a
common ancestor in the hierarchical tree (Figure 1). The
four clusters are closely related despite the large differ-
ences in their amino acid distribution. For details on the
representation, see Figure 3.

Figure 8. The representation of several biological
families by their ®ngerprints. Every biological family is
®tted with the distribution of segments of proteins from
the family among the clusters, thus obtaining a new rep-
resentation of the family (®ngerprints). The relative fre-
quency of a cluster is de®ned as the number of
segments within the family classi®ed to this cluster,
divided by the total number of segments within the
family. (a) and (b) Globins and gapdh (glyceraldehyde-
3-phosphate dehydrogenase) are two well-studied
families with 666(3434) and 103(1332) proteins(seg-
ments), respectively. The characteristic and complex ®n-
gerprints of each of these families is shown in (a) and
(b), respectively.
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While it is obvious that this representation main-
tains the original nature of full-length proteins, and
may be used towards a more re®ned classi®cation
of families (Figure 10), it is intriguing to ®nd out
whether it reveals other interesting features of pro-
teins. We tested this new method on full-length
proteins in comparison with the SW algorithm
(Table 2). We translated all proteins in the database
into sequences of characters in the alphabet of 106
characters and compared each protein against the
database, using the BMR algorithm, in search of re-
lated proteins. The quality of performance was esti-
mated by taking a single member from each family
in PROSITE, comparing it against all the database,
and identifying its related proteins in the family.
Identi®cation was based on the following
``equivalence number'' identi®cation criterion
(Pearson, 1995): de®ne the cutoff score as the
similarity score that balances the number of re-
lated sequences below it and the number of un-
related sequences with score above it (i.e. the
score where the number of false positives equals
the number of false negatives). Only proteins
with score at or above the cutoff score are con-
sidered as identi®ed. The results were compared
against the SW algorithm with the blosum62
scoring matrix and values ÿ10, ÿ 1 for gap pe-
nalties, currently considered the best method
known (Pearson, 1995).

Already with the BMR's simplistic approach, it
competed successfully with SW on about 80
families of varying sizes (see Table 2). The per-
formance of the BMR method is superior for fa-
milies that are well characterized in terms of
structure or function, since these families fall into
small clusters that receive a high score (see the
footnote to page 549). The BMR method and its
biological consequence will be described in more
detail elsewhere.

Figure 9. Families with similar clustering pro®les (®n-
gerprints). ABC transporter (179 proteins, 3898 seg-
ments), prokaryotic lipoprotein (131 proteins, 1311

segments), binding protein-dependent transporter of the
inner membrane (60 proteins, 665 segments) and the
bacterial sugar transporter (57 proteins, 1132 segments),
all have similar (but non-identical) clustering pro®les in
(a) to (d), respectively. Their mutual distances are very
small. All the transporters are proteins with multiple
membrane-spanning domains. Prokaryotic lipoprotein
consists of proteins with a membrane-attached domain.
Note that many of the clusters that prevail in the distri-
butions of these four families (clusters 2, 7, 85, 86 and
106) are very large (see Table 1). So, while membership
in individual clusters is not very informative in this
case, the complete ®ngerprint does provide a very use-
ful characterization common to these families, which
distinguishes them from the rest. Additional families of
membranous proteins, including neurotransmitter-gated
ion-channels and G-protein receptors have ®ngerprints
that resemble, to varying degrees, the ®ngerprints
shown in (a) to (d).
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Discussion

We present a novel method for self-organizing
complex data and demonstrate its performance by
globally organizing all known proteins. Our meth-
od employs the current best sequence comparison
algorithm, namely, SW dynamic programming
with the blosum62 similarity matrix and the
matching parameters for penalizing sequence gaps
(Pearson, 1995). Evaluations of this algorithm on
full-length proteins showed excessive dependence
on protein lengths. Furthermore, this algorithm
usually fails to detect multi-trait features in pro-
teins. Consequently, we chose to normalize the
lengths, and computed this metric on segments of
50 amino acid residues (see the footnote to page
540 for reservations). This choice of fragment
length is made according to the length of patterns
in the PROSITE classi®cation, most of which are
between 5 and 40 amino acid residues long. The
choice of 50-mer fragments is consistent with struc-
tural features in proteins, since many folds consist
of 20 to 80 amino acid residues. Still, performing
our procedure at other segment lengths may yield
different granularity and eventually new interest-
ing insights on other classes of proteins.

Our procedure allows, for the ®rst time, a full-
scale comparison of nearly 40,000 proteins. Note
that the only biological information utilized by our
method comes in the form of a reliable and com-

putable local metric. Given the pairwise distances
among protein segments, all segments are carefully
clustered into statistically signi®cant families.

Our approach has to overcome two major ob-
stacles: (1) the data are inherently high-dimen-
sional; (2) it is hard to organize it accordingly to a
provably valid model. We deal with the ®rst issue
by using a novel geometric embedding of the
segments in a lower-dimensional Euclidean space,
with small distortion. The second problem is
handled through a careful cross-validated hierarch-
ical clustering of the segments in this lower-dimen-
sional space.

So far, our work has yielded a classi®cation into
only 106 classes (Figure 1, Table 1). Yet, even with
this small number of 106 clusters we found many
signi®cant biological signatures. Some known fa-
milies of proteins were clustered into well-distin-
guished clusters, and other clusters match well-
known motifs and domains within proteins. Kin-
ship of protein families could be inferred from the
clustering tree: different families that were clus-
tered into the same cluster, or split from the same
ancestor cluster may share some biological fea-
tures. A similarity measure emerges for full-length
proteins as well. Proteins can be characterized by
their clusters sequence. This representation leads to
a quantitative comparison measures between full-
length proteins, based on the best matching route
(BMR) of clusters. Indeed, in many instances, our

Table 2. Performance of BMR compared with that of SW

Family No. of proteins BMR SW Query

Rubisco_Large 224 222 212 P35214
Tubulin 164 160 140 P02568
Egf 119 54 53 P07246
Actins_1 106 106 94 P25160
Gapdh 102 97 95 P17336
Hsp70_1 101 86 85 P22879
Histone_H2a 59 59 54 P19140
Chaperonins_Cpn60 55 52 43 P19866
Lactalbumin_Lysozyme 54 51 43 P08992
Histone_H2b 53 52 51 P16868
Metallothionein_Cl1 46 43 42 P02303
Reca 42 36 29 P29843
Pglycerate_Kinase 39 31 31 P18564
Tropomyosin 36 33 26 P05697
Chalcone_Synth 36 36 35 P00705
Ribosomal_S12 34 25 24 P25336
Histone_H3_2 31 27 27 P09862
Catalase_1 30 28 25 P14717
C2_Domain 27 18 18 P27362
Pal_Histidase 25 17 13 P14714
1433_1 25 21 18 P29254
Photosystem_I_Psaab 24 23 22 P11383
Enolase 24 22 17 P26348
Arf 24 19 18 P10851
Trp_Synthase_Beta 19 19 19 P33421
Phytochrome 19 17 16 P08562
T®id 15 15 14 P13393
Biopterin_Hydroxyl 15 14 14 P20077

Some of the families on which BMR did at least as well as SW are shown. For each such family,
we show the number of proteins in the family longer than 50 amino acid residues (second col-
umn), and the number of proteins from the family that were identi®ed using the ``equivalence
number'' identi®cation criterion (Pearson, 1995), in either method (third and fourth columns).
Accession numbers for the queries are given in the last column. See the text for further details.
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comparison method (BMR) outperformed the cur-
rently best sequence comparison method (SW).

However, in view of the 700 PROSITE families, a
more re®ned classi®cation seems desirable. We are
currently testing versions of the clustering process,
where cross-validation is applied only once in a
number of splitting phases. More permissive cross-
validation procedures may still yield meaningful,
more re®ned classi®cations. The outcome of one
such procedure is shown in Figure 11. Starting
from the above 106 clusters, clusters with high as-
pect-ratios were split and cross-validation was per-
formed only subsequently, when the number of
clusters reached 150. Four clusters failed the cross-
validation test, and their segments were returned
to the general pool. Thus 146 clusters were
obtained, all satisfying the same cross-validation

criteria: 16 of the original clusters that underwent
further splitting are shown, resulting in 41 subclus-
ters. Clearly, both small and large clusters were
affected (compare with Table 1). This procedure
also veri®es the stability of relations between pro-
tein families that can be suggested on the basis of
the tree of 106 clusters. It indicates a weak relation
in cases where the participating families were set
apart, and a strong relation when they remained
together. When applied to the 146 clusters, BMR
did better than SW on 11 additional families, indi-
cating further potential for this method.

Our standard yardstick here is the PROSITE
classi®cation. While this is a major reference
against which results such as ours ought to be
checked, certain shortcomings of the PROSITE
classi®cation should be kept in mind. Only 46% of

Figure 11. Second phase splitting with delayed cross-validation. Further splitting is performed, under the same strict
criteria for stable splits (see the text). However, at this phase, these criteria are not veri®ed at every step, so cross-vali-
dation is carried out only after all splittings are performed. The original (phase I) 106 clusters yield 146 clusters. This
Figure shows the more re®ned tree structure for the clusters numbered 42 to 53 and 58 to 61 in the ®rst phase (total
of 55,599 segments). Only six clusters (numbers 43, 44, 49, 53, 59 and 61) remained intact. The other ten split into 35
subclusters. The rectangular box shows these clusters at the end of phase I, and the resulting subclusters are below.
The leaves of the tree show 35 of the 146 clusters in phase II. Clusters that represent only a few families are denoted
by a small ®lled box at the leaves. Note that for the clusters of the second phase, this splitting resulted in clusters of
only one family (13 cases), and two to ®ve families (seven cases). The other clusters are still very large. Clearly, both
small and large clusters were affected. For instance, the subclusters originating from cluster 48 each represent a single
PROSITE family. Some of the highly complex clusters are affected, e.g. clusters 45 to 47 and 58 to 61, each with 150
to 250 families.
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the proteins are currently classi®ed in PROSITE.
Moreover, the classi®cation is often determined on
the basis of very short subsequences, less than ten
residues in some cases, which often represent
various signals or very local, small sites, and not
necessarily structural or functional domains. Be-
sides, most of the families are small, containing
only a few members each (over 80% of the families
have less than 30 members in each). Our strict cri-
teria for validity stops the clustering process short
of complete resolution, thus many small families
are ``lost'' in bigger clusters. We can expect further
progress when more proteins from small families
are sequenced.

Besides the immediate information about bio-
logical patterns that can be derived from the
clusters, they yield additional insight into the
classi®cation of protein families. Protein families
have characteristic distributions among the clus-
ters, which we call ®ngerprints. While most of
the 106 obtained clusters correspond to a single
functional protein family, most segments belong
to very few large, non-speci®c, clusters. Still,
the ®ngerprints of families that do not corre-
spond to a single cluster are characteristic en-
ough to distinguish important functional protein
families. Comparisons between ®ngerprints of
distinct PROSITE families yield similarity indi-
ces of both statistical and biological signi®-
cance, where families of similar biological roles
tend to have similar ®ngerprints. Such indices
can be helpful in de®ning families and super-
families.

Our segment clustering approach provides an
elegant, higher-level, representation of protein se-
quences. We believe that these tools can be re®ned
and extended to larger protein databases, and pro-
vide more accurate predictions on the relationships
among protein families and the nature of new
sequences.
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