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We describe a deterministic algorithm which, on input integers d, m and real number eC (0, 1), 
produces a subset S of [m] d-= {1,2,3 . . . .  ,m} d that hits every combinatorial rectangle in [m]d of 
volume at least e, i.e., every subset of [m]d the form R 1 • R2 • ... x R d of size at least em d. The 
cardinality of S is polynomial in rn(logd)/e, and the time to constrnct it is polynomial in md/~. 
The construction of such sets has applications in derandomization methods based on small sample 
spaces for general multivalued random variables. 

1. I n t r o d u c t i o n  

This paper is motivated by the witness finding problem: design an efficient 
algorithm that on input a positive integer n and a real c > 0 produces a list S of 
elements in {0,1} n such that, for any witness set R C {0,1} n where IRI/2 n > c, 
S n R r ~. The running time of the algorithm should be polynomial in n and 1/e. 
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This is a fundamental problem in complexity theory where R is usually the witness 
set for some language under consideration. 

The witness finding problem is easy to solve using a randomized algorithm: 
Just sample independently at random O(1/e) strings from the uniform distribution 
on {0,1} n. For any fixed R with IRt/2n>_ e, it is easy to see that  with probability 
_> 1/2 at least one of the sampled strings is in R. (Note the order of quantification: 
it is clearly not true that with probability >_ 1/2 the set of sampled strings contains 
an element from all witness sets.) Overall, this algorithm uses O(n/e) random bits. 

A solution to the witness finding problem is a key component in many known 
efficient randomized algorithms. In these applications, it is typical for 1/e to be 
polynomial in n. Over the past few years, research has centered on designing 
efficient algorithms for the witness finding problem that  use fewer random bits. A 
randonfized algorithm for witness finding that  uses O(n) random bits and solves 
the problem f o r e =  1/poly(n) was introduced in [9] and [16], and subsequently [4] 
found a substantially simpler randonfized algorithm using only 2n random bits (in 
fact, a simple modification of their procedure reduces this to n bits). 

Unfortunately, there is no deterministic algorithm for the general witness 
finding problenl. If the algorithm deterlninistically produces a list of length h, it 
completely misses the complementary set of size 2 n - k. This impossibility results, 
of course, from the fact that  no restriction is imposed on the witness sets, i.e., R 
is allowed to be an arbitrary subset of {0,1} n. In many applications it is possible 
to derive some structural properties of the witness set, even though the set itself 
remains unknown. Can we find, then, natural and interesting classes of exponential 
size witness sets for which the witness finding problem is solvable deterministically 
in polynomial time? This is exactly what the present paper is about. 

The class of witness sets considered here is this: Let d and m be positive 

integers, and let U =  [m] d, i.e., the universe U consists of all d-dimensional lattice 

points with all coordinates in [m]. Of course, ]U I = m d. Witness sets are all 
combinatorial rectangles within U, i.e., sets of the form R = R1 x ... x Rd, with 

1~ i C [m] for all i E [d]. Note that  there are 2 md combinatorial rectangles, while 

there are 2 ma subsets of {0,1} U, so the restriction to rectangles should be helpful. 
The volume of R is defined as 

v~ = [RI/[U[ = ( ~E[d lRiI) ] 

i.e., the volume of R is the fraction of points in U that lie in R. Our algorithm 
produces an (m, d, e)-hitting set S C_ U i.e., for any combinatorial rectangle R, if 
vol(R) >e  then S N R ~ .  The cardinality ISI is polynomial in rnlog(d)/e. It takes 
time polynomial in m.d/e to construct S. In Section 3 we show that  IS[ is optimal 
to within a polynonfial factor by giving an f~(m/e+logd)  lower bound. 

As note above, there are only 2 md rectangles. It follows that  a set S of O(md/e) 
points drawn uniformly at random from U almost surely hits all rectangles of volume 
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at least e. With a little more effort, the same can be shown for a random set S of 
size polynomial in mlog(d)/e. (In Section 3 we point out tha t  any (m, d, e)-hitting 

set must have size at least f~(m+log(d)+l/e) (assuming 1/e<_md)). However, this 
does not provide a solution to the problem we consider: this is only an existence 
proof, while we are looking [br: efficient, constructions. 

This work was motivated by the problem of  finding efficient constructions of 
small sample spaces: that  approximate t h e  independent uniform distribution on 
many multivalued random variables (these can easily be used to simulate non- 
uniformly distributed random variables, see e.g., [5]). Let X = (X1,. . . ,Xd) be a 
sequence of d random variables taking on values in [m]. The set S described above 
can be viewed as a sample space for the sequence X with the following properties. 
For each i E [d], we can view Ri C [m] as a set of possible values for Xi. Given a 
combinatorial rectangle R = R1 x ..- x Rd, we can view X C R as the global event 
that  simultaneously, for all i C [d I, Xi E Ri. Thus, vol (R) is the probabil i ty tha t  
X E R if the random variables X1,X2 . . . .  , X  d are uniformly distributed on [m] and 
independent. The set S is spread uniformly in the following sense: for any rectangle 
R for which Pr(XER)>_e where X is the vector random variable (X1,X2, . . .  ,Xd) 
and the sampling is done uniformly ti'om [m] d, then under unitbrm sampling from 
S, Pr(XER)>O. 

Our construction can also be viewed as an efficient deterministic solution for 
the d-dimensional version of the battleship game. A "battleship" corresponds to a 
combinatorial rectangle R, and S defines a deterministic, efficiently constructible, 
short probe sequence that  hits all battleships of size at least e. 

Another aspect of our work is that  we provide an easily constructible and small 
e-net for combinatorial rectangles in d dimensions. Recall that  an e-net for a class 
of objects is a set of points S such that  any object of size at least e is hit by at least 
one point in S. 

A geometric rectangle is R = [al ,bl)  • "" x [ad, bd) C [0,1) d, and vol(R) = 

IIic[d] (bi-ai). It  is a natural  problem to find a set S of points in [0,1) d which meets 

every geometric rectangle R with vol (R) >_ e. As noted in [5], this geometric question 
easily reduces to the combinatorial version we consider here, where m = O(d/e). 
Solving the combinatorial problem turned out to require many more ideas than a 
solution to the geometric version. 

f 

Two constructions given in [5] are comparable to the work described here. The 

first is a set S of size (rnd)~176 and in the second one S has size (md/e)O(l~ 
There is one aspect in which the constructions of [5] is stronger than those described 
here: for each combinatorial rectangle R, the fraction of points in S that  belong 
to R is within an additive factor e of vol (R) (so consequently S hits each R with 
vol(R) > e at least once). On the other hand, the construction here improves over 
the constructions of [5] in terms of ISI, and this improvement is more substantial  
than might first appear. For interesting cases of d, m and l /e ,  i.e., when all 
parameter  are polynomial in n, we give the first explicit constructions of size 

polynomial in n. In contrast, the constructions in [5] are of size rt O(l~ One 



218 N. LINIAL, M. LUBY, M. SAKS, D. ZUCKERMAN 

of the constructions in [5] is based on Nisan's pseudorandom generator that  maps 

O (log 2 (n)) bits to n 00) (n) bits and fools any logspace machine [14]. Combinatorial  
rectangles may be viewed as a special case of nonuniform logspace tests; hence trying 
all seeds of Nisan's generator gives the construction in [5]. A similar idea gives the 

n ~176 size universal traversal sequences found in [14], which is the best explicit 
construction to date. I t  is important  to identify interesting special cases when this 

n O(l~ barrier can be broken, and the size brought down to polynomial. This 
paper  provides such a case. 

2. Some preliminaries 

We use log to denote the logarithm to base 2. 

2.1. R e c t a n g l e s  a n d  h i t t i n g  se t s  

For integers m, d > 1, a rectangle R in [m] d is a subset of the form R1 x R2 •  • 

Rd. The volume of the rectangle R, denoted vol (R), is defined to be IId=l (IRi]/m).  

Observe that  i f R  is a rectangle in [m]d then we can also view it as a rectangle of 

[m'] d for rn' > m~ however the volume of R changes by a factor (m/m') d if we do 
this. 

For rectangle R and J C_ [d], we define R j  = A j e j R j ,  abbreviating R{i , j  } as 
1~i, j. A rectangle R is said to have pairwise independent projections if, for all i C j ,  

lai,yl/m--IR~I/7~ • IR; I/ '~. Such a rectangle is called a PIP-rectangle. 

Throughout  the paper, e denotes a parameter  in the range (0,1) and k = k(e) 

denotes ln ( l / e  ). A rectangle R in [m]d of volume at least e is said to be an (m,d,e)- 
rectangle. A subset S of [rn] d that  has a non-empty intersection with all (m, d, e) 

rectangles is an (m,d,e)-hitting set. A subset S of [m]d that  has a non-empty 
intersection with all (m, d, e) PIP-rectangles is an (m, d, e) PIP-hi t t ing set. Trivially 
an (m, d, @hi t t ing  set is an (m, d, e) PIP-hi t t ing set, but the reverse is not typically 
true. 

2.2. D i r e c t e d  b i p a r t i t e  g r a p h s  

We denote a directed biparti te graph with parts  X,Y and all edges directed 
from X to Y by G =  (X,Y,E). For (x,y)E E, we say y is an out-neighbor of x and 

x is an in-neighbor of y. For zEX,  the set of out-neighbors of z is denoted G+(x) 
and the size of G+(x), called the out-degree of x, is denoted deg+(x)= deg~(x). 
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Similarly, For y E Y, the set of in-neighbors of y is denoted G - ( y )  and the size of 

G -  (y), called the in-degree of y, is denoted deg-  (y) = deg~ (y). A + (G) denotes the 

maximum out-degree of any x E X and A - ( G )  is the maximum in-degree of any 

y E Y .  For W C X ,  G + ( W )  is the union of G+(x) for x E W  and and for Z C Y ,  

G - ( Z )  is the union of G - ( y )  for y E Z .  

2.3. U n i v e r s a l  famil ies  o f  h a sh  fu n c t i o n s  

Our construction makes use of two standard tools of derandomization: uni- 
versal families of hash functions and expanders. In the next two subsections, we 
review the definitions and relevant properties. 

Definition. A family of functions H mapping [r] to [s] is a universal hash function 
family, if for all i r i' E [r], and for all j , y  E [s], the fraction of functions h E H 

that  map i to j and i ~ to j l  is exactly 1/s 2. In other words, if we consider 
H as a probability space with uniform probability function, then the random 
variables h(I),  h(2) , . . . ,  h(r) are each uniformly distributed over [s] and are pairwise 
independent. 

There are various explicit constructions known for universal families of hash 
fnnctions.  For our purposes we will need the following well-known fact ([3]): 

Lenuna 1. Let r, s be integers with s a power of 2. Then there is an explicitly 
constructible family Hr,s of universal hash functions of size at most s.  max(2r, s), 
The time to construct the family is polynomial in its size. 

The upper bound on size is actually a little better  than this, but this form of 
the bound is convenient for our purposes. 

2.4. E x p a n d e r s  

For a E (0,1) and positive integers n ,A > 0, an undirected graph G is an 
(n, A, c~)-expander if G has n vertices, maximum degree A, and for any subset A of 
vertices, the fraction of vertices in V(G) - A that  have a neighbor in A is at least 
alAI/n .  We will need: 

Lemma 2. [13], [7] For each integer n that is a perfect square, there is an explicitly 

constructible (n, S, expander for = ( 2 -  v5)/4. 

If a,b are vertices, distG(a,b ) is, as usual, the length (number of edges) of the 
shortest path from a to b. For vertex subsets A and B, dista(A, B) is the minimum 
over a E A, bE B of distG(a,b ). The following well-known property of expanders is 
the key property we need. For completeness we give a proof. 
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Lemma 3. Let G be an (n ,A ,a )  expander, with a E (0,1). If A ,B  are subsets of 
V(G) then: 

dis ta (A,B)  _< 2(l~ ~-~ + log ~-~). 

Proof. For AC_V(G) and i>_0, let Ni(A) be the set of vertices of distance at most 
i from A. The expansion property implies that  for any A, INI(A)[ >_ I A I 0 + ~ ( ~ -  
lAD~n). Noting that Ni(A)= NI(Ni-I(A)),  we have that  for positive integers s: 

s - 1  

[N~(A)[ > IA I l - I (1  + a ( n -  INt(A)l/n)) > IAl(1 + c , (n -  IN~_~(A)l)/n) ~. 
t=O 

Similarly, 

INs(B)l >_ IBI(1 + ~(n - [Ns_I(B)I)/n) ~. 

Let i be the largest index such that  INr _< ~/2 and j be the largest 
index such that  INj(B)I <_ n/2. Then Ni+I(A)~ Nj+I(B) is nonempty, and so 

dista(A, B) < i + 1 + j  + 1. Now n/2 >_ INdA)I > IAI(1 + a /2 )  ~ __ IAI 2(~/2)i, since 
n 2 n _ 1 ) < 2  1 + Z >_ 2 ~' for x E [0, 1]. Thus i < ~ log ~ _< ~ (log iN _ a log ~ - 1. Similarly 

2 j<__ E l o g ] - ~ - l .  | 

3. A lower  b o u n d  

Before giving our construction, we give a lower bound. 

Proposition 4. For m -d < r < 2/9, any (m, d, e)-hitting set has size fZ(m+l/c+log d). 

We remark that  some upper bound on r is necessary, since for e > 1/4 and 

any d, {0 d, 1 d} is a (2, d, e)-hitting set. The lower bound on ~ is also necessary since 

the set [m] d is trivially an (m, d, c)-hitting set for all c. 

Proof. A lower bound of m(1 - e )  follows by noting that if S is such a hitting set 
and R1 C [rn] is the set of values that don't  appear as the first coordinate of a point 

in S, then R1 x [m] d-1 is a rectangle of volume at least 1 - I S I / m  that  is not hit by 
S. 

A lower bound of 1/2e follows fi'om a simple probabilistic argument: choose 

positive integers TIlT2,...,Td all at most m such that  2r T1T2...Tin >_ em d. 
Select subsets R1,R2,. . . ,Rd of [m] where R,/ is chosen uniformly at random from 

among all subsets of size Ti. Then for any fixed point in [m]d the probability that  

it is in R=R]  x ... x Rd is T1T2...Td/md<2e and so the expected size of R A S  is 
at most 2tSic. If S is a hitting set this expectation is at least 1 and so IS[ > 1/2c. 
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Next, we prove a log 2 d lower bound, and we start with the case m = 2. The 
proof reduces to the easy and well-known fact that  the edge-set of I f  d, the complete 
graph on d vertices cannot be covered with fewer than log 2d complete bipartite 
subgraphs. Let S be a (2, d, s)-hitting set. With every point (Xl,. . . ,Xd) E S, we 
associate the subgraph of I (  d consisting of the edges [p, q] E E(I(d)  where xp #Xq. If 

this collection of complete bipartite subgraphs fails to cover the edge [i,j] E E(Ifd) ,  
then there is no point ( x l , . . . ,Xd )E  S with xi = 1 and xj =2.  But then S misses 

the rectangle with {1} in the ith coordinate, {2} in the j t h  coordinate, and {1,2} 
everywhere else, although this rectangle has volume 1/4 > e. 

To deal with m > 3, let r : [m] d ~ [2] d be defined via r  = 
( [2x l /m] , . . . ,  [2xd/m]). Let S be an (m,d,s)-hit t ing set, and consider its im- 

age r  C [2] d. As we observed, if Ir < log2d , then it misses a rectangle R 
of the form {1} • {2} • {1,2} (in some order of coordinates). But then S misses 

r  whose volume is [m/2] �9 [ m / 2 ] / m  2 > 2/9, a contradiction. Consequently, 
IS l > Ir >log 2 d, as needed. II 

4. O v e r v i e w  of  t h e  h i t t i n g  se t  c o n s t r u c t i o n  

Our goal is to give an explicit construction of a "small" set that  meets all 

combinatorial rectangles of volume c from [m] d. We want the size of the set to be 
polynomial in m, 1/c and logd. 

Our construction has two main parts. The first part  is a construction, based on 
expander graphs, of an (m, d, c)-hitting set whose size is polynomial in m, 1/~, and 

2 d. This construction generalizes one of [17], which is closely related to a previous 
construction of [1]. This construction is described in Section 5. 

The inadequacy of this construction for our problem is that  the dependence on 
d is exponential and we want the dependence on d to be logarithmic. Note that  in 
the case that d is small, on the order of log(I/c),  the size of the hitting set size is 
polynomial in m and 1/4. The second part of our construction is a "reduction" of the 
general problem of building an (m, d, c)-hitting set to that  of building an (m*, d*, c*)- 
hitting set where m* is bounded above by a polynomial in m, l / s ,  and logd, ~* is 
bounded below by a polynomial in r and d* is O(k*)=  O(ln(1 /c*) )=  O(ln(1/~)). 
We then use the expander-based construction to get an (m*,d*,c*)-hitting set. 
The reduction specifies how to transform this hitting set into an (m, d, c)-hitting 
set whose size is polynomial in m, 1/c and logd. 

This second part  of the construction, the reduction, is the composition of 
a sequence of reductions. Each reduction has the same general form which, for 
clarity, we first describe very generally. Suppose that  M is a family of subsets of a 
set X for which we wish to construct a small hitting set H. Suppose that  2 is a 
family of subsets of some set Y. Then the problem of finding a hitting set for M can 
be reduced to the problem of finding a hitting set for 5~ as follows. Suppose that  
G = ( X , Y , E )  is any directed bipartite graph that satisfies: if A EM, then G+(A) 
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contains some B E J3. Then it is easy to see that  if H / C Y is a hitt ing set for Y3 

then G-(H')  is a hitting set for ar Note that  the size of the hitting set for M is at 

most IH~IA-(G) .  We call such a biparti te graph a reduction fl'om the hitting set 

problem for M to the problem for 5~, and A - ( G )  is called the cost of the reduction. 

Our sequence of reductions will take us through a sequence of "simpler" hitting 
set problems, ending with the (m* , d* , e* )-hitting set problem. The cost of each 
reduction will always be bounded by a polynomial in m, logd and 1/e. Using tile 
hitting set construction based on expanders to build an (m*, d*, e* )-hitting set, and 
applying tile reductions we obtain an (m, d, @hi t t ing  set of the desired size. 

We will need a sequence of reductions to accomplish our aim. We employ 
two types of reductions: dimension reductions and PIP-reductions. As its name 
suggests, a dimension reduction reduces a hitting set problem for rectangles for 
dimension d to one for rectangles of some lower dimension. A PIP-reduct ion reduces 
the (m, d, @hi t t ing  set problem to an (m' ,d ,e)  PIP-hi t t ing set problem, for some 

rn I that  is bounded by a polynomial in m and d. The cost of dimension reductions 
depends on the details of the reduction, while a PiP-reduction always has cost 1. 

Our reduction sequence is divided into three main reductions. The second 
and third reductions each consist of two subreduct ions--a  PIP-reduct ion followed 
by a dimension reduction. We will denote by mo,do,e 0 and ko, the parameters  
corresponding to the hitting set problem we wish to solve and for 1 < i < 3, we 
use mi,di,r i and hi to denote the parameters  of tile hitting set problem after the 

i th main reduction, so that  (m3,d3,e3) corresponds to (m*,d*,e*) above. In what 
follows, it is helpful to keep in mind that  the values el, e2 and e3 are each polynomial 
in co, and thus ki=~(kj )  for any i , jE{0,1 ,2 ,3} .  We now summarize the sequence 
of reductions. 

Reduction 1. Reduce the (mo,do,eo)-hitting set problem to the (rnl, dl,  q ) -h i t t ing  

set problem, where m l  =too,  dl =O(k3(logdo)2/eo), 61 =60/2. This is accomplished 

by a dimension reduction of cost [2ko 2(logd)/eo]. 

Reduction 2. We reduce the ( m l , d l , q ) - h i t t i n g  set problem to the (rn2,d2,e2)- 

hitting set problem, where m2 = O(m2d2), d2 = O(k~) and e2 = ( q / 4 )  2. This is 
accomplished by a sequence of two sub-reductions. 

Reduction 2a. This is a PIP-reduction tha t  reduces the (ml ,  dl, r  
set problem to the ( m 2 , d l , q / 4 )  PIP-hi t t ing set problem. This reduction 
has cost 1. 

Reduction 2b. This is a dimension reduction that  reduces the (rn2, dl,  q / 4 )  
PIP-hi t t ing set problem to the (m2,d2,e2)-hitting set problem. The  cost 

of this reduction is 0(d21). 

Reduction 3. We reduce the (m2,d2,e2)-hitting set problem to the (m3,d3,e3)- 

hitting set problem, where m3 = O(m2d2), d3 = O(k2) -- O(ko) and ea = (e2/4) 2. 
Like reduction 2, this is accomplished by a sequence of two sub-reductions. 
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Reduction 3a. This is a PIP-reduction that  reduces the (m2,d2, c2)-hitting 
set problem to the (rn3,d2,~2/4) PIP-hit t ing set problem. This reduction 
has cost 1. 

Reduction 3b. This is a dimension reduction that  reduces the (rn3, d2, c2/4) 
PIP-hit t ing set problem to the (m3,d3,e3)-hitting set problem. The cost 

30(l~ 20(k2), which is bounded by a polynomial in of this reduction is ~2 

l/E0. 
Before proceeding to the details of the constructions, let us clarify what each 

of these reductions accomplishes, and why we need them all. Recall that  we need 
to reduce the dimension of the problem to O(k0), at a cost at most polynomial in 
m, logd and 1/c. Since the cost of each reduction has this bound, applying them in 
succession accomplishes our goal. 

Why do we need all three? Note that  reduction 3 could be applied directly to 
any (m, d, c)-hitting set to reduce the dimension to O(log(1/e)); the problem is that  

its cost is polynomial in 1/E times d O(l~176 This cost would be acceptable if 
d is bounded, say, by a polynomial in log ( l /@ So, given reduction 3, it suffices to 
reduce the general (too, do, e0)-hitting set problem to the case that  the dimension is 
polynomial in k0. Now, reduction 2 accomplishes this, getting the dimension down 

to O(k~)), at a cost that is polynomial in the dimension. This cost is still too high 
for us to apply reduction 2 to the initial problem, since we want the dependence 
on do to be only polylogarithmic. Thus reduction 1 is applied first; this gets the 
dimension down to polynomial in 1/co and logd0, at an acceptable cost. 

In the rest of this paper, we describe the construction. First we give the 
expander-based construction of an (m, d, @hit t ing set whose size is polynomial in 

m, 1/c and 2 d. Then, in preparation for describing the sequence of three reductions, 
we describe the two types of reductions, dimension reductions and PIP-reductions, 
in more detail. Finally we describe each of the three reductions. 

5. A h i t t i n g  set  c o n s t r u c t i o n  for low d i m e n s i o n  

Here we present a construction which for any positive integers m and d and 

e E (0,1), produces an (m, d, c)-hitting set of size polynomial in rn, 1/e and 2 d. This 
generalizes a construction in [17]. To describe the construction we need a few 
definitions. If G is a graph, a walk of length s in G is a sequence vo ,v l , v2 , . . .  ,Vs 
where for each i_> ], either vi is equal to or adjacent to vi_ 1. Let Ws(G) denote the 
set of all walks of G of length s. For 1 < t < s, let Ws,t be the set of all sequences 

v l ,v2 , . . . , v t  which are (not necessarily consecutive) subsequences of some walk of 
length s. 

Lemma 5. Let m , d  be positive integers and R be a rectangle in [frt] d. Stlppose G is 

an (m, A,  a)-expander with 1/2 > a > O. I f  s = 1 + 4 (d + log(1/vol (R))), then Ws, d 

contains a point from R. 
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Before proving the lemma, note that  it implies that  if s = 1 +  4 (d+ log(1 /e ) ) ,  

then Ws, d hits all (m, d, c) rectangles. Also, the size of Ws, d is trivially bounded 

above by 2slws[ and IWsf is bounded above by 'm(A(G)+ 1) s where A(G) is the 
maximunl degree of G. Using the explicit bounded degree expanders mentioned in 

Section 2.4, tile size of Ws, d in this case is polynomial in m, l /e ,  and 2 d as required. 

One technical point needs to be made. The construction of expanders we use 
requires that m be a perfect square. If m is not a perfect square, we want to round 

m up to the next perfect square rh. Every rectangle R in [m]d is also a rectangle 

in [rh] d, but the volume of R relative to the larger space is reduced by a factor 

(m/rh) d. Since m/rh >_ 1/2, it would suffice to find a (rh,d,~)-hitting set, where 

f = e / 2  d, and thus since our construction is polynomial in l / f ,  rh and 2 d, it is also 

polynomial in 1/e,~n and 2 d. 

Proof  of Lemma 5. We say that  the walk vo,vl,v2,...,Vs in Ws trave'rses the 
sequence of sets Ri ,R2 , . . .  ,R d if there are indices 1 < i i  <i2 < . . .  <id<_S such that  
vi i E Rj for each j between I and d. We want to show that  for any (m, d, r 

there is a walk in Ws that traverses it. For j >_ 2, define tj = ~ (2+log~., ~ ' ~  ,+logf,j_~l ~ ) .m 

d Observe that  1 + Y~j=2 tj <<_ s and thus Lemma 5 follows immediately fl'om: 

Claim. Let R i , R 2 , . . . , R  d be subsets of [m]. Then there is a subset Qd ~ Rd of 
size at least IRdl/2 such that for each w E Qd there is a walk of length at most 

d t 1 + ~ j = 2  j tha.t traverses R i , R z , . . . , R d  and ends at w. 

We prove the claim by induction on d. For d =  1, the claim is trivial since we 
can take Q1 = R i ,  and for each w E Q1, the trivial walk w satisfies the claim. 

Now suppose d > 1 and that the claim holds for d -  1. Then there is a subset 
Qd-1 of size at least lRd_il/2 satisfying the Conclusion of the claim. Let Y be the 

set of vertices whose distance from Qd-1 exceeds td. Then IYI <_ II~zt/2 since by 
the definition of td and by Lemma 3 with A = Q d - i  and B = Y  we have: 

m 
(2 + log + log ~-R-~) < dist (Qd-1, Y)  

I R d - l l  

Now, by lelnma 3, 

d i s t (Qd_l ,Y)  < 2 l o g - - + l o g  
- ~ I q d - l l  

< -  2 + l o g - - + l o g  
- ~ IRa- l I  

This inlplies that  IF] < IRdi/2. So the se t  Qd=-Rd-Y has size at least ]Rdl/2 
and for every i E Qd, dist (Qd-l,;)<_td. With tile induction hypothesis, this implies 
that Qd satisfies the Claim for d. | 
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We now give a detailed description of the two types of reductions, PIP-  
reductions and dimension reductions. 

6.1.  P I P - r e d u c t i o n s  

The purpose of this reduction is to reduce the (rn, d,e)-hitting set problem to 

the (rn', d, e ~) PIP-hi t t ing set problem with m '  = O(m2d 2) and e' > e/4. 

First consider the case that  m is a power of 2. Let T be a universal family of 
hashing functions that  map [d] to Ira] of size m r =  m x max{m, 2d} as in Lemma 1. 

Identify the set T with the set [m'] and identify T d with [rnt] d. Now define a map 

from T d to [m]d as follows: A point f =  ( f l , . . . , f d ) E  Td (i.e, each fi is a function 
from the family T) is mapped to x f  = (f1(1) , . . . ,  fd(d)). Define the bipart i te graph 

G on vertex sets [m] d and T d with edge set { ( x / , f ) : f E T a l } .  

Now if R =  R1 x R2 x . . .  x R d is any rectangle in [rn] d, then G + (R) is a rectangle 

FR = F1 •  x F d C_ [mt] d in T d, with Fi = { f  C T:  f(i)  ff Ri}. The definition of 
a universal family of hash functions easily implies that  F a is a PIP-rectangle of 

the same volume as R. Thus if H t is an (mt,d,e) PIP-hi t t ing set then G - ( H )  is 
a (m, d, e)-hitting set. Clearly, every f E T has in-degree 1 in G, so the cost of the 
reduction is 1. 

Now, suppose that  m is not a power of 2. We'd like just to replace m by ~h, 

the least power of 2 greater than m, and view rectangles in [m] d as rectangles in 

[~h]d; which issimilar  to what we did in the previous section. However, this is not 
adequate here, because, when we increase m to rh, the volume of each rectangle is 

reduced by a factor ( m / ~ )  d, which can be close to (1/2) d. We can ' t  afford such 
a drastic reduction in volume, since, unlike in the previous section, we are not 
willing to have an exponential dependence of the cost on d. Instead, we perform 
two simple reductions to reduce to the power of 2 case. For the first reduction, we 
reduce from the (m, d, e)-hitting set to the (cm, d, e)-hitting set where c is the least 
integer greater than or equal to d such that  the interval [cm, (c+ 1)m] contains a 
power of 2. (Note c is between d and 2d). This reduction is obtained by defining the 

bipart i te graph G from [m]d to [cm] d which connects point (Pl,P2,... ,Pal) in [m] d 

to (ql,q2,.-.  ,qd) in [cm] d if qi--Pi rood m for i between 1 and d. The cost of this 
reduction is clearly 1. For the second preliminary reduction, let dz be the power of 

2 in the interval [cm, (c+ 1)m]. Note that  (cm/rh) d > (c/(c+ 1)) d > (1 - 1/d) d >_ 1/4 
and thus every (cm,d,e)-rectangle contains a (~,d ,e /4)-rectangle .  Thus we may 
reduce the (cm, d, e)-hitting set problem to the (< ,  d, e/4)-hit t ing set problem, where 
.rh = O(md) is a power of 2. After doing these two preliminary reductions we 
can use the above reduction for the case that  m is a power of 2 to reduce the 
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(Th, d, c/4)-hitting set problem to the (m ~, d, et)-hitting set problem where rrJ = K~ • 

max (rh, 2d) = ~h 2 = O(m2d 2) and e' = e/4. 

7. D i m e n s i o n  r e d u c t i o n s  

The three dimension reductions used in the construction are not all the same, 
but they have a common structure. We want to reduce the hitting set problem for 
a collection a~ of (possibly restricted) (re,d, @rectangles to the hitting set problem 
for the set Y3 of all (m,p,~/)-rectangles where p is some number less than c/, and 
~/ is not much smaller than c. So we need to define a bipartite graph between 

fro] d and fro] p. This bipartite graph will be completely specified by a family F of 
functions from [d] to [p]. The graph G = GF associated to F is defined as follows. 
For each point (xl, x2, . . . ,  Xp) of [m]P and each function f E F,  there will be an edge 

from (xf(1),xf(2) ,. . . ,Xf(d) ) to (Xl,X2,... ,xp). Thus each vertex in fro] p will have 

in-degree IFI (counting possibly multiple edges). 

Let us now formulate sufficient conditions on the set F of functions so that  
G F is a reduction. We need that  if R - - - R l x R 2 • 2 1 5  is a rectangle in~d 

then G+(R) contains some rectangle in 23. Fix some function f E F,  and examine 

the edges of G that are defined by f .  Note that  f - 1  defines an ordered parti t ion 

f - 1  (1), f - 1  (2) , . . . ,  f - 1  (p) of [d] into p (possibly empty) parts. Define the rectangle 
R / = R f - l ( 1  ) • g f - l ( 2  ) •  • Rf- l (p)  in fro] p, where we recall that  for JC_ [m], R j  

is defined to be 7lie j R  j. If (Xl,X2,... ,Xp) is an arbitrary point in the rectangle Rf  

then it is joined by an edge labeled by the function f to the point (Yl,Y2,...,Yd) 

with Yi = xf(i) for each i E [d]. Since this point is in R, we conclude that  G - ( R )  

contains Rf .  We say that  a function f is ~/-good for a rectangle R if vol (R/)  is at 

least 7. We now have a sufficient condition on the family F of functions such that  
GF is a reduction from od to 23 is given by: 

Condition D. For each rectangle R in od, there is a function f E F that  is -y-good 
for R. 

Below, we present two lemmas. The first gives a sufficient condition for a 
function f to be c/2-good for a fixed rectangle of volume c. The second gives a 

(much weaker) sufficient condition for a function f to be c2-good for a fixed PIP- 
rectangle of volume e. We will use these sufficient conditions to guide the choices 
of the specific reductions used in the construction. 

We first need some notation. For the rest of the paper, we will typically consider 

a fixed ftmction f from [d] to [p] and a fixed rectangle R in [m]d. In this situation 
we define the following real parameters associated with R and f .  For i E [d], define 
3i = IRi l /m and ai = 1 - 3/. For any subset S C_ [d], define 

Zs = IRsI/- , 
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= 17[ 9j, 
jEs  

. ( s )  = ej, 
j ~ s  

i,jeS,iCj 

Let us compare the volume of Rf  to the volume of R. vol (Rf)  is equal to 

-F Z 1 t=l f -  (t). We can write v o l ( R ) = l ~ = l ~ ( f - l ( t ) ) .  The term 7r ( f - l ( t ) )  can be 

thought of as an "estimate" of ~f- l ( t )  that  would be valid, had the sets Rj for 

j E f - t ( t )  been mutually independent. The problem is that  in general, for a subset 
S of [d], ~$ can be mnch smaller than 7r(S). Thus for f to be y-good, we want that  

for each t , /~ f - l ( t  ) should be not much less than 7r ( f - l ( t ) ) .  

It is useful to think about the problem of choosing a function f that is y-good 
for R in the following way. Think of elements of the set [d] as "items", and think 
of 5 i as the "weight" of item i. The sequence 5 = 5(R) = (51,... ,5d) is called the 
weight sequence of the rectangle R. Recall that  k = k(r = In(l /e) .  Noting that  

vol (R) = I-[d= 1 (1 - 5i) < e -u([d]) , we have: 

Proposition 6. For any rectangle R of volume at least c, ~([d]), the sum of  the 
weights or" all items associated with R, is at most k. 

Think of the elements of [p] as "bins" into which f places the items. In t h e  
two lemmas below, the sufficient conditions for f to be y-good for R depend only 
on the "weight distribution" of the items in the bin; roughly they require that  bins 
not be too crowded. Intuitively, such a condition ensures that  for each t , /~ f - l ( t  ) is 

not too much smaller than 7r ( f - l ( t ) ) .  

To formulate the conditions on the weight distribution, we define p - - p ( f , 5 )  

to be P ~ t = l  # ( f - l ( t ) )  �9 Finally, for each t e [p], let i f ( t )  denote the singleton set 

containing a fixed i E f - l ( t )  such that  5i is maximum, provided that  f - 1  (t) is non- 

empty; otherwise f * ( t ) =  0. Let f # ( t )  denote the set f - l ( t ) -  f*(t) .  In words, 

f # ( t )  is the set that remains after removing a heaviest item from f - l ( t ) .  

We can now state the two sufficient conditions for y-goodness. 

Lemma 7. Suppose R is a rectangle with weight sequence 5, and that f maps [d] 
to [p]. Then 

(Rf)  > vol (R) - p(f ,  6). 

In particular, i f  R has volume e and p(f ,  5) < el2 then f is e/2-good for R. 
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Lemma 8. Let R be any PIP-rectangle and f maps [d] to [p]. Let 6 be the weight 

sequence for R. If for each t e [iv], , ( / # ( t ) )  <_ 1/2 then vol(Rf) >__ (vol(R)) 2. In 

particular, if R has volume at bast e then f is e2-gvod for R. 

In the first lemma it is required that the sum of the pairwise products of weights of 
elements that  are mapped to the same bin should be small. The condition in the 
second lemma says that for each bin, the sum of the weights of the items assigned 
to the bin, excluding the heaviest item in the bin, is at most 1/2. 

Proof of Lemma 7. As noted above, vol(R) -- 1--[P=l~r(f-l(t)). Also, vol(Rf) = 

1-It=l f 3 f - l ( t ) . P  For q between I and p, let G(q) denote the inequality: 

q q q 

1-I >- II Z.(s-l(t / / .  
t = l  t----i t----i 

Note that  G(p) is the conclusion of the lemma; we will prove that  G(q) holds 
for each q <_ p, by induction. It is easily proved by induction on ISt that  tot any 
SC [d], ~(S) < I - ,(S)+#(S). Thus: 

(1)  >_ - , ( s )  > - , ( s ) .  

Applying this with S = f - l ( 1 ) ,  we obtain the base case G(1). 
For the induction step q > 1, we assume G ( q -  1). If the right hand side of 

G ( q -  1) is negative, then so is the right hand side of G(q) (since the first term 
on the left can only decrease and the second term can only increase), and so the 
relation follows. So assume the right hand side of G(q - 1) is positive. Multiply 
both sides by flf-~(q). We obtain: 

q q-1 q-1 

] 
q--I q--1 

>-- ~S-1(q) I] 7r(/- l( t))  -- E ]z(f- l ( t ) )  
t----1 t=l 

q-1 q-1 

>-- (rc(f-l(q)) - ~L(f-l(q))) H 7r(f- l( t ))  - E " ( f - l ( t ) )  
t : l  t=l 

q q 

>- H 7r(f- l( t))  - E " ( f - l ( t ) ) '  
t : l  t : l  

as required to prove the lemma. (Here the second inequality follows from aS <- 1 
for any S and the third inequality follows from inequality (1)). | 

vip ~ 1 Proof of Lemma 8. Since vo l (R)=r l [= l  7r(f-l( t))  and v o l ( R f ) = l l t =  1 f -  (t) the 

lemma follows from: 
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Proposition 9 .  F o r  any weight sequence 5 and t E [p], 1[ u(f#(t)) <_ 1/2 then 
~f-l(t) _> 7r(f-1 (t)) 2. 

So, let us prove the proposition. If f - l ( t )  is empty, both sides of the inequality 

are 1. So suppose f - l ( t )  is nonempty. Let S = f - l ( t ) ,  {s*} = f*(t). We have 
R S =-K~ieSR i - - - - a s *  - (UieS_{s.  } (Rs* A ( [ m ]  - Ri) ). Thus: 

[Rsl_>larl- 

and therefore 

= ~ s *  (1 - z/(S - {s*})), 

where the first equality comes from the fact that  R is a PIP-rectangle. 

Now ~r(S) 2 -- 7c(S-  {s*})2/~s2. _< ~r(S-  {s*})2fls ,. Furthermore, ~r (S-  {s*}) = 

l-[ieS_{s.}(1- 5i) <- e -"(s-{s*}), so 7r(S) 2 <- fls.e -2t'(s-{s*}). Now, if x < 1, 

e-Z< 1 -  x/2 and so since u ( S -  {s*}) <- 1/2 by hypothesis, we get 7r(S)2 </3s* ( 1 -  
~ ( S - { s * } ) )  <- ~S, as required to prove the proposition and the lemma. | 

Armed with Lemmas 7 and 8 we are ready to present the three reductions 
needed to accomplish the construction. 

8. T h e  r e d u c t i o n  s e q u e n c e  

8.1. R e d u c t i o n  1. 

We will choose a family of mappings F1 from [do] to [dl] that  satisfies Condition 
D, and for this we will make use of Lemma 6. It will be useful to introduce some 
additional notation. For i,j E [do] and function f with domain [do], define the 
indicator function Xi,j(f) to be 1 if f ( i )=f ( j )  and 0 otherwise. With this notation 

p(f,5) = ~ i , j e [ d o ] , i C j  X i , J ( f ) S i S j  �9 Suppose that F is a family of mappings and let 

C(F) be the maximum over all i,j E [do], i r j ,  of ~feFXi , j ( f ) .  Then for any 

rectangle R, the average of p(f, 5) over all f E F is at most: 

f e F f ~ F i,j E[do],iTij 
IFf IFJ 

E E x j(f) 
i,jE[do],i#j f~F  

IFJ 
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<_ 

2 

_< - ~  5i 

c ( r )  2 
<_ - ~ k o .  

So if we carl choose F 1 such that C(F1)/IFaI<_ eo/(21V2o), then for each R there 

nmst be an f C F 1, such that p(f,5) <_ e0/2. We can then apply Lenuna 7, to 
conclude that  the volume of Rf  is at least c0/2. Thus Condition D is satisfied. 

So it remains to construct F 1 such that  C(FI)/tF11 is at most eo/2k 2. For 

each positive integer a, let Ca denote the a th prime, and define the function fa by 
fa(i) =i rood r so that fa maps every integer to [r Note that  fa(i)=fa(J) if 
and only if a divides i - j .  Thus the number of functions fa for which fa(i)=fa(j) 
is the number of prime divisors of i - j  which is at most l o g I i - j [  <_ logd0, for 

1 _< i # j  _< do, i.e., C (F  1) _< logd0. Define the parameter t to be [2k3(log do)/eo], and 

define F 1 = {fall<a<t}._ _ Then [Fl[=t>2k~(logdo)/eo,_ so C(rl)/tFit<_eO/2ko.2 
Furthermore, if we define dl =qSt then dl =O(tlogt) and all of the functions in F 1 

map [do] to [d,]. Thus F* achieves the desired dimension reduction, and the cost 

of this reduction is at most t =  [2k2o(logdo)/eo]. 

8.2. R e d u c t i o n  2. 

For reduction 2a, we first apply a PIP-reduction, to reduce to the problem of 
finding a (m2,dl,el/4) PIP-hitt ing set. 

For reduction 2b, we will choose F 2 to be a family of universal hashing functions 
from [dl] to [d2]. \u want to show that  for each (m2,dl,q/4) PIP-rectangle 
R, there is an f satisfying the hypothesis of Lemma 8, i.e., for each t C [d2], 

,(f#(t)) <_ 112. 
Fix such a rectangle R and consider a map f from [dl] to [d2]. Let us say that  

bin t E [d2] is bad for the map f if u ( f# ( t ) )  > 1/2. Let B(f) be the set of i E [dl] such 
that  f(i) is bad for f .  Then the hypothesis of Lemma 8 is equivalent to B(f)=0. 
Notice that  z.,(B(f)) is the sum of the weights of items that  are placed into bad 
bins and if B(f) is nonempty then r,(B(f)) must be greater than 1/2. Thus a 
sufficient condition for f to satisfy the hypothesis of Lemma 8 is r,(B(f)) 5 1/2. 
The following fact about universal families of hashing functions is key: 
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Lemma 10. Suppose that R C [Z] q is a PIP-rect~ngle. Let F be a universal family 
of hashing functions from [q] to ~v]. For each i E [q], if f is chosen uniformly from 
f then the probability that i belongs to B( f )  does not exceed 2z,([q])/p. Thus the 
expectation of t,(B(f)) is at most 2y([q])2/p. 

Proof. Note first that  the expectation E[u(B(f))]  = Eq=lS iProb[ i  E B(f) ] .  For 

i C [q], define the random variable Xi = E j r  i.e., the S U I f i  of the 

weights of the elements other than i mapped to the same location as i. The 

event i ff B( f )  implies that  X/ > 1/2, so E[v(B(f))] -< }-~4=1q 6iProb[Xi >_ 1/2]. 

By Markov's inequality, Prob[X/>_ 1/2] < 2E[Xi], and this is at most 2v([q])/p, 

hence E[~(B(/))]  < }--~q=l 5i(2~([qJ)/P=2~'([q])2/P �9 I 

Now, taking q to be dl and p to be d2 in the above lemma, we have by 
Proposition 6 that  u([dl]) _< kl and so if we choose d2 to be the least power of 2 

that  is at least 4k 2, we conclude from the lemma that  for any rectangle R, there is 

an f E F 2 that  satisfies the hypothesis of Lemma 8. Note also that  the family F 2 
has size O(dlmax(d2,2dl)). We may assume d2 < dl, since otherwise we may skip 

reduction 2, and thus IF2l=O(d~). 

8.3. R e d u c t i o n  3. 

For reduction 3a, we first apply a PIP-reduction,  to reduce to the problem of 
finding a (m3, d2, r PIP-hi t t ing set, as in reduction 2a. 

To define reduction 3b, we begin by following the argument  in reduction 2b. 

As in that  reduction, it suffices to define a family F a of functions from [d2] to [d3] 

such that  for each (m3,d2,e2/4) PIP-rectangle R there is an f E F 3, such that  for 
each t E Ida], B(f)  is empty. In reduction 2b, a universal hash function family 
was shown to be sufficient to achieve this goal; provided that  we did not go below 

dimension O(k~). What  we want is to get the dimension down to O(ko) (which 

is also O(k2)). We will need a more complicated family of functions, one that  is 
similar to a family previously used in [15]. 

Look again at Lemma 10. Notice that  if we take p_> 4~([q]) then this implies 
that  there is an f E F for which y(B(f))<~([q])/2, i.e., the weight of the elements 
tha t  are mapped to bad locations is at most half the total  weight. Wha t  we want to 
do is to "collect" the elements that  are mapped to bad locations and remap them 
to new locations. 

This idea leads to the following iterative mapping scheme. Part i t ion the set of 
positive integers into the consecutive intervals I0 = {1},/1 = {2, 3}, I2 = {4, 5, 6, 7},. . .  

(i.e., Ij = {2J , . . . ,2  j+ l  - 1}). Let Fj be a universal family of hashing functions 

from [q] to Ij. Define a remapping sequence of order r to be a sequence a = 

( f r , J r , f r - l , J r - l , . . .  , f l ,Jl , fO) where each fj  is:in Fj and each Jj is a subset of Ij. 



232 N. LINIAL, M. LUBY, M. SAKS, D. ZUCKERMAN 

Such a sequence defines a map 9o from [q] to IOUIIL.),..UI r as follows: each element i 
is mapped to fj(i) where j is the first index (starting from r downwards) such that  

fj(i) ~ orj. An alternative, more algorithmic description of g ~ is this: tentatively 

ma.p each element of [q] to t.r using fr- For those elements i that  are not mapped  to 
Jr ,  set ga(i)= fr(i). The elements that  are mapped to Jr  are remapped according 
to fi.-1; again for those elements i that  are not mapped to Jr-l ,  ga(i)= fr- l ( i )  
and the rest are remapped. 

Lemma 11. Let R C [z]q be a PIP-rectangle, and let g be H~e le~t nonneg'ative 

integer su& that 2 e > 4~([q]). Then there is a remapping sequence a of  order at 
most  ~ such that the associated map g~ has B ( S ) =  0. 

The proof of this lemma is an easy induction on g. If g = 0  then ~,([q]) < 1/4 and 
so if we choose our remapping sequence to be (f0) where f0 is the unique function 
in F0, then 9~r = f 0 ,  and B ( S  ) is trivially empty. For g > 0 ,  by Lemma 10 we can 
choose fe E Fg such that  the total  weight of the elements mapped  to bad bins is 
at most half the total  weight. Then choose Yg to be the set of bad locations for 
fg. The set of unmapped elements is B(fg), and.we can apply induction (with q 
replaced by IB(Fg)I) to get a sequence of order g - 1  that  maps these elements with 
no bad bins. | 

This lemma now allows us to construct our family F 3 of functions. Let g be 

[2+ logk2] ,  define d3 to be 2 e+l, and let F 3 be the set of all maps of the form 
9 ~ where cr is a remapping sequence of length g. The previous lemma implies that  

for any (m,d,e) PIP-rectangle there is an f E F a which satisfies the hypothesis of 
Lemma 8, as required. 

Finally, it remains to observe tha t  the size of the family F 3 is at most the 

product  of the sizes of the Fr for r between 0 and g times 2 2da (for the choices of 

the sets Jr)  which is 20(/~2) = 2  O(k~ and is thus bounded by a polynomial in l /e .  

9. O p e n  p r o b l e m s  

The problem considered in this paper  was directly motivated by the discrepancy 
problem stated in [5]. The discrepancy problem is the stronger version of the hitt ing 
problem, where, instead of hitting each rectangle R with vol (R) > c at least once, 
each rectangle is hit a fraction of times that  is within e of its volume. An explicit 
construction for a sample space of polynomial size that  solves the discrepancy 
problem is still not known. Besides the application to an explicit construction 
of a small sample space, a solution to the discrepancy problem has a number of 
other applications, including applications to numerical integration. 

There are further natural  questions that  generalize the discrepancy question. 
For example: Is there a polynomiM time algorithm that  on input d, m, e, and k, 
produces a set S of size at most polynomial in d, m, 1/e and k with the following 
property: for every set of at most k rectangles, the volume of the set of points that  
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are contained in at least one of the k rectangles has discrepancy at most  e with 
respect to S. (When k = 1 this is the discrepancy problem.) A solution to this 
problem would immediately yield a polynomial t ime deterministic approximation 
algorithm for the DNF counting problem. Building on ideas of the present paper, 
[2], made some progress on this problem. As described in [11] progress on this 
problem has also been made using a different approach. See also [8]. 

A somewhat less natural  generalization of the discrepancy problem is motivated 
by the GF[2] counting problem considered in [10] and [12]: Is there a polynomial 
t ime algorithm that  on input d, m, e, and k, produces a set S of size at most 
polynomial in d, m, 1/e and k with the following property: for every set of at most 
k rectangles, the volume of the set of points that  are contained in an odd number 
of the k rectangles has discrepancy at most e with respect to S. (When k = 1 this is 
again the discrepancy problem.) A solution to this problem would immediately yield 
a polynomial t ime deterministic approximation algorithm for the above-mentioned 
GF/2] counting problem. As described in [12], some progress on this problem has 
been made using a different approach. 
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