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Given a family ~ ~ {0, 1 } "' of binary vectors of length m, a set W ~  { I ..... m} is 
called a witness set for r ~ .~, if for all other r' • ~. there exists a coordinate c • W 
such that r,.~r',.. The smallest cardinality of a witness set for r •b~  is denoted 
w(r) = t ry( r ) .  In this note we show that Y~r~ w(r)= O(1,~'13/2) and constructions 
are given to show that this bound is tight. Further information is derived on the 
distribution of values of { w(r) I r e.~}.  ~ 1996 Academic Press. Inc. 

1. INTRODUCTION 

L e t  N _ { 0, I } "' b e  a f a m i l y  o f  d i s t i n c t  b i n a r y  v e c t o r s  o f  l e n g t h  m.  A se t  

W _  [ m ]  o f  c o o r d i n a t e s  is a witness set f o r  a v e c t o r  r in  ~ ,  i f  f o r  e v e r y  
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other r' e .~. there exists a coordinate c in W such that rc differs from r'c. In 
other words, W is a set of entries of r that distinguish it from every other 
vector in ~t. We also say that exposing the entries of r corresponding to W 
uniquely determines r among vectors in ~ .  Let w(r) = w~(r)  denote the size 
of the smallest witness set for r e  ~.  The notion of a witness set seems to 
be quite natural and it arises, in particular, in the area of computational  
learning theory under various names: it is called a discriminant in [7] ,  and 
a specifying set in [2 ] ;  also max,.~.~ w(r) is referred to as the "teaching 
dimension" (see [6]) .  

A natural question is what can be said on the average value of w(r) over 
r ~ .  This question goes back to 1965, when Cover [5 ]  proved that for a 
certain type of families that arise, for example, in the context of pattern 
recognition the average is O(1). Other related bounds (also for particular 
families) are given in [1] .  We had initiallly conjectured that if I~1 = n,  then 
the average value of w(r) over r ~ ~ is at most logarithmic in n, but as we 
shall soon see, this is not true and the average can be as large as t2(n~/2). 
This result, together with a matching O(n ~/2) upper bound that holds for 
eveo, such ~', constitutes the main contribution of the present note. A similar 
proof  for the lower bound was independently found by Cherniavsky and 
Statman [4] .  Weaker bounds for the average witness size are considered in 
I-7, Exercise 2.12.d]. Finally, we obtain some bounds on the distribution of 
values of {w(r) ] r e~)} .  

2. THE AVERAGE SIZE OF THE WITNESS SET 

Obviously, w(r)~< 1 ~ [ -  1 for any r and ~ ,  and simple examples show 
that this is tight. If ~ consists of the all-0 vector 0 and the m unit vectors 
e~ ..... e .... then w(0)=m.  Since the worst-case witness set may have to be 
large, we turn to study the average witness size. Let ~ be a family of n 
distinct binary vectors of length m. Define 

1 
iv(,~)--  ~ w(r), 

n 
r E .J~ 

the average size of smallest witness sets over the members of ~.  

THEOREM 1. For any ~ as above, ~( ~ ) = O( n ~/2). The bound is tight; i.e., 
there exist. ~ '  with r~( ~,') = g'2(nl/Z). 

Proof  We start with an explicit construction of ~ '  which achieves the 
lower bound. Let p be a prime, and let P be the projective plane of order 
p. The plane P contains m =p2  + p  + 1 points, and m lines. We consider 
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m-dimensional vectors where the coordinates correspond to P's points. ~ '  
is a family of n = 2m binary m-vectors, of which m are the characteristic 
vectors of lines of P, and another m are the m unit vectors. 

For r e  ~ '  corresponding-to a l ine/,  w( r )=  2, since it suffices to expose 
the coordinates corresponding to any two points on /. Such a pair dis- 
tinguishes r from all singletons, and since distinct lines share exactly one 
point, this pair of coordinates distinguishes r also from the characteristic 
vectors of other lines. 

On the other hand, w ( r ) = p + 2  if r corresponds to the singleton point 
q. To distinguish r from the characteristic vector of a line l containing q, 
a zero in r should be exposed in a coordinate that corresponds to a point 
on I other than q. There are p + 1 such lines/, whose pairwise intersection 
is { q}, so to distinguish r from all of them, at least p + 1 distinct 0-entries 
should be exposed. To distinguish r from other singletons, the 1-entry 
should be exposed as well, the alternative being to expose all ( p 2 + p )  
0-entries. 

~i~(~')= 1 ~ w(r) 1 17 =~mm ( m ' 2 + m ' ( p + 2 ) ) = P + 4 > > "  1---~ - r ~ '  2 2 x / ~  n~/z" 

We turn now to prove the upper bound. For  v~ {0, 1}" and W_~ [m ] ,  
let v[ wbe the restriction of v to the coordinates in W. Bondy (see [3, p. 4] )  
had shown the following. 

LEMMA 2. For every set N___{0, 1}"' there exists a set W o f  ~<[~,[-1 
coordinates such that all vectors { v[ w : v e ~ }  are dist#wt. 

Order the vectors rl ,  r2 .... , r,, of ~ by decreasing value of w. Consider 
the sum of the k largest values ~ =  1 w(ri) for a value k soon to be set. Find 
a set T of at most k -  I coordinates as guaranteed by the lemma applied 
to the family {r~ ..... rk} and expose the T-coordinates in all vectors of N. 
By the property of T, r~ ..... rk are already mutually distinguished. The 
T-coordinates of every other vector r e ~ distinguish r from all r~ ..... rk, 
except, perhaps, one r~. It is possible to expose a single additional bit in rs 
to distinguish r i from r. Apply this step to every rj, j > k. Consequently, 
each of r~ ..... r k is distinguished from every other vector in ~.  No more 
than n -  k bits get exposed in this process, so 

k 

w(rl) <~ k ( k -  1) + n - k = k 2 -  2k + n. 
i = 1  

In particular, it follows that W(rk) ~ k -- 2 + n/k. 
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Putting the two observations together we get 

w(r i )= }-" w(ri)+ w ( r i ) < ~ ( k 2 - 2 k + n ) + ( n - k )  k - 2 +  . 
i=1 i=1 i = k + l  

Pick k = x/~; the above inequality yields E'i'=, w(r;) ~< 2n 3/2, or ,~(G) ~< 2 x/'n. 

I 
We cannot resist presenting an alternative proof  of the upper bound that 

is algorithmic and yields a slightly better constant. 

(Algorithmic) Proof of  Theorem 1. We seek upper bounds for 
f (n )  zx max.a: Ira=,, ~ , ~  w(r). Let G be a family that achieves the maxi- 
mum f(n).  We first limit our attention to a set T of n - 1  coordinates as 
guaranteed by Lemma2.  Fix an i •  T and consider the sets Go, G~ of 
vectors in G whose ith coordinate is 0 (resp. 1). If both IG01, IG, I~ > 0 (a 
parameter that we soon set), then add i to the witness set of every vector 
in G and proceed recursively with the sets G0, G~. Since the ith coordinate 
distinguishes every vector in G0 from any vector in G~, it follows that in 
this case f ( n ) ~ n + f ( O ) + f ( n - O ) .  On the other hand, if for every i •  T 
one of the values appears fewer than 0 times we do the following: If there 
is a vector u • G each of whose coordinates equals the majority value (there 
can be at most one such vector) let all of T be u's witness set. For  every 
other v • G  there is at least one coordinate where v is in the minority. 
Letting this index be in v's witness set distinguishes v from >~n-  0 vectors 
in G and an additional O - 1  indices suffice to distinguish it f rom all the 
rest. The two considerations together yield that 

f ( n )  ~< max(n - 1 + (n - 1 )0, n + f (  O) + f (n  - 0)) 

holds always. Let O=x/ '~  and solve the recursion to conclude that 
f (n)  ~ n  3/'-. I 

3. REMARKS AND OPEN PROBLEMS 

Given a family G as before and an integer t, 1 ~< t ~< n, define 

U ( G , t ) = l { r e G I w ( r ) > ~ t } l ,  L (G, t )= l { reGIw(r )<<. t } l .  

Our proof  of Theorem 1 in fact shows the following. 

LEMMA 3. For every G (of size n) and t<~n, U ( G , t + n / t - 1 ) < t .  

It is not difficult to obtain also the following lower bound. 
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LEMMA 4. For every ~ (of size n) and t ~ v/'n~, L( ~,  2t + log2 n) >/t 2 - t. 

Proof. We reorder the vectors in ~ as follows: Let those vectors whose 
first bit is in the minority precede those with the majority bit. Expose the 
first coordinate in vectors of the minority group. Proceed r.ecursively in the 
same manner on each group separately, and so on, until each group 
reduces to a single vector. Observe that (1) each vector is distinguished 
from all those following it (but not necessarily from those preceding it); 
(2) no vector has more than log2 n bits exposed. 

Let ~ be the set of the first t 2 vectors. Recall that every vector in ~ is 
distinguished from all those that follow it and has at most log,_ n bits 
exposed. Apply Lemma 3 to .~" to conclude that U(3I r,  2 t ) <  t. Therefore, 
at least t o- - t of the vectors in 3(/ can be distinguished from other members 
of ~ at the cost of exposing ~<2t additional bits each. Each such vector r 
satisfies, therefore, w(r)~< 2t + log,_ n and the desired bound follows. | 

The most interesting problem left open at this note is, in our opinion, to 
estimate the minimum (over N) of L(N, log2 n). 

REFERENCES 

1. M. ANTHONY, G. BRIGHTWELL, AND J. SHAWL-TAYLOR, On specifying Boolean functions by 
labeled examples, Discrete Appk Math. 61 (1995). 

2. M. ANTHONY, G. BRIGHTWELL, D. COHEN, AND J. SHAWL-TAYLOR, On exact specification 
by examples, ha "Proceedings, 5th Workshop on Computational Learning Theory, 1992," 
pp. 311-318. 

3. B. BOLLOBAS, "Combinatorics," Cambridge Univ. Press, Cambridge, UK, 1986. 
4. J. CHERNIAVSKY AND R. STATMAN, Testing: An abstract approach, & "Proceedings, 

2nd Workshop on Software Testing, 1988." 
5. T. M. CovER, Geometrical and statistical properties of systems of linear inequalities with 

applications in pattern recognition, IEEE Trans. Electron. Comput. 14 (1965), 326-334. 
6. S.A. GOLDMAN AND M.J. KEARNS, On the complexity of teaching, in "Proceedings, 

4th Workshop on Computational Learning Theory, 1991," pp. 303-315. 
7, B. K. NATARAJAN, "Machine Learning: A Theoretical Approach," Morgan Kaufmann, 

San MateD, CA, 1991. 


