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Abstract

A setL of linear polynomials in variableX, Xo, ..., X, with real coefficients is said to be an
essential cover of the cul§e, 1}" if

(E1) for eachv € {0, 1}"*, there is ap € L such thatp(v) = 0;

(E2) no proper subset &f satisfies (E1), that is, for evepy € L, there is a € {0, 1}"* such thap
alone takes the value 0 an

(E3) every variable appears (in some monomial with non-zero coefficient) in some polynoinial of

Lete(n) be the size of the smallest essential covefOpfl}”. In the present note we show that
1
S(Van 1+ D<en < [%W 1
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1. Introduction

What is the least number of hyperplanes that cover all the poini;, 80, 1}*? The
obvious answer is “two”. This set is full-dimensional, so no single hyperplane will do, and
onthe other hand the two hyperpladés= 0 and 1 do. This solution is unsatisfactory, since
this is really a one-dimensional solution. For the answer to make sense, we should insist
that every variable appears in the equation defining one of the hyperplanes. This is still,
however, not a good formulation of the problem, for we may consider the three hyperplanes
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X1 =0,1and)’; X; = 17. Granted, now all variables appear, but the last hyperplane is
redundant. This already brings us to the main concept under consideration here.

A collectionL of linear polynomials in variable¥ = {X1, X2, ..., X, } with real coef-
ficients is called amssential coveof 5, = {0, 1}" if

(E1) for eachv € B,, thereis ap € L such thatp(v) = 0;

(E2) no proper subset af satisfies (E1), that is, for evepy € L, there is a € B, such
thatp alone takes the value O ar(we say that is aprivate pointof p);

(E3) every variable appears (in some monomial with non-zero coefficient) in some poly-
nomial ofL.

Lete(n) be the size of the smallest essential coveBafln the present note we show that

L (VarTiea) <em < [2] 42

2. The upper bound

Casen = 1. L = {X,1— X} is an essential cover @1 of minimum size.
Casen =2:L = {X1+ X»—1, X1 — Xo} is an essential cover ¢, of minimum size.
One can combine these constructions to produce essential covers for other values of

Lemma 1. SupposeL1 = {p1, p2,..., Pe;} IS @an essential cover df,, with variables
{X; :i € [ml} and Lo = {g1,q2, ..., qe,} iS an essential cover df, with variables
{Y; i € [n]}. Then

Lé{Pl ‘|’41’ P2, MR} p£’17 112, MR} ‘]ez}

is an essential cover @,, ., with variables{X1, X2, ..., X, Y1, Y2, ..., ¥,,}.

Proof. In order to verify thal satisfies (E1), we show that everye 5,,., is the root of
at least one of the polynomial In To see this, write asvivz, wherevy € B, andvs € B,.
If p2(v1), p3(v1), ..., pm(v1), g2(v2), ..., g,(v2) are all non-zero, thep1(vy) = 0 and
q1(v2) = 0 (becausd.; and L, are essential covers). It follows that(v1) + g1(v2) = 0.
To show that (E2) holds, we need to verify that each polynomiél ras a private point.

Fori = 1,...,e1, letv; be a private point ofp; in B,,; similarly, for j = 1,..., ep,
let w; be a private point of; in B,. Then, fori = 2,..., e1, v;w; is the private point
of p;, and forj = 2,..., ez, viw; is a private point of;;; also,viwy is a private point

for p1 + ¢1. SinceL; and L, are essential, it follows immediately that all variables in
{X1, X2,..., Xy, Y1,Yo,...,Y,} appearir_; so (E3) holds. [J

By combining the essential cover fé with itself k times, we obtain the following
essential cover foBy;:

L={Xp-1—Xp:i=12,...,k}U{X1+Xo+---+ Xox — k}.
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Forn = 2k + 1, we combine this cover dfy;, with the cover{X,, X, — 1} for By, and
obtain
{(Xoi1—Xp:i=21,2,...,k}U{X1+Xo+---+ X, —k}U{X, — 1}.
We thus have the following theorem.

Theorem 1. Forall n>1, we haver(n) < [ 5] + 1.

Remark. (@) Itis not hard to verify directly, without recourse to Lemihahat the sets
defined above are essential covers.

(b) While combining essential covers using Lemfnave can choose the polynomials
p1 andgi as we wish. By choosing them carefully, we can find an essential cover in which
no polynomial has more than four variables. For example, take2k and use variables

X1, Xo,..., Xy, Y1, Yo, ..., Yr. Then, we have the following essential cover By
X1+ -1u{X;—Y i+ X1+ Yi1—1:i=12,...,k—1}
U {X — Yi}

3. The lower bound

Preliminaries: In this section, we derive lower boundse). LetL be an essential cover
of B,,. Since (E3) holds, every variable appears in some polynomialdonsider a variable
X; and letp € L be a polynomial in whichX; appears. By (E2)p has a private point.
Let ¢’ be the point obtained from complementing the value af;. Now, p cannot take the
value 0 ong’, so (to satisfy (E1)) there must be another polynorpiat L that takes the
value 0 ong’. Now, X; appeatrs irp’, or elses is not a private point op. We conclude that
every variable appears at least twicd.ir_et k be the maximum number of variables that
appear in any polynomial ih. We immediately have

2n
LI > = (1)

Our lower bound follows by combining this with an algebraic argument using the corre-
spondence between multilinear polynomials with real coefficients and functionsdzom
to R. Formally, we consider the natural homomorphism from the Rpg1, Xo, ..., X,]
to the ring of functions frons,, to R given byp — f,, where thefp(v)ép(v). The kernel
of this map is the idedlgenerated by the polynomia{lﬁri2 —X;:i=1,2,...,n}. Hence,
we have a ring isomorphism between the rig= R[X1, Xo, ..., X,]/I and the ring of
functions fromB, to R. Every element oR[ X1, Xo, ..., X, 1/I is represented uniquely in
the formp(X) + I, wherep(X) is a multilinear polynomial.

Since[ ], fp =0, wehavethaf],., p =0inR. In particular, if we fix a polynomial
g € L and let

r= ] »

peL.p#q
thenr # 0 andgr = 0 in the ringR. Note that the degree ofis at mostL| — 1.
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Lemma 2. Let g and r be polynomials in.RSuppose q is linear with { 1) variables
r #0andgr = 0in R. Thenr has degree at Ieaé}

Before we present the proof of this lemma, let us derive our lower bound assuming that
it holds. Since the degree pis at mostL| — 1, we see that

k
LI>=+1
I|2+

and on combining this withl) we obtain the required lower bound.
2n 1
Theorem 2. |[L| > max{ o } >§<«/4n+1+1>.

We still need to prove Lemma

Proof. Let us assume thdty, ..., X; are the variables appearingdnSincer # 0, we
can choose a € B, such that(v) # 0. Fori = k+ 1, k+2,...,n, setX; = v;. We
now treatq andr are polynomials in variablesX; : i € [k]}. There is an assignmentto
{X; :i € [k]} under whichr does not evaluate to O; infa@fl,f, =v (i=12,...,k)issuch
an assignment. We ‘shift the origin’ td by substituting 1- X; for X; wheneven, = 1.
We have thus arranged that

(a) gandr are multilinear polynomials with variabléX; : i € [k]};

(b) ghas the formzl=1 o; X;, whereo; # 0fori € [k];

(c) r has degree at most the degree of the original polynomaidr (0) # O;
(d) gr =0inR.

To prove our lemma, it is sufficient to show thrahas degree at Ieaét We present two
arguments.

Proof. (1) ForT C [k], let X7 = [[;cr Xi. Write r = > rcig BrXr. Letd be the degree
of r; so, there is a seéf C [k] of sized such thatf; # 0, but for allT” with |T’| > d,
we havef;, = 0. If d = k, we have nothing to prove because tlen 5 k Assumed < k,
and let us examine the coefficients of the monomialgrirSincegr = O in R, each such
coefficient is 0. In particular, for each C [k] of sized + 1 we have

Y sy =0. )

ieS

ForT C [k], letor2 [1;cr 2. By dividing both sides of2) by a5, we get

Zﬁs—\‘f}=o.

ies S\
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Thus, if we defian’TéﬂT/acT, for T C [k] of sized, we obtain

S =0

rcS

where the sum ranges over subgets Sof size exacthyd. Thatis,(f; : T C [k], |T| = d)
constitutes a non-zero solution to the system of linear equations

A-p=0,

whereAis the (% ;) x (4) setinclusion matrix (with rows indexed by s&sf sized + 1
and columns by sefB of sized, andA[S, T] = 1if S O T andA[S, T] = 0 otherwise).
This matrix has rank mig(}). (, ,)} (this was shown many times, but the first proof we are
aware of is ir[3]). Since not aljg; are 0, we hanédil) < (S) that is,d > £ _

(2) LetP be the set of variables that appeangiwith positive coefficients. By replacing
g by —¢q if necessary, we ensure tha?| < ’5 Set the variables i? to 0. Now, the only
assignment to the remaining variables under whijid0 is the all-zeros assignment. View
andr as non-zero multilinear polynomials k> ’% variables. Sincgr = 0 andg(w) # 0
forall w € B\ {0}, we have (w) = Oforallw € B\ {0}. We already know that(0) # O.
A result of Alon and Fired]1] states that in this situatianhas degree at leakt Indeed,
the multilinear polynomial(0) [ ;4 p(1 — Xi) andr agree on all points ifB. Since
functions onB; are represented uniquely by multilinear polynomials, this polynomial must
ber; hencer has degree at leakt> ’5 Il

3.1. Alower bound using Sperner’s theorem

A lower bound fore(n) can be obtained using a combinatorial argument. This lower
bound is weaker than the lower bound derived above using algebraic arguments, but the
combinatorial argument is applicable to coverings of the hypercube by structures more
general than hyperplanes. In this section, we present the combinatorial lower boed for
and bounds for covering the hypercube by combinatorial structures related to hyperplanes.

The combinatorial lower bound fan(n): Let L be an essential cover 8§, with variables
{X; : 1<i<n}. Letk = |n?/3|. Let L, be the subset of produced by the following
greedy procedure.

Initially, L, = @.

Let Sdenote the set of variables that appear in some polynomia {iso, initially
S = 0). If there is a polynomiap € L\ L1 such thap has at mosk variables outside
S thensetL1 < L1 U {p}. Repeat.

Clearly,

AR
k

If |S|>%, we seethalL| >|L1| = Q@'/3).1f |S|< %, then every polynomial i =L\ L1
has more thak variables outsid&. Furthermore, there is an assignment to the variables
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in Sunder which each polynomial ih; takes a non-zero value. So, on each of the'$
points of 5, compatible with this assignment, some polynomial jntakes the value 0. We
will show below that any one polynomial ib, evaluates to zero on a fraction at most

2—’<(ng> = 0(1/Vk)

of such points. SA.L|>|Lo| = Q(Vk) = Qn'/3).

Fix a polynomialp € L, with k¥’ > k variables. Letp(X) = Zf.‘/zl o X; — f. By
substituting - X; for X; whenever necessary, we can assume that;teare all positive.
We may view the 0-1 assignmentsXa, ..., X, as subsets dik’]. Then, it is easy to see
that the roots of this polynomial (corresponding to assignments to varigbjesi ¢ S))
have the formA x {0, 1}~ !SI=', whereA is an antichain of subsets pf]. By Sperner's

theorem[2,4] the size of the largest antichain of subset$kof is at mOSt(LZJ)' So, the
2

number of roots op is at most

2’1_|S_k/<L]ZJ> — 0281110,

2

Coverings using other combinatorial structur&ge now consider a combinatorial gen-
eralization of hyperplanes and study the problem of covering the hypercube using such
structures.

Definition 1. Let S = P U N be a partition ofS C [n]. Consider the ordering on subsets

of Swhere byA< B ifandonlyif AN P C BN PandBNN C AN N.An antichain in

the resulting partially ordered set is calledigned antichain of subsets oftBe elements

in P are to be thought of as positive elements and the elememsaie to be thought of

as negative elements). The usual antichain of subsets corresponds to the situation when
N = . A signed antichain cub€SAC) with supporSis a family of subsetg:] of the form

{AUB:Ae AandB C [n]\ S},

whereA be a signed antichain of subsetsSoff we restrict4 to be an antichain of subsets
of Swe get arantichain cubgAC) with support S

We may consider essential coversif (identifying elements of5, with subsets ofn]
in the natural manner) using SACs: every elemer?,o§hould appear in some SAC, every
element iniz] should be in the support of some SAC, and every SAC should have a private
point. Note that the set of points lying on a hyperplane form an SAC. So, the upper bound
obtained earlier is still valid. The algebraic proof of the lower bound is no longer valid,
but the combinatorial proof can be easily adapted to this setting, yielding the(darhé)
lower bound.

What about essential covers 8f by ACs? The family of hyperpland$" ; X; = j :
0<j <n}is an essential cover @&, by ACs. We do not know a better upper bound. The
lower bound ofQ(n1/3) observed above for essential coverspfby SACs is still valid.
We can improve this bound @Q(./n) if we restrict ourselves to ACs.
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To get the lower bound d®(,/»), we first use a greedy procedure similar to the one used
above. Letk = Lﬁj LetL be an essential cover &, by ACs. LetL1 be the subset df
returned by the following greedy procedure.

Initially, L1 = @.

Let | denote the union of the supports of the ACs that appedriifso, initially
I = ). If there is an elemenf € L \ L1 whose support has at mdstlements
outsideS then setL; <~ L1 U {C}. Repeat.

As before,|L1|>',€—|. If |[I| = n, we have|L|>|L1| = «/n. If |I| < n, L1 is a proper
subset ofL, and there is a se§ C [ that is not in any of the ACs i1 (because no
proper subset of coversj5,). Consider the: — |I| dimensional subcube consisting of
those subsets dfi] whose intersection withis exactlyS. Note that the restriction of an
AC in L — L1 to this subcube is an AC whose support has at least elements. We thus
obtain a subcube d8,, that is covered by a sét’ (with |L’|<|L|) of ACs all of whose
supports have at least+ 1 elements. In this situation the following lemma implies that
L\ >|L'|2k+2> n+1.

Lemma 3. LetC be a cover of3,, by ACs such that the support of each elemerit bés
size at leastKThen |C| >k + 1.

Proof. Letr be a random permutation pi]. Consider the chain of sefs= Ag C A1 C

. C Ay, whereA; £{n(1), n(2), ..., n(i)}. We will show that the expected number of
elements of this chain that appear in any one AC iis at most(m + 1)/(k + 1). Since
there aren + 1 elements in this chain, it follows that| >k + 1.

Fix someC e C. To estimate the number elementsin the random chain, it will be
convenient to generate the permutatiaumsing the following two-step experiment. Suppose
Sis the support o€ andShast elements. Letd be the antichain of subsets $associated
with C.

Stepl: Pick a random permutatian= (i1, i, .. ., i¢) of S, with each of the!! possibil-
ities being equally likely.

Step2: Extends to a random permutatiom of [m], by inserting the elements g#i] \ S
one after another into the gaps. That is, we insert the first element into onefof thgaps
at random, insert the second element into the resultir@® gaps at random, and so on.

Clearly, the permutationthus generated is equally likely to be any of thigoermutations
of [m]. Consider the situation aftethas been chosenin Step 1. Siotis an antichain, there
is at most one positiop € {0, ..., £} for which the setB; = {i1, ip,...,i;}isin.4. Now,
consider the extensianof ¢ generated in Step 2, and the resulting ch@ip: 0<i <m).

If A;isinC,then,B; C A; and (unlesg = () A; C B;;1. Thatis, the number of elements
of the random chain that are @is at most one plus the number of element$mf — S

that appear between andi; 1 in 7 (Whenj = 0, we consider all elements that appear to
the left ofi1 in =, and whenj = ¢ we consider the elements that appear to the right of
in .) Thus, for each choice ef in Step 1, the (conditional) expected number of elements
the random chain shares withis at most 1+ 2=£ = 2£L Qur claim follows from this by

: : 1 — +1
averaging over the choices ofin the Step 1. [
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