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Abstract

A setL of linear polynomials in variablesX1, X2, . . . , Xn with real coefficients is said to be an
essential cover of the cube{0,1}n if

(E1) for eachv ∈ {0,1}n, there is ap ∈ L such thatp(v) = 0;
(E2) no proper subset ofL satisfies (E1), that is, for everyp ∈ L, there is av ∈ {0,1}n such thatp

alone takes the value 0 onv;
(E3) every variable appears (in some monomial with non-zero coefficient) in some polynomial ofL.

Let e(n) be the size of the smallest essential cover of{0,1}n. In the present note we show that
1

2
(
√
4n+ 1+ 1)�e(n)�

⌈n
2

⌉
+ 1.
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1. Introduction

What is the least number of hyperplanes that cover all the points ofBn�{0,1}n? The
obvious answer is “two”. This set is full-dimensional, so no single hyperplane will do, and
on the other hand the two hyperplanesX1 = 0 and 1 do.This solution is unsatisfactory, since
this is really a one-dimensional solution. For the answer to make sense, we should insist
that every variable appears in the equation defining one of the hyperplanes. This is still,
however, not a good formulation of the problem, for wemay consider the three hyperplanes
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X1 = 0,1 and∑i Xi = 17. Granted, now all variables appear, but the last hyperplane is
redundant. This already brings us to the main concept under consideration here.
A collectionL of linear polynomials in variablesX = {X1, X2, . . . , Xn} with real coef-

ficients is called anessential coverof Bn = {0,1}n if
(E1) for eachv ∈ Bn, there is ap ∈ L such thatp(v) = 0;
(E2) no proper subset ofL satisfies (E1), that is, for everyp ∈ L, there is av ∈ Bn such

thatp alone takes the value 0 onv (we say thatv is aprivate pointof p);
(E3) every variable appears (in some monomial with non-zero coefficient) in some poly-

nomial ofL.

Let e(n) be the size of the smallest essential cover ofBn. In the present note we show that
1

2

(√
4n+ 1+ 1

)
� e(n) �

⌈n
2

⌉
+ 1.

2. The upper bound

Casen = 1:L = {X,1−X} is an essential cover ofB1 of minimum size.
Casen = 2:L = {X1+X2− 1, X1−X2} is an essential cover ofB2 of minimum size.
One can combine these constructions to produce essential covers for other values ofn.

Lemma 1. SupposeL1 = {p1, p2, . . . , pe1} is an essential cover ofBm with variables
{Xi : i ∈ [m]} andL2 = {q1, q2, . . . , qe2} is an essential cover ofBn with variables
{Yi : i ∈ [n]}. Then,

L�{p1+ q1, p2, . . . , pe1, q2, . . . , qe2}
is an essential cover ofBm+n with variables{X1, X2, . . . , Xm, Y1, Y2, . . . , Yn}.

Proof. In order to verify thatL satisfies (E1), we show that everyv ∈ Bm+n is the root of
at least one of the polynomial inL. To see this, writevasv1v2, wherev1 ∈ Bm andv2 ∈ Bn.
If p2(v1), p3(v1), . . . , pm(v1), q2(v2), . . . , qn(v2) are all non-zero, thenp1(v1) = 0 and
q1(v2) = 0 (becauseL1 andL2 are essential covers). It follows thatp1(v1)+ q1(v2) = 0.
To show that (E2) holds, we need to verify that each polynomial inL has a private point.
For i = 1, . . . , e1, let vi be a private point ofpi in Bm; similarly, for j = 1, . . . , e2,
let wj be a private point ofqj in Bn. Then, fori = 2, . . . , e1, viw1 is the private point
of pi , and forj = 2, . . . , e2, v1wj is a private point ofqj ; also,v1w1 is a private point
for p1 + q1. SinceL1 andL2 are essential, it follows immediately that all variables in
{X1, X2, . . . , Xn, Y1, Y2, . . . , Ym} appear inL; so (E3) holds. �

By combining the essential cover forB2 with itself k times, we obtain the following
essential cover forB2k:

L = {X2i−1−X2i : i = 1,2, . . . , k} ∪ {X1+X2+ · · · +X2k − k}.
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For n = 2k + 1, we combine this cover ofB2k with the cover{Xn,Xn − 1} for B1, and
obtain

{X2i−1−X2i : i = 1,2, . . . , k} ∪ {X1+X2+ · · · +Xn − k} ∪ {Xn − 1}.
We thus have the following theorem.

Theorem 1. For all n�1,we havee(n)�
⌈
n
2

⌉+ 1.
Remark. (a) It is not hard to verify directly, without recourse to Lemma1, that the sets
defined above are essential covers.
(b) While combining essential covers using Lemma1, we can choose the polynomials

p1 andq1 as we wish. By choosing them carefully, we can find an essential cover in which
no polynomial has more than four variables. For example, taken = 2k and use variables
X1, X2, . . . , Xk, Y1, Y2, . . . , Yk. Then, we have the following essential cover forBn:

{X1+ Y1− 1} ∪ {Xi − Yi +Xi+1+ Yi+1− 1 : i = 1,2, . . . , k − 1}
∪ {Xk − Yk}.

3. The lower bound

Preliminaries: In this section, we derive lower bounds one(n). LetL be an essential cover
ofBn. Since (E3) holds, every variable appears in some polynomial inL. Consider a variable
Xi and letp ∈ L be a polynomial in whichXi appears. By (E2),p has a private point�.
Let�′ be the point obtained from� complementing the value ofXi . Now,p cannot take the
value 0 on�′, so (to satisfy (E1)) there must be another polynomialp′ ∈ L that takes the
value 0 on�′. Now,Xi appears inp′, or else� is not a private point ofp. We conclude that
every variable appears at least twice inL. Let k be the maximum number of variables that
appear in any polynomial inL. We immediately have

|L| � 2n

k
. (1)

Our lower bound follows by combining this with an algebraic argument using the corre-
spondence between multilinear polynomials with real coefficients and functions fromBn
toR. Formally, we consider the natural homomorphism from the ringR[X1, X2, . . . , Xn]
to the ring of functions fromBn toR given byp �→ fp, where thefp(v)�p(v). The kernel
of this map is the idealI generated by the polynomials{X2i −Xi : i = 1,2, . . . , n}. Hence,
we have a ring isomorphism between the ringR = R[X1, X2, . . . , Xn]/I and the ring of
functions fromBn toR. Every element ofR[X1, X2, . . . , Xn]/I is represented uniquely in
the formp(X)+ I , wherep(X) is a multilinear polynomial.
Since

∏
p∈L fp = 0, we have that

∏
p∈L p = 0 inR. In particular, if we fix a polynomial

q ∈ L and let
r�

∏
p∈L,p �=q

p,

thenr �= 0 andqr = 0 in the ringR. Note that the degree ofr is at most|L| − 1.
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Lemma 2. Let q and r be polynomials in R. Suppose q is linear with k(�1) variables,
r �= 0 andqr = 0 in R. Then, r has degree at leastk2.

Before we present the proof of this lemma, let us derive our lower bound assuming that
it holds. Since the degree ofr is at most|L| − 1, we see that

|L|� k

2
+ 1

and on combining this with (1) we obtain the required lower bound.

Theorem 2. |L|� max

{
2n

k
,
k

2
+ 1

}
� 1

2

(√
4n+ 1+ 1

)
.

We still need to prove Lemma2.

Proof. Let us assume thatX1, . . . , Xk are the variables appearing inq. Sincer �= 0, we
can choose av ∈ Bn such thatr(v) �= 0. For i = k + 1, k + 2, . . . , n, setXi = vi . We
now treatq andr are polynomials in variables{Xi : i ∈ [k]}. There is an assignmentv′ to
{Xi : i ∈ [k]} under whichr does not evaluate to 0; in fact,v′i = vi (i = 1,2, . . . , k) is such
an assignment. We ‘shift the origin’ tov′ by substituting 1− Xi for Xi wheneverv′i = 1.
We have thus arranged that

(a) q andr are multilinear polynomials with variables{Xi : i ∈ [k]};
(b) q has the form

∑k
i=1 �iXi , where�i �= 0 for i ∈ [k];

(c) r has degree at most the degree of the original polynomialr, andr(0) �= 0;
(d) qr = 0 inR.
To prove our lemma, it is sufficient to show thatr has degree at leastk2. We present two
arguments.

Proof. (1) ForT ⊆ [k], letXT�∏
i∈T Xi . Write r =

∑
T⊆[k] �T XT . Let d be the degree

of r; so, there is a setT ⊆ [k] of sized such that�T �= 0, but for allT ′ with |T ′| > d,
we have�T ′ = 0. If d = k, we have nothing to prove because thend� k

2. Assumed < k,
and let us examine the coefficients of the monomials inqr. Sinceqr = 0 in R, each such
coefficient is 0. In particular, for eachS ⊆ [k] of sized + 1 we have

∑
i∈S

�i�S\{i} = 0. (2)

ForT ⊆ [k], let �T�∏
i∈T �i . By dividing both sides of (2) by �S , we get

∑
i∈S

�S\{i}
�S\{i}

= 0.
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Thus, if we define�′T��T /�T , for T ⊆ [k] of sized, we obtain∑
T⊆S

�′T = 0,

where the sum ranges over subsetsTof Sof size exactlyd. That is,(�′T : T ⊆ [k], |T | = d)
constitutes a non-zero solution to the system of linear equations

A · �̄ = 0,
whereA is the

(
k
d+1

)× (
k
d

)
set inclusion matrix (with rows indexed by setsSof sized + 1

and columns by setsT of sized, andA[S, T ] = 1 if S ⊇ T andA[S, T ] = 0 otherwise).
This matrix has rank min{(k

d

)
,
(
k
d+1

)} (this was shownmany times, but the first proof we are
aware of is in[3]). Since not all�′T are 0, we have

(
k
d+1

)
<

(
k
d

)
, that is,d� k

2.
(2) LetP be the set of variables that appear inqwith positive coefficients. By replacing

q by −q if necessary, we ensure that|P |� k
2. Set the variables inP to 0. Now, the only

assignment to the remaining variables under whichq is 0 is the all-zeros assignment.Viewq
andr as non-zero multilinear polynomials ink′� k

2 variables. Sinceqr = 0 andq(w) �= 0
for allw ∈ Bk′ \{0}, we haver(w) = 0 for allw ∈ Bk′ \{0}.We already know thatr(0) �= 0.
A result of Alon and Füredi[1] states that in this situationr has degree at leastk′. Indeed,
the multilinear polynomialr(0)

∏
i∈[k]\P (1− Xi) andr agree on all points inBk′ . Since

functions onBk′ are represented uniquely bymultilinear polynomials, this polynomial must
ber; hence,r has degree at leastk′� k

2. �

3.1. A lower bound using Sperner’s theorem

A lower bound fore(n) can be obtained using a combinatorial argument. This lower
bound is weaker than the lower bound derived above using algebraic arguments, but the
combinatorial argument is applicable to coverings of the hypercube by structures more
general than hyperplanes. In this section, we present the combinatorial lower bound fore(n)

and bounds for covering the hypercube by combinatorial structures related to hyperplanes.
The combinatorial lower bound fore(n): LetL be an essential cover ofBn with variables
{Xi : 1� i�n}. Let k =

⌊
n2/3

⌋
. Let L1 be the subset ofL produced by the following

greedy procedure.

Initially, L1 = ∅.
LetSdenote the set of variables that appear in some polynomial inL1 (so, initially

S = ∅). If there is a polynomialp ∈ L \L1 such thatp has at mostk variables outside
S, then setL1← L1 ∪ {p}. Repeat.
Clearly,

|L1|� |S|
k
.

If |S|� n
2, we see that|L|� |L1| = �(n1/3). If |S|� n

2, then every polynomial inL2�L\L1
has more thank variables outsideS. Furthermore, there is an assignment to the variables
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in Sunder which each polynomial inL1 takes a non-zero value. So, on each of the 2n−|S|
points ofBn compatible with this assignment, some polynomial inL2 takes the value 0.We
will show below that any one polynomial inL2 evaluates to zero on a fraction at most

2−k
(
k⌊
k
2

⌋
)
= O(1/√k)

of such points. So,|L|� |L2| = �(
√
k) = �(n1/3).

Fix a polynomialp ∈ L2 with k′ > k variables. Letp(X) = ∑k′
i=1 �iXi − �. By

substituting 1−Xi forXi whenever necessary, we can assume that the�i ’s are all positive.
We may view the 0-1 assignments toX1, . . . , Xk′ as subsets of[k′]. Then, it is easy to see
that the roots of this polynomial (corresponding to assignments to variables(Xi : i �∈ S))
have the formA × {0,1}n−|S|−k′ , whereA is an antichain of subsets of[k′]. By Sperner’s
theorem[2,4] the size of the largest antichain of subsets of[k′] is at most( k′⌊

k′
2

⌋). So, the
number of roots ofp is at most

2n−|S|−k′
(
k′⌊
k′
2

⌋)
= O(2n−|S|/√k′).

Coverings using other combinatorial structures: We now consider a combinatorial gen-
eralization of hyperplanes and study the problem of covering the hypercube using such
structures.

Definition 1. Let S = P ∪ N be a partition ofS ⊆ [n]. Consider the ordering on subsets
of Swhere byA�B if and only ifA ∩ P ⊆ B ∩ P andB ∩ N ⊆ A ∩ N . An antichain in
the resulting partially ordered set is called asigned antichain of subsets of S(the elements
in P are to be thought of as positive elements and the elements inN are to be thought of
as negative elements). The usual antichain of subsets corresponds to the situation when
N = ∅. A signed antichain cube(SAC) with supportSis a family of subsets[n] of the form

{A ∪ B : A ∈ A andB ⊆ [n] \ S},
whereA be a signed antichain of subsets ofS. If we restrictA to be an antichain of subsets
of Swe get anantichain cube(AC) with support S.

We may consider essential covers ofBn (identifying elements ofBn with subsets of[n]
in the natural manner) using SACs: every element ofBn should appear in some SAC, every
element in[n] should be in the support of some SAC, and every SAC should have a private
point. Note that the set of points lying on a hyperplane form an SAC. So, the upper bound
obtained earlier is still valid. The algebraic proof of the lower bound is no longer valid,
but the combinatorial proof can be easily adapted to this setting, yielding the same�(n1/3)
lower bound.
What about essential covers ofBn by ACs? The family of hyperplanes{∑n

i=1Xi = j :
0�j�n} is an essential cover ofBn by ACs. We do not know a better upper bound. The
lower bound of�(n1/3) observed above for essential covers ofBn by SACs is still valid.
We can improve this bound to�(

√
n) if we restrict ourselves to ACs.
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To get the lower bound of�(
√
n), we first use a greedy procedure similar to the one used

above. Letk = ⌊√
n
⌋
. LetL be an essential cover ofBn by ACs. LetL1 be the subset ofL

returned by the following greedy procedure.

Initially, L1 = ∅.
Let I denote the union of the supports of the ACs that appear inL1 (so, initially

I = ∅). If there is an elementC ∈ L \ L1 whose support has at mostk elements
outsideS, then setL1← L1 ∪ {C}. Repeat.
As before,|L1|� |I |k . If |I | = n, we have|L|� |L1| = √n. If |I | < n, L1 is a proper

subset ofL, and there is a setS ⊆ I that is not in any of the ACs inL1 (because no
proper subset ofL coversBn). Consider then − |I | dimensional subcube consisting of
those subsets of[n] whose intersection withI is exactlyS. Note that the restriction of an
AC in L− L1 to this subcube is an AC whose support has at leastk + 1 elements. We thus
obtain a subcube ofBn, that is covered by a setL′ (with |L′|� |L|) of ACs all of whose
supports have at leastk + 1 elements. In this situation the following lemma implies that
|L|� |L′|�k + 2> √n+ 1.

Lemma 3. LetC be a cover ofBm by ACs such that the support of each element ofC has
size at least k. Then, |C|�k + 1.

Proof. Let � be a random permutation of[n]. Consider the chain of sets∅ = A0 ⊆ A1 ⊆
· · · ⊆ An, whereAi�{�(1),�(2), . . . ,�(i)}. We will show that the expected number of
elements of this chain that appear in any one AC inC is at most(m + 1)/(k + 1). Since
there arem+ 1 elements in this chain, it follows that|C|�k + 1.
Fix someC ∈ C. To estimate the number elements ofC in the random chain, it will be

convenient to generate the permutation� using the following two-step experiment. Suppose
Sis the support ofCandShas" elements. LetA be the antichain of subsets ofSassociated
with C.
Step1: Pick a random permutation� = (i1, i2, . . . , i") of S, with each of the"! possibil-

ities being equally likely.
Step2: Extend� to a random permutation� of [m], by inserting the elements of[m] \ S

one after another into the gaps. That is, we insert the first element into one of the"+1 gaps
at random, insert the second element into the resulting"+ 2 gaps at random, and so on.
Clearly, thepermutation� thusgenerated is equally likely to beanyof them!permutations

of [m]. Consider the situation after�has been chosen inStep 1. SinceA is an antichain, there
is at most one positionj ∈ {0, . . . , "} for which the setBj = {i1, i2, . . . , ij } is inA. Now,
consider the extension� of � generated in Step 2, and the resulting chain(Ai : 0� i�m).
If Ai is inC, then,Bj ⊆ Ai and (unlessj = ")Ai ⊂ Bj+1. That is, the number of elements
of the random chain that are inC is at most one plus the number of elements of[m] − S
that appear betweenij andij+1 in � (Whenj = 0, we consider all elements that appear to
the left of i1 in �, and whenj = " we consider the elements that appear to the right ofi"
in �.) Thus, for each choice of� in Step 1, the (conditional) expected number of elements
the random chain shares withC is at most 1+ m−"

"+1 = m+1
"+1 . Our claim follows from this by

averaging over the choices of� in the Step 1. �
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