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What are we talking about?

The geometric viewpoint of combinatorics suggests
that many basic combinatorial constructs are
one-dimensional. Our purpose here is to explore
their fascinating high-dimensional counterparts.

I Latin squares are the two-dimensional analogs
of permutations.

I Hypertrees extend the notion of a tree.

I There is an emerging theory of
high-dimensional tournaments

I Simplicial complexes offer a high-dimensional
perspective of graph theory.
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Yes, graphs are everywhere, but why?

One major reason for the phenomenal success of
graphs in real life applications is this:
In numerous real-life situations we need to
understand a large complex system whose
elementary constituents are pairwise interactions.

I Interacting elementary particles in physics.

I Proteins in some biological system.

I Partners in an economic transaction.

I Humans in some social context.
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But what can we do about multi-way
interactions?

I Proteins come, more often than not, in
complexes that involve several proteins at once.

I Human social networks tend to include several
individuals.

I Economics transactions often involve several
parties at once.

I Distributed systems are many-sided by their
very nature.
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Hypergraphs, anyone?

There is a combinatorial theory of hypergraphs. A
hypergraph (V ,F ) consists of a set of vertices V
and a collection F of subsets of V . The sets that
belong to F are called hyperedges.
If every hyperedge contains exactly two vertices we
are back to graphs.
These are the good news. The bad news are that
the theory of hypergraphs is not nearly as well
developed as graph theory.
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Never despair -
Simplicial complexes to the rescue

We only need to make a small modification to the
notion of hypergraph to arrive at simplicial
complexes. This way we make contact with a rich
body of powerful mathematics in topology and
geometry that can help us.
What’s more - many fascinating new connections
and perspectives suggest themselves.
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Definition
Let V be a finite set of vertices. A collection of
subsets X ⊆ 2V is called a simplicial complex if it
satisfies the following condition:

A ∈ X and B ⊆ A⇒ B ∈ X .

A member A ∈ X is called a simplex or a face of
dimension |A| − 1.
The dimension of X is the largest dimension of a
face in X .

Nati Linial A glimpse of high-dimensional combinatorics



Up up and away

I A one-dimensional simplicial complex = A
graph.

I A zero-dimensional face = A vertex.
I A one-dimensional face = an edge.

I Higher dimensional complexes offer a wonderful
mix of combinatorics with geometric (mostly
topological) ideas.

I The challenge - to develop a combinatorial
perspective of higher dimensional complexes.
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Simplicial complexes as geometric objects

Assign to A ∈ X with |A| = k + 1 a k-dim. simplex

k = 3

k = 0

k = 1

k = 2
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Putting simplices together properly

The intersection of every two simplices in X is a
common face.
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How NOT to do it

Not every collection of simplices in Rd is a simplicial
complex
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Geometric equivalence

Combinatorially different complexes may correspond
to the same geometric object (e.g. via subdivision)

Nati Linial A glimpse of high-dimensional combinatorics



Geometric equivalence

So
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Geometric equivalence

and
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Geometric equivalence

are two different combinatorial descriptions of the
same geometric object
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Recall: The incidence matrix of a graph

V × E Vertices vs. edges.

AG =



. . . ij . . . . . . . . .
... . . . . . . . . . . . . . . .
i . . . +1 . . . . . . . . .
... . . . . . . . . . . . . . . .
j . . . −1 . . . . . . . . .
... . . . . . . . . . . . . . . .


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The incidence matrix tells many things

I G is connected iff AG has a trivial left kernel.
I Because AG ’s left kernel is the linear span of the

indicator vectors of G ’s connected components.

I The cycle space of G is the right kernel of AG .
I Because AG ’s right kernel is the linear span of the

indicator vectors of G ’s cycle.
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Recall: Equivalent descriptions of trees

Theorem
If G = (V ,E ) is a graph with n vertices and n − 1
edges, the TFAE

1. G is connected.

2. G is acyclic.

3. The columns corresponding to E (G ) are
linearly independent.

4. They form a column basis for AKn
, the

incidence matrix of the complete graph.

5. G is collapsible.
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The equivalence of conditions 1, 2, 3, 4

The rank of AKn
is n− 1: There is exactly one linear

dependence among the n rows

1AKn
= 0.

1. G is connected ⇔ the left kernel of AG is
trivial.

2. G is acyclic ⇔ the right kernel of AG is zero.

3. The columns corresponding to E (G ) are
linearly independent.

4. They form a column basis for AKn
, the

incidence matrix of the complete graph.
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Collapsibility

An elementary collapse is a step where you remove
a vertex of degree one and the single edge that
contains it.

A graph G is collapsible if by repeated application
of elementary collapses you can eliminate all of the
edges in G .

Nati Linial A glimpse of high-dimensional combinatorics



Collapsing - a linear algebra perspective

Let AG be the incidence matrix of graph G . In an
elementary collapse we erase row i and column e of
AG where the (i , e) entry is the only nonzero entry
in the i -th row. Recall: e is the one and only edge
incident with vertex i .

G is collapsible if it is possible to eliminate all its
columns by a series of elementary collapses.

This implies that G is acyclic - Collapsing yields a
proof that the right kernel is empty.
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But note

Whereas conditions 1-4 are linear algebraic,
collapsibility is a purely combinatorial condition.
Indeed we will soon see that in higher dimensions

collapsibility implies conditions 1-4, but the reverse
implication does not hold.
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Setting up the ground

Here is the high-dimensional analog of the incidence
matrix.
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Boundary operators of simplicial cplexes

(d − 1)-dimensional faces vs. d-dimensional faces.

∂ =



. . . . . . ijk . . . . . . . . . . . . . . .
... . . . . . . . . . . . . . . . . . . . . . . . .
ij . . . . . . +1 . . . . . . . . . . . . . . .
... . . . . . . . . . . . . . . . . . . . . . . . .
ik . . . . . . −1 . . . . . . . . . . . . . . .
... . . . . . . . . . . . . . . . . . . . . . . . .
... . . . . . . . . . . . . . . . . . . . . . . . .
jk . . . . . . +1 . . . . . . . . . . . . . . .
... . . . . . . . . . . . . . . . . . . . . . . . .


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Does this tell us what a hypertree is?

We only know where to start:

Q: What is the rank of ∂d ?

A:
(
n−1
d

)
because ∂d−1∂d = 0.
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What is a d -dimensional hypertree?

It is a d-dimensional simplicial complex with

I A full (d − 1)-dimensional skeleton.

I It has
(
n−1
d

)
d-dimensional faces.

So that

I ∂d has a trivial left kernel.

I ∂d has a zero right kernel.

I The columns of ∂d for a column basis to
boundary operator of the full matrix of all
(d − 1)-faces vs. all d-faces.
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What about collapsibility?

Let X be a d-dimensional complex.
If some (d − 1)-dimensional face τ is contained in a
unique d-dimensional face σ, then the
corresponding elementary collapse is to eliminate
both τ and σ from X .
X is d-collapsible if it is possible to eliminate all its
d-faces by a series of elementary collapses.
Collapsibility implies acyclicity. But....
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A little surprise(
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Figure: A triangulation of the projective plane
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A little surprise

This example is showing us (at least) two things:
Unlike the 1-dimensional case of graphs, the
definition of a d-dimensional hypertree depends on
the underlying field.

Indeed: The 6-point triangulation of the projective
plane is a Q-hypertree, but not a F2-hypertree.
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In dimension ≥ 2 collapsibility is stronger than
being a hypertree.

In fact we state

Conjecture
For every d ≥ 2 and for every field F and n→∞
almost none of the n-vertex d-dimensional
F-hypertrees are collapsible.
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If so...

Q: Can you, at least, come up with more examples
of non-collapsible hypertrees?
A construction: Let n be prime and d ≥ 2. Fix a
subset A ⊂ Zn of cardinality |A| = d + 1. The sum
complex XA corresponding to A has a full
(d − 1)-dimensional skeleton and contains a d-face
σ iff

∑
x∈σ x ∈ A.

Theorem (L., Meshulam, Rosenthal)
The complex XA is always a Q-hypertree. It is
collapsible iff A forms an arithmetic progression.

Nati Linial A glimpse of high-dimensional combinatorics



An old mystery

Q-hypertrees were introduced by Kalai (1983). He
proved a beautiful enumeration formula, analogous
to Cayley’s formula that there are nn−2 labeled trees
on n vertices. However, we still do not know:

Open Problem
For d ≥ 2 and large n, find (at least approximately)
the number of d-dimensional n-vertex Q-hypertrees.
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A recent surprise

Let G = (V ,E ) be a disconnected graph, and let
ij 6∈E . We say that ij is in G ’s shadow if i and j
belong to the same connected component of G .
In other words ij is in G ’s shadow iff the column
corresponding to the edge ij is in the linear span of
the columns of AG .

Easy Observation
Let G be an ”almost tree”, i.e., an n vertex forest
with n − 2 edges (and hence with two connected

components). Then at least (1− o(1))n
2

4 , i.e., at
least half of the remaining edges, are in G ’s shadow.
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Shadows in higher dimension

Construction: Let X be a 2-dimensional n-vertex
complex with a full 1-dimensional skeleton. The
2-faces of X are the arithmetic triples of difference
6= 1. Easy fact: The number of 2-faces in X is(
n−1

2

)
− 1 (one less than a 2-dimensional hypertree).

Theorem (L., Yuval Peled)
The complex X is Q-acyclic. Assuming the
Riemann hypothesis1, there are infinitely many
primes n for which X has an empty shadow.

1It actually suffices to assume the weaker Artin’s conjecture
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What next?

We want to develop a theory of random simplicial
complexes, in light of to random graph theory.
Specifically we seek a higher-dimensional analogue
to G (n, p).
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Recollections of G (n, p)

This is the grandfather of all models of random
graphs. Investigated systematically by Erdős and
Rényi in the 60’s, a mainstay of modern
combinatorics and still an important source of ideas
and inspiration.
Start with n vertices.
For each of the

(
n
2

)
possible edges e = xy , choose

independently and with probability p to include e in
the random graph that you generate.
Closely related model: the evolution of random
graphs starts with n vertices and no edges. At each
step add a random edge to the evolving graph.
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Back to the classics

Theorem (Erdős and Rényi ’60)
The threshold for graph connectivity in G (n, p) is

p =
ln n

n

Specifically, if p ≤ (1− ε) ln n
n , then a graph in

G (n, p) is, whp, disconnected.
On the other hand, if p ≥ (1 + ε) ln n

n , then a graph
in G (n, p) is, whp, connected.
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One part of this theorem is really easy

If p < (1− ε) ln n
n , then a random graph in G (n, p) is

not only almost surely disconnected.

In fact, in this range of p, the graph almost surely
has some isolated vertices.
This is an easy consequence of the coupon-collector
principle from probability theory.

That G is almost surely connected for
p > (1 + ε) ln n

n requires proof.
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A d -dimensional analog of G (n, p)

About 10 years ago, with R. Meshulam we
introduced the following model of a random
d-dimensiona n-vertex complex Xd(n, p). It is set
up so that in the one-dimensional case d = 1 the
X1(n, p) model is identical with G (n, p).
Start with a full (d − 1)-dimensional skeleon. (In
the case of graphs - start with n vertices.)
For each d-dimensional face σ, independently and
with probability p, decide whether σ ∈ X . (For
graphs - same with every edge).
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”Connectivity” in higher dimensions

Unlike the situation in graphs, there is more than
one way to capture the idea of ”connectivity” in
higher-dimensional simplicial complexes. Here we
concentrate on what is arguably the simplest one:

The boundary operator ∂d has a trivial left kernel.
But

∂d−1∂d = 0
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So, for every d-complex X

row space(∂d−1(X )) ⊆ left kernel(∂d(X )).

The row space of ∂d−1(X ) is the trivial part of
∂d(X )’s left kernel. We consider X ”connected”
when ∂d(X ) has a trivial left kernel, i.e., when

left kernel(∂d(X )) = row space(∂d−1(X )).

In mathematical parlance the name of this condition
is the vanishing of the (d − 1)-st homology of X .
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Remark
When d = 1 (i.e., for graphs)

row space(∂0(G )) = {α1|α ∈ F}

is one-dimensional, and we recover the usual
definition of graph connectivity.
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...and the answer is...

Theorem (L. - Meshulam, and

Meshulam-Wallach)
The threshold for connectivity of Xd(n, p) is

p =
d ln n

n
.

Specifically, whp, left kernel(∂d(X )) is

I nontrivial for p < (1− ε)d ln n
n , and

I trivial for p > (1 + ε)d ln n
n .
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Again, one part of the theorem is easy

When p < (1− ε)d ln n
n

the matrix ∂d(X ) almost surely contains an all-zeros
row
and consequently it has a nontrivial left kernel.

Such a row corresponds to an (d − 1)-dimensional
face that is not contained in any of the randomly
chosen d-dimensional faces.

The proof that such an ”isolated” (d − 1)-face
exists, is a straightforward coupon-collector
argument.
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Back to G (n, p) theory - the evolution of
random graphs

The most dramatic chapter in Erdős-Rényi papers
on G (n, p) is the phase transition in the evolution of
random graphs.

Start with n isolated vertices and sequentially add a
new random edge, one at a time.
Observe the connected components of the evolving
graph.
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Prelude - The early stages

At the very beginning we see only isolated edges (a
matching).

As we proceed, more complex connected
components start to appear, but still they are all
small and simple.

I small = cardinality O(log n).

I simple = a tree.

I Possibly a constant number of exceptions
which are a small tree plus one edge = unicylic
graphs with O(log n) vertices.
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Crescendo - The phase transition

Around step n
2 and over a very short period of time

A GIANT COMPONENT EMERGES.

GIANT= cardinality Ω(n), i.e., a constant fraction
of the whole vertex set.

Note: Time n
2 corresponds to p = 1

n .
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In the wake of the revolution

Around step n
2 many other parameters are

undergoing an abrupt change.

In particular, for p < 1−ε
n , the probability that the

evolving graph contains a cycle is bounded away
from both zero and one.

However, for p > 1+ε
n , the graph almost surely

contains a cycle.

In other words, it almost surely ceases to be a forest.
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It’s not obvious what the analogous high
dimensional phenomenon is

There is no obvious notion of a connected
component in dimensions d ≥ 2.

So what can the analogous statement be?
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In search of the high-dimensional analog

There are at least two high-dimensional analogs of
the forest/non-forest transition in graphs.

I Collapsible/non-collapsible complex.

I Acyclic/acyclic (The right kernel of ∂d is
zero/non-zero) complex.

Recall: collapsible complexes are acyclic, so clearly

pcollapse ≤ pacyclic

But is the inequality strict?
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Let the experiment speak

Experimenting with G (n, p): Start with n vertices.
Sequentially add a random edge and record whether
or not this edge connects two distinct connected
components.
Equivalently: Is this edge in the sun/in the shade?
In other words: The addition of an edges can only
increase the right kernel of AG . Does it stay the
same or does it go up?
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Experimenting with Xd(n, p): Start with a full
(d − 1)-dimensional skeleton. Sequentially add a
random d-face and record whether or not this new
face is in the sun/in the shade.
In other words: Does the right kernel of ∂d(X ) stay
the same or does it get larger as the new face is
added?
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A view of phase transition in G (n, p)
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Phase transition in X2(n, p) complexes
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Mysteries resolved

I The collapsibility threshold is substantially
smaller than the acyclicity threshold.

I (Easy) In G (n, p) the emergence of the giant
component is concurrent with the emergence of
the giant shadow. ”Giant” means Ω(n2) edges.

I In all dimensions d ≥ 1 the acyclicity threshold
coincides with the emergence of a giant
shadow (Ω(nd+1) faces of dimension d).

I Whereas this is a second order phase transition
in graphs, for d ≥ 2 this is a first order phase
transition.
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Mysteries resolved

Theorem[Lior Aronshtam, L., Tomasz  Luczak, Roy
Meshulam, Yuval Peled]

I The collapsibility threshold in Xd(n, p) is

(1 + od(1))
log d

n
.

I The threshold for almostly having a cycle in
Xd(n, p) is

d + 1− od(1)

n
.
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Mysteries resolved

I This is also where a giant shadow of Ω(nd+1)
faces of dimension d shows up.

I In the evolution of random simplicial complexes
with d ≥ 2 the first occurring cycle is, almost
surely, either

I The boundary of a (d + 1)-dimensional simplex, or
I A cycle that includes Ω(nd) faces of dimension d .
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That’s all folks
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