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Abstract: An internal partition of an n-vertex graph G = (V, E ) is a par-
tition of V such that every vertex has at least as many neighbors in its
own part as in the other part. It has been conjectured that every d -regular
graph with n > N(d ) vertices has an internal partition. Here we prove this
for d = 6. The case d = n − 4 is of particular interest and leads to inter-
esting new open problems on cubic graphs. We also provide new lower
bounds on N(d ) and find new families of graphs with no internal partitions.
Weighted versions of these problems are considered as well. C© 2015 Wiley

Periodicals, Inc. J. Graph Theory 00: 1–14, 2015
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1. INTRODUCTION

It is well known that every finite graph G = (V, E ) has an external partition, that is, a
splitting of V into two parts such that each vertex has at least half of its neighbors in
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FIGURE 1. Examples of internal partitions.

the other part. This is, for example, true for G’s max-cut partition. Much less is known
about the internal partition problem in which V is split into two nonempty parts, such
that each vertex has at least half of its neighbors in its own part. Not all graphs have an
internal partition and their existence is proved only for certain classes of graphs. Several
investigators (e.g., DeVos[5]) have raised the conjecture that for every d there is an n0

such that every d-regular graph with at least n0 vertices has an internal partition. Here
we prove the case d = 6 of this conjecture.

A related intriguing concept in this area is the notion of external bisection. This is an
external partition in which the two parts have the same cardinality. We conjecture that the
Petersen graph is the only connected bridgeless cubic graph with no external bisection.
We take some steps in resolving this problem.

These concepts have emerged in several different areas and as a result there is an
abundance of terminologies here. Thus Gerber and Kobler [7] used the term satisfactory
partition for internal partitions. Internal/external partitions are called friendly and un-
friendly partitions sometimes. Morris[9] studied social learning, and considered a more
general problem. Now we want to partition V = A∪̇B with A, B �= ∅ such that every
x ∈ A (respectively, y ∈ B) has at least qd(x) of its neighbors in A (respectively, at least
(1 − q)d(y) neighbors in B). He refers to such sets as (q/1 − q)-cohesive. Here we use
the term q-internal partitions. The complementary notion of q-external partitions is
considered as well.

Figure 1 shows examples of internal partitions of cubic graphs.
Bazgan, Tuza, and Vanderpooten have written several papers [1, 2] on internal parti-

tions. In [3] they give a survey of this area. Much of their work concerns the complexity
of finding such partitions, a problem that we do not address here.

Our own interest in this subject arose in our studies of learning in social or geograph-
ical networks. Vertices in these graphs represent individuals and edges stand for social
connection or geographical proximity. The individuals adopt one of two choices of a
social attribute (e.g., PC or Mac user). Society evolves over time, with each individual
adopting the choice of the majority of her neighbors. We asked whether a stable, diverse
assignment of choices is possible in such a society. This amounts to finding an internal
partition if the social choices are equally persuasive. It is also of interest to consider the
problem when choices carry different persuasive power (say a neighbor who is a Mac
user is more persuasive than a PC neighbor). If the merits are in proportion q : 1 − q, this
leads to the problem of finding a q-internal partition.
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Thomassen [12] showed that for every two integers s, t > 0 there is a g = g(s, t) such
that every graph G = (V, E ) of minimum degree at least g has a partition V = V1∪̇V2 so
that the induced subgraphs G(V1), G(V2) have minimum degree at least s, t, respectively.
He conjectured that the same holds with g(s, t) = s + t + 1, which would be tight for
complete graphs. Stiebitz [11] proved this conjecture, and extended it as follows: For every
a, b : V �→ Z+ such that ∀v ∈ V, dG(v) ≥ a(v) + b(v) + 1, there exists a partition of
V = A∪̇B, such that ∀v ∈ A, dA(v) ≥ a(v) and ∀v ∈ B, dB(v) ≥ b(v). Kaneko [8] showed
that in triangle-free graphs the same conclusion holds under the weaker assumption
dG(v) ≥ a(v) + b(v).

Stiebitz’s result shows that, given q ∈ (0, 1), every graph has a nontrivial partition,
which is at most one edge (for each vertex) short of being a q-internal partition. Shafique
and Dutton [10] showed the existence of internal partitions in all cubic graphs except K4

and K3,3 and in all 4-regular graphs except K5. In this article, we settle the problem for
6-regular graphs.

Shafique and Dutton also conjectured that K2k+1 is the only d = 2k-regular graph with
no internal partition. We disprove this and present a number of counterexamples. Many of
these exceptions are with d ≥ n − 4. This range turns out to be of interest and we discuss
it as well. As we show, there exist d-regular n-vertex graphs with no internal partitions
with both d and n − d arbitrarily large. We conjecture that every 2k-regular graph with
n ≥ 4k has an internal partition. In the process, we consider external bisections of regular
graphs, and especially cubic graphs. We note that all class 1 cubic graphs have an external
bisection, and speculate that for bridgeless class 2 cubic graphs, only graphs that have
the Petersen graph as a component do not have such a bisection.

Bollobás and Scott[4] made a related conjecture that any graph G has a near-bisection
(A, B) such that

|N(a) ∩ A| ≤ |N(a) ∩ B| + 1 (1)

for every a ∈ A, and similarly for every a ∈ B. This entails that every 2d-regular graph
has an external bisection.

Finally, we conjecture that for every integer d and real 1 > q > 0, where qd is an
integer, there is an integer μ such that every d-regular graph of order at least μ has a
q-internal partition. We also conjecture this for q = 1/2 and d odd. As we show, for d
fixed and large n, every n-vertex d-regular graph has many q-internal partitions for some
q. This lends some support to our conjecture.

2. TERMINOLOGY

We consider undirected graphs G = (V, E ) with n vertices. For S ⊂ V , we denote by
G(S) the induced subgraph of S. The degree of v ∈ V is denoted by d(v) = dG(v) and
the number of neighbors that v has in S ⊆ V is called dS(v). The complement of G is
denoted by Ḡ.

A partition (A, B) is trivial if |A| = 0 or |B| = 0. A bisection of V = A∪̇B is a partition
with |A| = |B|. If ||A| − |B|| ≤ 1, then we call it a near-bisection. Corresponding to the
partition (A, B) of V is the cut E(A, B) = EG(A, B) = {xy ∈ E|x ∈ A, y ∈ B}. For x ∈ A
and y ∈ B, we call dA(x), dB(y), respectively, the vertices’ indegrees, and dB(x), dA(y)

the outdegrees. These terms usually refer to directed graphs, but we could not resist the
convenience of using them in the present context.

Journal of Graph Theory DOI 10.1002/jgt
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We denote by δ(G), �(G), respectively, the minimum and maximum degree of G’s
vertices. A subset S ⊆ V is called p-cohesive if δ(G(S)) ≥ p. (Note that our notion of
cohesion differs from that of Morris [9]). It is called (p − 1)-degenerate if no S′ ⊆ S is
p-cohesive.

A nontrivial partition (A, B) is q-internal for q ∈ (0, 1) if ∀x ∈ A, dA(x) ≥ qdG(x) and
∀x ∈ B, dB(x) ≥ (1 − q)dG(x). A 1

2 -internal partition is simply internal.
If ∀x ∈ A, dB(x) ≥ qdG(x) and ∀x ∈ B, dA(x) ≥ (1 − q)dG(x) we call a nontrivial par-

tition q-external. A 1
2 -external partition is external.

A q-internal or a q-external partition is called integral if for every v ∈ V , qdG(v) is an
integer.

A q-internal partition (A, B) is exact if |A| = qn, and near-exact if ||A| − qn| < 1.
A q-external partition (A, B) is exact if |B| = qn, and near-exact if ||B| − qn| < 1. For
q = 1

2 , exact partitions are bisections, and near-exact partitions are near-bisections.

3. INTERNAL PARTITIONS OF 6-REGULAR GRAPHS

Lemma 1. Let G = (V, E ) be a graph with minimal degree d. For 0 < k < |V |, let
(A, B) be a partition of V that attains min |E(A, B)| over all partitions with |A| = k or
|B| = k. Then, either

1. A is l-cohesive and B is m-cohesive for some integers l, m with l + m = d, or
2. (a) A is l-cohesive and B is m-cohesive for some integers l, m with l + m = d − 1,

and
(b) The vertices in A with indegree l and the vertices in B with indegree m form a

complete bipartite subgraph in G, and
(c) For every x ∈ A with indegree l, B ∪ {x} is (m + 1)-cohesive. Similarly, A ∪ {x}

is (l + 1)-cohesive for every x ∈ B with indegree m.

Proof. Let x ∈ A, y ∈ B. If xy /∈ E then

|E((A\{x}) ∪ {y}, (B\{y}) ∪ {x})| − |E(A, B)|
= dA(x) − dB(x) + dB(y) − dA(y)

≤ 2[dA(x) + dB(y) − d].

If xy ∈ E, then

|E(((A\{x}) ∪ {y}, (B\{y}) ∪ {x})| − |E(A, B)|
= dA(x) − dB(x) + (dB(y) + 1) − (dA(y) − 1)

≤ 2[dA(x) + dB(y) − (d − 1)].

Since E(A, B) is minimal, it follows that the sum of indegrees is at least d − 1 if x, y are
adjacent, and d otherwise.

Let us apply this for x, y of minimum indegree. Then (1) follows if there is such a pair
with xy /∈ E. On the other hand, if xy ∈ E for all such pairs, then (2a) and (2b) follow.
We obtain (2c) directly from (2b). �
Corollary 1. Every n-vertex d-regular graph has a � d

2 �-cohesive set of at most � n
2�

vertices (respectively, n
2 + 1) for d even (for d odd).
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Proof. Consider a near-bisection of G that minimizes |E(A, B)|. By Lemma 1 if d is
even, at least one of A, B is d

2 -cohesive. If d is odd, and if neither A nor B are � d
2 �-cohesive,

then by (2a) both are � d
2 �-cohesive, and by (2c) each can be made � d

2 �-cohesive by adding
a vertex of the other. �
Theorem 1. Every 6-regular graph with at least 12 vertices has an internal partition.
The bound is tight.

Proof. We argue by contradiction and consider an n-vertex 6-regular graph G =
(V, E ) with no internal partition. Let (A, B) be the near-bisection of V that attains
min |E(A, B)| over all near-bisections. By Lemma 1 either A or B must be 3-cohesive.
We may assume A is 3-cohesive while B is not, for else (A, B) is an internal partition.

We repeatedly carry out the following step: As long as there is some y ∈ B with
outdegree dA(y) > 3 we move that vertex from B to A. If A is 3-cohesive then clearly so is
A ∪ {y}, while if B is 2-degenerate, so is B\{y}. By assumption no internal partition exists,
so this process must terminate with a trivial partition, that is, B must be 2-degenerate. The
move of y from B to A decreases |E(A, B)| by 2dA(y) − 6 ≥ 2. Every step of the process
therefore decreases the cut by at least 2, while |B| decreases by 1. Also in the last two
moves |E(A, B)| decreases by ≥ 4, and 6 in this order, and at termination E(A, B) = ∅.
We conclude that |E(A, B)| ≥ 2|B| + 6.

On the other hand |E(A, B)| ≤ 2|A| + 4: By Lemma 1 all vertices in A have outdegree
≤ 2, except for at most 4 (that are adjacent to a vertex in B with outdegree ≤ 4) vertices
with outdegree 3. Therefore 2|A| + 4 ≥ |E(A, B)| ≥ 2|B| + 6 so that |A| ≥ |B| + 1. It
follows that |A| = |B| + 1, n is odd and B is a “tight” 2-degenerate. Namely, exactly four
vertices in A have outdegree 3, and in all moves (except the last two) |E(A, B)| is reduced
by exactly 2. If n ≥ 9 then |B| ≥ 4, so the first two vertex moves are of outdegree 4.
Let y′, y′′ ∈ B be these first two vertices, let (A′, B′) = (A ∪ {y′}, B\{y′}) be the partition
after the first move, and let (A′′, B′′) = (A ∪ {y′, y′′}, B\{y′, y′′}) be the partition after the
second move. By the above |E(A′, B′)| = |E(A, B)| − 2 and |E(A′′, B′′)| = |E(A, B)| −
4.

By Lemma 1 (2c) all vertices in A′ have outdegree 2. Therefore, in A′′, all vertices
have outdegree 2 except 4 with outdegree 1. Suppose that some pair of these outdegree-2
vertices in A′′, say x′, x′′ are adjacent. Then it would be possible to move both vertices
to B′′ while increasing the cut size by only 2. Namely, |E(A′′\{x′, x′′}, B′′ ∪ {x′, x′′})| =
|E(A′′, B′′)| + 2 < |E(A, B)|. This yields a near-bisection that contradicts the minimality
of |E(A, B)|. Alternatively, if the outdegree-2 vertices in A′′ form an independent set,
then all their neighbors in A′′ must have outdegree 1 and indegree 5. It follows that there
are at most five vertices in A′′ of outdegree 2. Therefore |A′′| ≤ 9.

In the case |A′′| = 9, we observe that by the above, G(A′′) is a complete bipartite graph
K5,4, and so G(A) is a complete bipartite graph K4,3. If in A, one indegree 3 vertex a
is moved to B, it becomes K3,3, which is 3-cohesive. But by Lemma 1(2c), B ∪ {a} is
3-cohesive. Therefore the partition (A \ {a}, B ∪ {a}) is an internal partition.

Therefore |A′′| ≤ 8 ⇒ |A| ≤ 6 ⇒ n ≤ 11.
We now comment on the range n ≤ 11. Note that the proof covers all even n. The

complete graph K7 is an exception with n = 7.
For n = 9, there is a unique unpartitionable 6-regular graph (see Fig. 2). We prove this

statement when we discuss the case d = n − 3 in the following section.
For n = 11, there exist 6-regular graphs with no internal partition. One such example,

Q3, is a member of a class of unpartitionable graphs that we construct in Section 6. �
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FIGURE 2. K3,3,3: a 6-regular graph with no internal partition.

4. PARTITIONS OF COMPLEMENTARY GRAPHS

Proposition 1. For every q ∈ (0, 1), every graph G has a q-external partition.

Proof. For a partition (A, B) define

w(A, B) := |E(A, B)| − q
∑

x∈A

dG(x) − (1 − q)
∑

x∈B

dG(x) (2)

The partition that maximizes w(A, B) is nontrivial, since for every nonisolated
vertex x there holds w(V\{x}, {x}) > w(V, ∅) and w({x},V\{x}) > w(∅,V ). Fur-
thermore w(A, B) − w(A\{x}, B ∪ {x}) = dB(x) − dA(x) − qdG(x) + (1 − q)dG(x) =
2dB(x) − 2qdG(x) and w(A, B) − w(A ∪ {x}, B\{x}) = dA(x) − dB(x) + qdG(x) − (1 −
q)dG(x) = 2dA(x) − 2(1 − q)dG(x), so the maximality of (A, B) implies that it is
q-external. �
Proposition 2. For q ∈ (0, 1) every exact q-internal partition of G = (V, E ) is an
exact (1 − q)-external partition of Ḡ.

Proof. Let |V | = n and let (A, B) be an exact q-internal partition of G. Namely, |A| =
qn, |B| = (1 − q)n and ∀x ∈ A, dA(x) ≥ qdG(x) and ∀x ∈ B, dB(x) ≥ (1 − q)dG(x). To
indicate that we work in Ḡ, we denote by Ā, B̄ the subgraphs of Ḡ induced by A, B. Then

∀x ∈ V, dḠ(x) = n − dG(x) − 1

∀x ∈ A, dB̄(x) = |B| − dB(x) = (1 − q)n − (dG(x) − dA(x))

≥ (1 − q)(n − dG(x)) > (1 − q)dḠ(x)

∀x ∈ B, dĀ(x) = |A| − dA(x) = qn − (dG(x) − dB(x))

≥ q(n − dG(x)) > qdḠ(x)

So (A, B) is a (1 − q)-external partition. �
Proposition 3. For q ∈ (0, 1) every exact (1 − q)-external partition of G = (V, E ) is
an exact q-internal partition of Ḡ, provided the partition of Ḡ is integral.

Proof. Maintaining the notation of Proposition 2, consider an exact (1 − q)-external
partition (A, B) of G. Namely |A| = qn, |B| = (1 − q)n and ∀x ∈ B, dA(x) ≥ qdG(x) and

Journal of Graph Theory DOI 10.1002/jgt
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∀x ∈ A, dB(x) ≥ (1 − q)dG(x). Then

∀x ∈ V, dḠ(x) = n − dG(x) − 1

∀x ∈ A, dĀ(x) = |A| − dA(x) − 1 = qn − (dG(x) − dB(x)) − 1

≥ q(n − dG(x)) − 1 = qdḠ(x) − (1 − q).

By rounding up we conclude that dĀ(x) ≥ qdḠ(x). (Note that dĀ(x) and qdḠ(x) are
integers and 1 > q > 0.)

∀x ∈ B, dB̄(x) = |B| − dB(x) − 1 = (1 − q)n − (dG(x) − dA(x)) − 1 ≥
≥ (1 − q)(n − dG(x)) − 1 = (1 − q)dḠ(x) − q.

By a similar argument dB̄(x) ≥ (1 − q)dḠ(x), so (A, B) is a q-internal partition. �

Corollary 2. If G has an internal bisection, then Ḡ has an external bisection.

Corollary 3. If all degrees in G are even and Ḡ has an external bisection, then G has
an internal bisection.

Proposition 4. For even n, every (n − 2)-regular graph has an internal bisection.

Proof. The complement of an (n − 2)-regular graph is a perfect matching. Split each
matched pair between sides of a partition to obtain an external bisection. The proposition
follows from Corollary 3. �
Proposition 5. An (n − 3)-regular graph G has an internal partition if and only if
its complementary graph Ḡ has at most one odd cycle. Furthermore this partition is a
near-bisection.

Proof. Clearly Ḡ is 2-regular, that is, it is composed of vertex disjoint cycles. For
every cycle, place the vertices alternately in A and in B. If at most one cycle is odd,
then ||A| − |B|| ≤ 1, so the partition is a near-bisection. It is also an internal partition
of G, since the smaller side, say B, is a clique. Also, A spans a clique if |A| = |B| , or
a clique minus one edge if |A| = |B| + 1, so its minimum indegree is also |B| − 1. As
|B| − 1 ≥ (n − 3)/2, the partition is internal.

Let G have an internal partition (A, B). If n is even, every vertex must have indegree
≥ n/2 − 1. Therefore |A| = |B| = n/2 and the complementary graph Ḡ is bipartite so
has no odd cycles. If n is odd, assume |A| > |B|. B’s minimum indegree is (n − 3)/2 so
|B| = (n − 1)/2, |A| = (n + 1)/2 and the partition is a near-bisection. In Ḡ, |E(A, B)| =
2|B| = n − 1 so E(A) = (2|A| − |E(A, B)|)/2 = 1. Therefore (A, B) is bipartite in Ḡ
except for a single edge internal to A. Therefore Ḡ has only one odd cycle. �

We can now confirm that K3,3,3, the graph in Figure 2, has no internal partition, as it
is the complement of three disjoint triangles. Furthermore, as there is no other way for a
2-regular 9-vertex graph to have more than one odd cycle, this is the only n = 9, d = 6
graph with this property.

5. THE CASE d = n − 4 AND CUBIC GRAPHS

Let G be a d-regular graph on n vertices with d = n − 4. Clearly n must be even, and its
complement Ḡ is a cubic graph.

Journal of Graph Theory DOI 10.1002/jgt



8 JOURNAL OF GRAPH THEORY

FIGURE 3. External partition of the Petersen graph.

FIGURE 4. Smallest d=n−4 regular graph with no internal partition (right) is
complement of cubic graph on left.

Proposition 6. If an (n − 4)-regular graph G has an internal partition then either

� Ḡ has an external bisection, or
� Ḡ has an independent set of size at least n/2 − 1.

Proof. To be internal, partition (A, B) must have minimum degree n/2 − 2 in either
part, so each part must have size ≥ n/2 − 1. Then, either (A, B) is an internal bisection,
implying (by Corollary 2) that Ḡ has an external bisection, or |A| = |B| + 2, where B is
a clique in G and thus an independent set in Ḡ. �

The Petersen graph (see Fig. 3) has no external bisection, but it has an independent
set of size 4. Its complement is 6-regular, and in fact has an internal partition (but not a
bisection), as already proven in Theorem 1.

The requirement of an independent set of size n/2 − 1 means that it is possible to
remove at most three edges to make the graph bipartite. Clearly this is a rare phenomenon
among cubic graphs, so our quest for graphs with internal partitions boils down to asking
which cubic graphs have an external bisection.

We show next the following.

Proposition 7. Every class 1, 3- or 4-regular graph G has an external bisection.

Journal of Graph Theory DOI 10.1002/jgt
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FIGURE 5. Family of cubic graphs that have no external bisection. These graphs
were found by L. Esperet and G. Mazzuoccolo (private communication).

Proof. Pick some d-edge coloring of G, and choose any two of the colors. The
corresponding alternating cycles form a 2-factor in G of even cycles. Number the vertices
of each of these cycles sequentially along the cycle path. Alternately assign the vertices
in the cycles to the two sides of a partition, which is clearly a bisection. For d ≤ 4, this
partition is external, since every vertex has at least two neighbors at the opposite part. �

While all class 1 cubic graphs have an external bisection, the same question for class
2 cubic graphs remains open, though below we present a partial result. As noted, the
Petersen graph, the smallest snark (see, e.g., [13]), has no external bisection. We checked
a substantial number of larger snarks and found external bisections in all of them. We
make the conjecture.

Conjecture 1. The Petersen graph is the only 2-edge connected cubic graph with no
external bisection.

We actually believe that the same is true for connected cubic graphs with a single
bridge. Below we detail an attempt at proof, which still falls short.

Connected cubic graphs with more than one bridge that have no external bisection
exist. A family of such graphs, discovered by Esperet and Mazzuoccolo [6], is shown in
Figure 5.

Disconnected cubic graphs with no external bisection are easy to come by. For example,
a graph that has an odd number of components that are Petersen graphs and any number
of K4 components.

As mentioned above, the complement of the Petersen graph has an internal partition,
since Petersen has an anticlique of size 4 = n/2 − 1 (as required by Proposition 6). But
the above-mentioned disconnected cubic graphs do not meet that requirement and so their
complements have no internal partition. The smallest of these is a 10-regular graph of
order 14, whose complement is a Petersen graph plus a K4 component (see Fig. 4). This
is the smallest of an infinite class of (n − 4)-regular graphs with no internal partition.
We conjecture that all d = n − 4 exceptions are constructed this way, as stated in the
following.

Conjecture 2. If G is (n − 4)-regular and has no internal partition, then Ḡ is a
disconnected cubic graph that has an odd number of components each of which has no
external bisection. All other components of Ḡ have the property that all their external
partitions are bisections.

Journal of Graph Theory DOI 10.1002/jgt



10 JOURNAL OF GRAPH THEORY

FIGURE 6. Cubic graph bridge decomposition.

An equivalent statement, based on Proposition 6 is this: All connected cubic graphs
with no external bisection have independent sets of size n/2 − 1.

We also make the following conjecture.

Conjecture 3. Every cubic graph has an external partition (A, B) with ||A| − |B|| ≤ 2.

The Petersen graph shows that if true, this statement is tight.
There exist graphs other than K4 all of whose external partitions are bisections. Every

cubic graph of order 6 or 8 has this property, since an uneven external partition has at
most a 3:2 proportion of the sides. There are arbitrarily large connected cubic graphs
with no external bisection, as shown by the construction in Figure 5.

As mentioned, we believe that every cubic graph with a single bridge has an external
bisection. We are presently unable to establish that, but following is a partial result in
that direction. This is a procedure that takes a cubic graph with a bridge G = (V, E ) and
outputs two smaller cubic graphs G1, G2. We denote this by Split(G) = (G1, G2). The
reader may find it useful to follow Figure 6 where this procedure is illustrated.

Procedure 1. Start by deleting the two vertices of the bridge (b1, b2). In each of the
two components all vertices then have degree 3, except for two vertices of degree 2. The
following is repeated in a loop for each component until a cubic graph remains:

� If the two degree-2 vertices are not adjacent, add an edge between them. This
yields a cubic graph, and the procedure is terminated. Otherwise remove them
both. The continuation depends on whether the two vertices share a neighbor.

� If the removed degree-2 vertices had a common neighbor (such as p1, p2 and their
common neighbor p3), delete that neighbor and its remaining neighbor (in the
example: p4). There remain exactly two vertices of degree 2 (x1, y1), and the loop
is repeated.

� Otherwise (as in q1, q2) their additional neighbors (q3, q4) are distinct. Again,
exactly two vertices with degree 2 remain, and the loop is repeated.

The terminal components G1 = (V1, E1), G2 = (V2, E2) are nonempty and cubic, since
during the run of the procedure the component always has two vertices of degree 2. They
each contain a single edge that is not in E, namely x1y1 ∈ E1, x2y2 ∈ E2.

Proposition 8. Let G be a cubic graph with a bridge, and let Split(G) = (G1, G2) be
its decomposition described in Procedure 1. If G1 and G2 are class-1 cubic graphs, then
G has an external bisection.
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FIGURE 7. Q4: 8-regular graph with no internal partition (right) is complete
bipartite graph of subgraphs (left).

Proof. G has an external bisection, constructed as follows: Bisect the vertices in V1

as in the proof of Proposition 7, taking care to choose the two colors other than x1y1’s
color. This creates an external bisection of G1 in which x1y1 may be removed and replaced
by other edges without disturbing the fact that the partition is external. Similarly derive
an external bisection of G2, using two colors other than x2y2’s color. Finally assign the
bridge vertices to different sides of the partition, and do the same with any nonbridge
vertex pair that was deleted to obtain G1 and G2. The result is an external bisection
of G. �

This construction does not work if either G1 or G2 are class 2. For single-bridge cubic
graphs, the case where either G1 or G2 are snarks therefore remains to be settled.

6. THE GENERAL CASE

The existence of internal partitions for d-regular graphs with d = 5 and with 7 ≤ d ≤
n − 5 remains unsettled, as is the existence of q-internal partitions for q �= 1

2 .
We construct a class of regular graphs Qm, m = 3, 4, . . . without an internal partition,

in which both d and n − d are unbounded. Qm’s vertex set is composed of three disjoint
sets X1, X2, and Y (see Fig. 7), where |X1| = m − 1, |X2| = m + 1, |Y | = m + 2. The edge
set is composed of (i) a clique on X1, (ii) an arbitrary (m − 2)-regular graph on X2, (iii)
a complete bipartite graph between X := X1 ∪ X2 and Y .

Qm is 2m-regular with 3m + 2 vertices. The first few such graphs are Q3(n = 11, d =
6), Q4(n = 14, d = 8), Q5(n = 17, d = 10), . . .

Proposition 9. Qm has no internal partition.

Proof. Suppose to the contrary that (A, B) is an internal partition of Qm with |A| = a
and |B| = b. In the complementary graph Q̄m, the set Y spans a connected component
that is a clique Km+2. In the partition (A, B) of Q̄m, each vertex in A (respectively, B) has
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outdegree at least b − m (respectively, a − m). The only way to partition Km+2 to meet
these requirements is to have a − m of its vertices in A and the other b − m vertices in B.

Therefore |V (X ) ∩ A| = |V (X ) ∩ B| = m. Also for any x ∈ (V (X ) ∩ A), dV (X )∩A(x) ≥
m − (a − m) = 2m − a, and for any x ∈ (V (X ) ∩ B), dV (X )∩B(x) ≥ m − (b − m) =
2m − b. Therefore (V (X ) ∩ A,V (X ) ∩ B) is either a trivial partition or a q-internal
partition of X for q = 2m−a

m−2 . Now X1, being complete, has no q-internal partition
for any q. Therefore its vertices are either all in A or all in B. Say in A. Then
|V (X2) ∩ A| = m − |V (X1)| = 1, so there is a single A-vertex in the X2 component, but
a partition of a connected graph into a single vertex and its complement is not q-internal
for any q. Neither is it trivial. A contradiction. �

The reader will note that for all known examples G of even-degree regular graphs
with no internal partition, the complement Ḡ is disconnected. We raise the question of
whether this is true in general. We observe that if true, this implies 2d > n.1 We venture
a conjecture for this weaker statement.

Conjecture 4. If the integer d is even, then every d-regular graph with at least 2d
vertices has an internal partition.

This is clearly not true for d odd, as shown by the complete bipartite graph Kd,d . Also,
unpartitionable regular graphs with connected complements do exist, for example, with
d = 5, n = 18.

We return to the problem of the existence of a q-internal partition for arbitrary regular
graphs. There is a distinction between integral and nonintegral partitions. Nonintegral
partitions are rarer than integral partitions, since every q-internal partition of a d-regular
graph G is also an integral q′-internal partition of G for q′ = �qd�/d as well as for
q′ = �qd�/d. We make the following conjecture.

Conjecture 5. For every integer d and 1 > q > 0 such that either (i) q = 1
2 or (ii) qd

is an integer, there is an integer μ such that every d-regular graph of order ≥ μ has a
q-internal partition.

As already noted, μ = 8 for d = 3, q = 1
2 . Numerical experiments suggest that for

q = 1
2 and d = 5, 7 there holds μ = 18, 26, respectively.

In fact, the following stronger statement appears to be true: There exists an integer μ′

that depends only on δ(G), �(G) and on q such that every graph G = (V, E ) with order
at least μ′ has a q-internal partition if (i) q = 1

2 or (ii) qdG(v) is a positive integer for all
v ∈ V .

We do not expect that there is a simple-to-state theorem covering the case where q �= 1
2

and qd is nonintegral. For example, a connected d-regular graph has no q-internal partition
for 0 < q < 1

d . On the other hand, for 1
d < q < 2

d , a shortest cycle and its complement
often yield a q-internal partition (e.g., when the girth is ≥ 5).

Although the above conjecture remains open, the following theorem shows that every
incomplete graph has an integral q-internal partition for some q. Moreover, for d fixed
and growing n the number of such distinct partitions is unbounded.

12d = n can be discounted because it holds only for Kd ,d , which, for even d , is
partitionable.
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Proposition 10. Let G be a d-regular graph of order n > d + 1. If (A, B) is a non-
integral (1 − r)-external partition of Ḡ, then it is also a q-internal partition of G for
q = (|A| − �r(n − d − 1)�)/d.

Proof. Ḡ is (n − d − 1)-regular and (A, B) is (1 − r)-external in Ḡ. Therefore, in
G, its indegrees satisfy the inequalities:

∀x ∈ A, dA(x) > |A| − 1 − r(n − d − 1) (3)

∀x ∈ B, dB(x) > |B| − 1 − (1 − r)(n − d − 1). (4)

Since the partition is not integral, r(n − d − 1) and (1 − r)(n − d − 1) are not integers,
and the inequalities are strict. Consequently,

∀x ∈ A, dA(x) ≥ |A| − 1 − �r(n − d − 1)� = |A| − �r(n − d − 1)� (5)

∀x ∈ B, dB(x) ≥ |B| − 1 − �(1 − r)(n − d − 1)� = |B| − �(1 − r)(n − d − 1)�. (6)

Set q = (|A| − �r(n − d − 1)�)/d. By (5):

∀x ∈ A, dA(x) ≥ qd. (7)

Noting that �(1 − r)(n − d − 1)� + �r(n − d − 1)� = n − d − 1,

|B| − 1 − �(1 − r)(n − d − 1)� = n − |A| − 1 − (n − d − 1) + �r(n − d − 1)�
= (1 − q)d (8)

and by (6),

∀x ∈ B, dB(x) ≥ (1 − q)d. (9)

By (7), (9) (A, B) is a q-internal partition of G. �
Theorem 2. A d-regular graph G of order n > d + 1 has a q-internal partition (A, B)

for some q ∈ (0, 1) with qd an integer. There are at least n−d−1
d such distinct partitions.

Proof. Ḡ is (n − d − 1)-regular. Select r ∈ (0, 1) such that r(n − d − 1) is not
an integer (recall that n − d − 1 �= 0). By Proposition 1, Ḡ has an (1 − r)-external
partition (A, B), and so by Proposition 10, G has a q-internal partition for q = (|A| −
�r(n − d − 1)�)/d.

Furthermore since 0 ≤ q ≤ 1,

�r(n − d − 1)� ≤ |A| ≤ �r(n − d − 1)� + d. (10)

So for any given r, |A| has a range of at most d. Since �r(n − d − 1)� can take on
n − d − 1 values, |A| takes on at least n−d−1

d different values. Consequently, the number
of distinct q-internal partitions is at least n−d−1

d . �
For d fixed there are just d − 1 values of q ∈ (0, 1) for which qd is integral. By

Theorem 2 every d-regular graph has �(n) distinct integral q-internal partitions. While
this does not prove the existence of a q-internal partition for any specific q, it suggests
that this becomes more likely as n grows.
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