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It is often required to find the probability of the union of given n events A1 , . . . ,An .  
The answer is provided, of course, by the inclusion-exclusion formula: Pr(UAi) = ~ i  Pr(Ai) - 

~ i < j  Pr(AiNAj )•  .... Unfortunately, this formula has exponentially many terms, and only rarely 

does one manage to carry out the exact calculation. From a computational point of view, find- 
ing the probability of the union is an intractable, ~P-hard  problem, even in very restricted cases. 
This state of affairs makes it reasonable to seek approximate solutions that are computationally 
feasible. Attempts to find such approximate solutions have a long history starting already with 
Boole [1]. A recent step in this direction was taken by Linial and Nisan [4] who sought approx- 
imations to the probability of the union, given the probabilities of all j-wise intersections of the 
events for j = 1,.. .k. They developed a method to approximate Pr(UAI) , from the above data 
with an additive error of exp( -O(k /V~)) .  In the present article we develop an expression that 
can be computed in polynomial time, that, given the sums ~ l S l = j  Pr(n iesA i )  for j = 1,... k, 

approximates Pr(UAi) with an additive error of exp(-~(k2/n) ) .  This error is optimal, up to the 
logarithmic factor implicit in the ~ notation. 

The problem of enumerating satisfying assignments of a boolean formula in DNF form 
F =  VTlnC i is an instance of the general problem that had been extensively studied [7]. Here A i is 
the set of assignments that satisfy Ci, and P r ( A i E s A i ) = a s / 2  n where AiEsC i is satisfied by a S 
assignments. Judging from the general results, it is hard to expect a decent approximation of F ' s  
number of satisfying assignments, without knowledge of the numbers a S for, say, all cardinalities 
1 <: IS] < v ~ .  Quite surprisingly, already the numbers a S over IS I < log(n+ 1) uniquely determine 
the number of satisfying assignments for" F. 

We point out a connection between our work and the edge-reconstruction conjecture. Finally 
we discuss other special instances of the problem, e.g., computing permanents of 0, 1 matrices, 
evaluating chromatic polynomials of graphs and for families of events whose VC dimension is 
bounded. 

Mathematics Subject Classification (1991): 05 A 15, 05 A 16, 05 A 20, 60 C 05, 41 A 10, 

68 R 

* Work supported in part by a grant of the Binational Israel-US Science Foundation. 

t Work supported in part by a grant of the Binational Israel-US Science Foundation and by 

the Israel Science Foundation. 

0209-9683/96/$6.00 @1996 Akad6miai Kiad6, Budapest 



466 JEFF KAHN, NATHAN LINIAL, ALEX SAMORODNITSKY 

1. I n t r o d u c t i o n  

Let A1, . . . ,An be events in a probability space. The inclusion-exclusion formula 
expresses the probability of their union: 

P r ( U A i ) = E P r ( A i ) - E P r ( A i N A j ) +  E Pr(AiAAj NAk) T . . . .  
i iK j  i K j K k  

= E ( -1 )181-1pr (n ieSdi ) '  

[nl_~S#O 

If any of the 2 n - 1 terms is unknown, it is not possible, in general, to exactly 
evaluate Pr(UAi). Many investigators (e.g. [2] and the references therein) had 
asked how well Pr(UAi) can be approximated given only partial information on the 
numbers Pr(nicsAi). 

Linial and Nisan [4] showed that  if Pr(ni~SAi) is known whenever ISI ~ k, 

then Pr(UAi) may be be approximated as follows: If k=O(x/~), then it is possible 

to estimate the probability of the union to within an additive error of O ( 1 - k 2 / n ) .  

Moreover, for k = O(v/-n), this is also essentially optimal. However, for larger k, 
[4] fails to provide a full answer. A method of approximation which is developed 

in that  paper offers an approximation to within e -fl(k/~/-Q of the truth.  This 
degree of approximation has been shown (ibid.) to be suboptimal. This problem 
is resolved in the present article: Given the numbers ~-~IsL=j Pr(ni~sAi) for all 

j _ k, we can approximate the probability of the union to within an additive error 

of e -~(k2/n).  Moreover, the approximation can be computed in polynomial time. 
The result is tight in the sense that given the numbers Pr(NiesAi) for all IS] < k, 
it is in general impossible to approximate Pr(UAi) to within an additive error 

smaller than e -O(k2/n) (Regardless of the computational complexity involved in 
the approximation). 

The problem of enumerating the satisfying assignments of a DNF formula 
is an instance of the general problem. Already this special case is known to be 
complete for the class # P  . Much attention has been given to efficient algorithms 
for approximating this number, see [7] and the references therein. To put  the DNF 
problem in the general context of our problem, let the probability space be {0,1} n 
under uniform distribution. Associated with every clause in the DNF formula is 
the event that  this clause is satisfied. Each such event is, in fact, a subcube of the 
n-dimensional cube. For this problem something quite remarkable happens: While 
any decent approximation for the general problem requires information on ~(vrm) - 
wise intersections, here the answer is uniquely determined from the probabilities of 
_ (log n + ])-wise intersections. 

Our methods offer also some new insight into the edge-reconstruction problem 
fl'om graph theory. In particular Mfiller's [8] Theorem can be reproved and put  in a 
more general context that may possibly lead to further progress on this conjecture. 
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We then point out that  calculating O, 1 permanents may also be viewed as an 
instance of the general problem, and similarly the problem of computing chromatic 
polynomials of graphs. Some comments are made on the possibility of getting 
estimates for these cases that are better  than those achievable in the general case. 
Finally we derive a theorem similar to the one for DNF formulas, in case the VC 
dimension of our family of events is bounded. 

2. N e a r - t i g h t  a p p r o x i m a t i o n s  for gene ra l  i nc lus ion -exc lus ion  

The main result of this section is: 

Theorem 2.1. Let A1,... ,An and B1,... ,Bn be collections of events in some prob- 
ability space where: 

P r ( N A i  I = P r ( N B i  I 
\ i E S  I \ i E S  / 

for every subset SC In] such that [S I <k. Then 

Ai - Pr Bi = ) 
\ i = 1  / 

Moreover, there are coefficients Aj = ~j,k,n SUCh that 

j__~IAJ E Pr NA,  - P r  Ai _~e - f l ( ~ )  
ISl=j \ i E S  / 

and these coefficients Aj can be found in time polynomial in n. 
On the other hand, families A1,...,An and B1,...,Bn exist for which 

Pr (N es = Pr (ni~s Bi) whenever ISl < k and 

Ai - Pr Bi >_ e -0( ) 

Remark 2.2. We follow the notation in [4] and denote by E(k,n) the maximum dif- 
ference between Pr(UAi) and Pr(UBi), where there are n events Ai and n events 
Bi such that the intersection of any _< k of the Ai's has the same probability of the 

corresponding event with Bi's. The theorem states that E(k,n)= e x p ( - ~ ( @ ) ) .  
Our belief is that the logarithmic terms hidden in the "soft O" notation are redun- 

k2 dant and the truth is E(k,n)= e x p ( - O ( ~ ) ) .  Moreover, we think that the present 
methods are powerful enough to establish this statement and no essential new ideas 
will be required. 

Combining two lemmas from [4] (pp. 354, 357) we get the following: 
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Lemma 2.3. E(k,n) < 6 iff there is a real polynomial q of degree at most k whose 
constant term is zero, so that Iq(m)-11 < ~ holds for every integer m= l , . . . ,n .  

Moreover, i f ~ ( x ) = 2 ~ = l  ~ j ( 9 ,  then 

~=lAJ ~-~ Pr ( i g s A i )  - Pr <- ~" 

Proof  of Theorem 2.1. We follow the approach suggested by Lemma 2.3 and explic- 

itly construct polynomials q(x) that  satisfy the lemma with 6 = e x p ( - f / ( ~ ) ) .  

The coefficients of this polynomial, expressed as a linear combination of (3) over 

j = 1, . . . ,  k will satisfy the claim made in the Theorem. By a simple change of vari- 
able, we need to construct a real polynomial t of degree k which satisfies t(n) = 1 

k2 
and A>_maxm=o,...,n-1 It(m)[, where A =exp( - f~ (~  o-i5-~) ). 

To begin, we choose for t to vanish at integer points near the ends of the 
interval [0,... , n -  1]. That  is, we let 

a--1 n - -1  

= I I ( x - J )  
0 n - b  

and t(x):= s(x)/s(n). The integers a and b depend on n and their sum is k. The 

maximum of It(m)] over m = 0,. . .  , n -  1 is the maximum of I ~-lC~) I over the same 

set of m's. A direct calculation with the polynomial s yields: 

(1) = -1)(:) < 

If k >_ 3n/5 we select a = n/2. It is easily verified that for every choice of m 
in our range, the right hand side in Equation (1) is exponentially small in n, as 
needed. 

For k < 3n/5 a more complicated construction is called for. We still guarantee 
that  t vanishes on integral points near the ends of the interval [0,.. . ,  n -1 ] .  Around 
the center of this interval, we control the growth of t using a (linearly transformed) 
Tchebyshef polynomial. Let 

a--1 n - -1  

s(x) = l-I (x - i ) .  I I  (z - j ) .  ~r(~) 
0 n - b  

where ~r is a linearly transformed Tchebyshef polynomial: 
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Here Tr(x) is the r- th Tchebyshef polynomial, and a+b+r = k, We also let a = a / n  
and [3 = b/n. For n -  b > m > a the same calculation carried out for k >_ 3n/5 can 
be repeated, Since a Tchebyshef polynomial varies betweea - I  and t when the 
argument  is a real in ( - - I , I I ,  we eonet~tde tha t  

(2) s(m)s(n) -- < 2n(H(~+t3)-H(~))/Tr ( n  n_ -~_a b) " 

The Tehebyshef polynomial can be written as 

1 

which is convenient for estimations. Using this expression, it not l=a~d to show that:  

r~ n - 2 - b  =T~ 1 - a - r  - 

@ k a2. To get an upper bound on s(n) ' we select ~ = (nl-i-C~) and/~ = Together 

with the lower bound on Tr, we obtain, after some calculations, an upper bound in 
Equation (2): 

V m = 1 , . . . , n  s(n) <- exp - a  nI--i-~gn 

as claimed. 

We now turn to a. lower bound on E(k,n) .  By a stight modification of 
Lamina 2.3, this amounts ta s~owing that. there is no polynomial t of degree k 

with t ( 0 ) = ]  and with ]t(m)l <e  for every r e = l , . . .  ,n where e = exp(-f)(k21n-~)  ). 

Letting t(~) = 1 + ~--~,1 k ai xi we need to show that  the following system of linear 

inequalities (in the ai) is inconsistent: 

V m =  1 , . . . , n  
k 

- c  < 1-F ~ a i  < c. 
i=1 

Inconsistency will be established by linearly combining k + 1 of these inequalities. 
Our plan is to find x l , . . . ,Xk+ 1 (integers) which are the indices for inequalities 
participating in this combination, the xj-th inequality being weighed by wj (j = 
l ~ . . . , k + l ) .  (In fact, LP duality says we have no choice here, and this is the way 
to derive a contradiction). A contradiction is obtained if following conditions hold: 

k+l 

Z Vi = 1, . . . ,  k wjx j  = 0 
j=l 
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which means that all nonconstant terms get eliminated, and 

k + l  k + l  

E E L 51 
1 1 

which means that the combination of constant terms is a contradiction. It is 
convenient to normalize with }-~k+l wj  = 1, thus transforming the latter condition 
to:  

k+l 
1 
- > I w l .  

1 

Observe that the wj  satisfy a linear system of equations, and can, therefore be 
expressed in terms of the x j  by Cramer's rule. The matrix of this linear system of 
equations is a Vandermonde, so the expressions for wj  are convenient: 

wj  = 4- 
l-I (xi - xr 

Our goal is, then, to find integers Xl,... , x k+l  for which 

E < _ .  s 
j = l  

Our choice for the xi  is as follows: Let R :=  L-~J. For i=1 ,  

R < i < _ k + l  we let x i =  [~J .  

Proposition 2.4. With  the above choice of  the xi ,  for every ~, 

�9 . ~ < e x p ( O ( R l o g n ) ) .  

. ,R  we let xi  = i. For 

Remark 2.5. For future reference, let Y be the left expression in this inequality. 

Proof. Calculate the numerator first. Whether xi  is missing from this product is 
inconsequential for the type of estimate we are seeking. 

k+l [3_~J j2 (k + 1)!2 
I-[ x j  = R! 1-I <_ R'  l - I  R - R ' R  k - R + l "  

j=R+I 

Now let us turn to the denominator. Here we have to distinguish between the cases 
where i is among the first R indices, or is bigger. 
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If I < i < R  and x i = i  , then  

k+l  k+l  j2 

1-[ [~ -  x j l -  1 ]  (x~ - i) > ( i -  1 ) ~ ( R -  i)! l - I  ( ~  - i -  1) > 
I<_jr j = R + I  j = R + I  

k+l  
1--[ ( j - R - 1 ) ( j + R - 1 )  

(i 1)!(R i)! 1 1  R 
R+2 

(i - 1)!(R - ~)!RR-k(k - R)!(k + R)! / (2R)!  

Dividing out,  an upper  bound for Y is obtained:  

y < (2R)!(k + 1)! 2 < nO(R). 
- R ! ( i -  1)!(R- i ) ! ( k -  R ) ! ( k +  R)! - 

Now consider the case where i > R and xi = L~-J- In this case, 

R Ji~l, 

l - I ( x i - j )  I-[ t x i _ x j l >  ,}RJ" f j 2 - - i 2 - - i t  > 

�9 R+t<_j#i,i+l<k+l 

( i2 R R 2 )  R .  RR-k+t  . 

(i2 _ R2)R 

R k - 1  

1-I i(J - i - 1)( j  + i)} _> 
R+l_<jr 

(i - n - 2)!(e - i)!(k + i)! 
( n  + i)! 

Dividing the  numera to r  by the  denomina tor  yields: 

y < (R + i)!R R . (k + 1)! 2 < k4 (R + i)2RR R 
- ( i  - R - 2 ) ! ( i 2  - R 2 ) R  ( k  - i ) ! ( k  + i ) !  - ( i  2 - R 2 )  R 

ki--i-Z-X/ <- n~ 

as claimed. 

3. O n  e n u m e r a t i n g  s a t i s f y i n g  a s s i g n m e n t s  fo r  D N F  

In this section we show: 

T h e o r e m  3.1. Let F be a DNF formula in n boolean variables with clauses 
C1,. . . , Cm. For S C  [m], let a s be the number of satisfying assignments for Ai~sC i. 
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The numbers a S where S ranges over all subsets of no more than l o g n + l  members 
of  [m], already uniquely determine the number of satisfying assignments for F. 

R e m a r k  3.2. Observe tha t  the number  as is always either zero or 2 n -k ,  where k 
is the number  of distinct variables which appear  in all Ci over i E S. In  par t icular ,  
these numbers  are very easy to evaluate.  

Proof .  We s tar t  with the following l emma  

L e m m a  3.3. Let Ai and Bi be two families of  events ( i= l , . . . , n ) .  For S C [n], let 
as  : - - P r ( ~ i e  S Ai). Also let 

\ies j~s / 

Define b S and/3 S analogously. Suppose that for every subset S# [n], a S =b S. Then 
[lhn--1 there is a real e of absolute value at most ~ ~ j , such that for every S C_ [n] there 

holds a s =/3 s + ( -  1)[ SIe. 

Proof .  Al though this s t a t ement  implici t ly appears  in [4] ( the case k = n - 1 ) ,  we 
cannot  resist presenting the following short  and s imple proof. Ra the r  t han  th ink  
of the two families of events Ai and Bi, we represent  the  s i tuat ion th rough  a and 
j3 which are viewed as real functions on all subsets  of In], or, wha t  is the  same,  on 
the n-dimensional  cube. Also, let 7S :-- a S  - /3S ,  and  c s := a s - b S. By inclusion- 
exclusion: 

3'S = E (--1)IT\SIcT and cs = E 7T, 
TD_S TD_S 

for every S. In the present case, c S = 0 for every S • [n] and the conclusion 
1 n--1 follows. To see t ha t  [e[ <_ (~) , observe tha t  since 3' is the  difference between 

two probabi l i ty  distr ibutions,  obviously E S 3 `  + _< 1, but  E s 3 `  + = 2n- l [e l  which 

concludes the proof. | 

We can turn  now to a proof  of Theo rem 3.1: L e t F = V r f f C i a n d  FI =Vlm C~/be 

two D N F  formulae on variables x l , . . . , X n .  The  integers a S and a~ are defined as 

before, and we assume tha t  if IS[ <_ log n +  1, then  as = ats. If  this last  equal i ty  holds 

for all S, then  obviously F and F I have an equal number  of satisfying assignments.  
Observe tha t  if a S = O, then  there are two clauses Ci and Cj with i , j  E S whose 

conjunct ion is a contradict ion i.e., a{i,j } = 0. If  T C [n] satisfies aT = 0, then  by 

this observat ion there  is a two-element subset  P of T for which ap = 0 ,  hence also 
a~----0 and so a~. = 0. 

We want  to consider a min imal  set S C [n] for which as r a' S. By assumpt ion  

ISI _> l o g n + 2 .  Also, the previous remarks  allow us to assume tha t  as ,a '  s r O. 



INCLUSION-EXCLUSION: EXACT AND APPROXIMATE 473 

Therefore, we are allowed to assume that  there are no negated literals in the clauses 
C/ and C~ over i E S. Having made this assumption, let Qi and Q~ be the set of 

variables in Ci (resp. C:). It  follows that  for any TC_S, 

a T ---- 2n-[UieTQ~] 

and similarly in the primed case. It  follows now that  we are in the following 
situation with respect to the families Qi and Q~: For every T C S, other than 

T = S, I UTQit = I UTQ~t, while for T = S the two sides disagree. From tile 

inclusion-exclusion formula we can conclude that  also If-IT @1 = f f?T Q~I for every 
T which is a proper subset of S, but not for T = S. We now invoke Lemma 3.3, and 
conclude that  

Q! ] s l - 1  
- ~ 

n 

This is obtained by placing a uniform distribution on [n] and viewing Qi and Q~ as 
events. Since we are assuming that  the middle term does not vanish, its absolute 

value is at least 1 and we conclude that  ISI _< logn + 1, a contradiction which 
completes the proof. | 

Remark  3.4. While this result is satisfying in terms of the intersection sizes that  
are being considered, at this writing this statement is only existential. We do not 
know any effective way of actually reading the number of satisfying assignments 
from the integers a s  as above. 

For an application of this result in Learning Theory, see [3]. 

4. I n c l u s i o n - e x c l u s i o n  a n d  t h e  e d g e - r e c o n s t r u c t i o n  p r o b l e m  

The deck associated with a graph G = (V,E) is the list of unlabeled graphs 
{G \ete E E}. The well-known edge-reconstruction conjecture states that  every 
graph with four edges or more is uniquely determined by its deck. The most 
successful approach to this problem, initiated by Lovs [51 and improved by Mfiller 
[8] proceeds as follows: Let G and H be two graphs with the same deck. There is 
no loss in assuming that  V(G)- -V(H)= [n]. Let X = Xn be the probabili ty space 
of all permutat ions on [n] under uniform distribution. For S C  E(G) ,  let A S be the 
event 

A S = {7r e XtE(~r(G)) \ E(G) ~_ S}. 
Likewise, 

B S = {Tr E X[E(Tr(G)) \ E(H) ~ S}. 
(Here E(Tr(G)) is the edge-set of the vertex-permuted graph.) Since G,H have 
the same deck, it can be shown that  P r (As)  = P r (Bs )  for every proper subset 



474 JEFF KAHN, NATHAN LINIAL, ALEX SAMORODNITSKY 

S C E(G). Consider now two families of events {A~le e E(C)}  and {B~le e E(G)}.  
If P r ( A s ) =  Pr (Bs)  also for S = E(G), then by inclusion-exclusion, corresponding 
atoms in these two families are equiprobable. In particular, since the identity 
permutation maps G to itself, there is also some 7rEX for which E(~r(G))=E(H),  
namely G and H are isomorphic. 

As the reader can see, we are exactly in the situation covered by Lemma 3.3, 
and we may conclude: 

Proposition 4.1. Let G, H be a pair of graphs with n vertices and m edges for which 
the edge-reconstruction conjecture fails. Let a s (resp. ~S) be the probability (in 
Z = X n )  that E(1r(G)) \E(G)=S (resp. E( r r (G) ) \E(H)=S) .  Then there is a real 

e of absolute value no bigger than 1 m 1 (~) - such that a S - j 3 S = ( - 1 ) l S l e  for every 

SeE(a). 

Thus, a counterexample to the conjecture must satisfy a large number of 
additional constraints. Miiller's Theorem, that m_< log2(n!)+l follows immediately: 

l m - 1  > 1  For nonisomorphic G and H, necessarily e r  so (g) > l e l _ ~ .  

5. O t h e r  in s t ances  o f  inc lus ion-exc lus ion  a n d  t h e i r  a p p r o x i m a t i o n s  

In this section we consider two families of enumeration problems which may 
be approached via inclusion-exclusion. 

Remark 5.1. Ryser's fornmla for computing the permanent of an n x n matrix A 
(see [9]) is based on a slight extension of the inclusion-exclusion principle: 

sc_[,~] i=1 \ j e s  ] 

We concentrate on matrices of zeros and ones, where Ryser's formula is a special 
case of the usual inclusion-exclusion principle. Under some mild assumptions the 
permanent of A is uniquely determined by the terms which correspond to sets S of 
cardinality > n - l o g n  in the above formula. We do not go into the exact statement 
of these mild assumptions and only mention that  (i) This statement is not true 
unconditionally - take A to be the identity matrix, B the zero matrix. (ii) An 
example where our (unspecified) assumptions do apply is that  where A has an all- 
ones column. 

Remark 5.2. Other instances of the inclusion-exclusion principle may yield results 
which exceed the general case. We point out that  chromatic polynomials of graphs 
may be viewed as a class of such examples. (For the basic theory of chromatic 
polynomials, see Lovs [6] Chapter 9). Briefly, let G =  (V, E) be a graph and let ,~ 
be a positive integer. Denote by PG()~) the number of proper coloring of G with 
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colors. PC( ')  is called the chromatic polynomial of G. As we presently show, it is 
indeed a polynomial of degree n, the number of vertices in G. To this end, consider 
the collection �9 of all A n mappings f:V--* {1, . . . ,  A}. For every edge u =  [x,y] C E, 
let Au be the family of mappings f C �9 that  fail to be a proper coloring on the edge 
u, i.e. those mapping satisfying f ( x )=  f(y). It is easily seen that  for every edge u 

the cardinality of Au is A n-1.  I~loreover, if UC_E is a set of edges, then [nucUAu t 

is A k for some integer k < n: Simply shrink the edges u C U, if the resulting graph 

has k vertices, then INucvAu] = A k. A mapping f : V --+ {1,. . . ,A} is a proper 
coloring of G iff it is in none of the sets Au (u C E), whence the number of proper A- 
colorings of G is A n -  [Uu~EAu[. An application of the inclusion-exclusion formula 
yields an expression for the number of proper colorings as a signed stun of powers 
of A, i.e., a polynomial with integer coefficients. Some other known properties of 
chromatic polynomials can be deduced from this perspective. We raise the problem 
of approximating the number of proper A-colorings of graphs using our approach 
to approximate inclusion-exclusion. 

6. Fami l i e s  w i t h  a b o u n d e d  V C  d i m e n s i o n  

Definition 6.1. We recall the definition of dvc(~) ,  the Vapnik-Chervonenkis (VC) 

dimension of a family of sets 5~ C 2 x (see [10]). A subset S C X,  is said to be 
shattered by 5 ~ if for every subset T C S, there is some F E 5 ~ with T = S N F .  Define 
dvc(2~) as the largest cardinality of a set shattered by 5 ~. 

Theorem 6.2. Let od = {Ai}iEI be a family of measurable subsets of a measure space 
(X,#) with dyc(gd) -- d. As before, let a S := #(ni~s Ai) for S c_ I. The numbers 

a S where ]S[ ~ 2  d+l determine aT on all (finite) subsets T of I. 

Proof. Let (Ai ) , {Bj )  be two families of sets with VC dimension at most d, such 

that  a s = b S for all S, ]S I < 2 d+l. Consider a minimal finite set N C I for which 
aN ~ bN. For convenience assume that  N = [n], i.e., as = bs for all S C [n] and 
a[n ] ~ b[n ]. We will prove that  either dvc{Ai}  or d v c { B j )  is greater than d and 

thus reach a contradiction. 

Also, define as before a s := #(n ies  Ai N nje[n]\sA~). By Lemma 3.3 

~s- /3s=(-1) lS le .  Assume that  c > 0, so c~ T > 0 for even ITI whence the sets 
nieTAi  N Njr  ~ are not empty when IT I is even. 

View U= [2( n- l ) ]  as the family of all subsets of [n] having an even cardinality. 
For i C [n] let Li C U, be the family of all T C [n] of even eardinality with i E T. 

The family (Li}i~[n] has VC dimension k -- [logn]. Indeed, ff --= T1..Tk is 

shattered by {Li) iff for every S C_ [k] Nic s, Ti is not a subset of Ujr j. To 
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construct  such 3" take Ti = {x E [n] [ the i-th digit in binary representat ion of x is 
r (If n is odd or a multiple of four than ei can always be chosen so tha t  [Til is 
even. Otherwise, note tha t  the sets Ni~sBi  N ~ j ~ s B  ~ are not  empty  for odd IS[, 

and carry out the whole argument  with {Bj}.)  

Let T1...Tk be the k coordinates shat tered by {Li}. Chose, for 1 < r < k, a point  
c Pu t  X = {Xr}rc[k] We will show tha t  X is shat tered Xr in ~iCT,- Ai A Nj~T~ Aj. 

by Ai and so dyc{Ai  } >>_ k > d. Take S C_ [k]. Let i E [n] be such tha t  Tj is in Li iff 

j is in S. Then XnAi={Xr} reS ,  completing the proof. | 

Example 6.3. The VC dimension of any family of compact  triangles in the plane 
is easily shown to be _< 7. Therefore for any such ~ and a measure p on the 
plane we may conclude as follows: The  measures of all up to 256-wise intersections: 
AT = nieTAi, IT[ <<_ 256 uniquely determine the measure of the intersection of any 
finite subfamily of ~.  
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