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Simplicial Complexes - A quick
reminder/primer

A simplicial complex X on vertex set V is a
collection of subsets of V that is closed down i.e.,

A ∈ X and B ⊆ A⇒ B ∈ X

A member A ∈ X is called a simplex or a face
of dimension dim(A) := |A| − 1 and
dim(X ) := max{dim(A)|A ∈ X}
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Familiar objects with new names

We see that a graph is synonymous with a
one-dimensional simplicial complex. It has
zero-dimensional faces (aka vertices)

and one
dimensional faces = edges
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What is expressible in this language?

How do you say a tree in the language of simplicial
complexes?

Of course, a tree is a connected and acyclic graph

Does the language of simplicial complexes provide
analogous terms?
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Gil Kalai 1983
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Recall the incidence matrix of a graph

V × E Vertices vs. edges.

AG =



. . . ij . . . . . . . . .
... . . . . . . . . . . . . . . .
i . . . +1 . . . . . . . . .
... . . . . . . . . . . . . . . .
j . . . −1 . . . . . . . . .
... . . . . . . . . . . . . . . .
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Incidence matrices tell many things

I G is connected iff AG has a trivial left kernel.

I Because AG ’s left kernel is the linear span of the
indicator vectors of G ’s connected components.

I The cycle space of G is the right kernel of AG .
I Because AG ’s right kernel is the linear span of the

indicator vectors of G ’s cycle.
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Recall: Equivalent descriptions of trees

Theorem
If G = (V ,E ) is a graph with n vertices and n − 1
edges, then TFAE

1. G is connected.

2. G is acyclic.

3. G is collapsible.
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Why G is connected iff it is acyclic

For every G rank(AG ) ≤ rank(AKn
) = n − 1

The only linear dependence among the rows is

1AKn
= 0.

1. G is connected ⇔ AG has a trivial left kernel.

2. G is acyclic ⇔ AG has a zero right kernel.

3. The n − 1 columns of AG are linearly
independent.
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Collapsibility

An elementary collapse is a step where you remove
a vertex of degree one and the single edge that
contains it.

A graph G is collapsible if by repeated application
of elementary collapses you can eliminate all of the
edges in G .
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Collapsing - a linear algebra perspective

Let AG be the incidence matrix of graph G . In an
elementary collapse we erase row i and column e of
AG where the (i , e) entry is the only nonzero entry
in the i -th row.

Recall: e is the one and only edge
incident with vertex i .

G is collapsible if it is possible to eliminate all its
columns by a series of elementary collapses.

This implies that G is acyclic - Collapsing yields a
proof that the right kernel is empty.
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But note

As we saw, connectivity and acyclicity are linear
algebraic. In contrast collapsibility is a purely
combinatorial condition.

Indeed we will soon see that in higher dimensions
collapsibility implies connectivity and acyclicity, but
the reverse implication does not hold.
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Setting the scene

We need a high-dimensional analog of the incidence
matrix.
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Boundary operators of simplicial cplexes

(d − 1)-dimensional faces vs. d-dimensional faces.

∂2 =



. . . . . . ijk . . . . . . . . . . . . . . .
... . . . . . . . . . . . . . . . . . . . . . . . .
ij . . . . . . +1 . . . . . . . . . . . . . . .
... . . . . . . . . . . . . . . . . . . . . . . . .
ik . . . . . . −1 . . . . . . . . . . . . . . .
... . . . . . . . . . . . . . . . . . . . . . . . .
... . . . . . . . . . . . . . . . . . . . . . . . .
jk . . . . . . +1 . . . . . . . . . . . . . . .
... . . . . . . . . . . . . . . . . . . . . . . . .
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Does this suggest what a hypertree is ?

We know where to start:

Q: What is the rank of ∂d ?

A:
(
n−1
d

)
, let’s prove it

That rank(∂d) ≤
(
n−1
d

)
follows from ∂d−1∂d = 0.

We will show that rank(∂d) ≥
(
n−1
d

)
by exhibiting an

explicit set of
(
n−1
d

)
linearly independent columns,

i.e., the set of d-faces of a d-dimensional hypertree.
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So, what is a d -dimensional hypertree?

It is a d-dimensional simplicial complex with

I A full (d − 1)-dimensional skeleton.

I It has
(
n−1
d

)
d-dimensional faces.

Whose boundary operator ∂d has

I a trivial left kernel.

I zero right kernel.

I The
(
n−1
d

)
columns of its ∂d span the columns

of the matrix of all (d − 1)-faces vs. all d-faces.
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Can you please show an example of
hypertree?

Arguably the simplest one-dimensional (=graphic)
tree is a star, i.e., all 1-dimensional faces (=edges)
that contain, say, vertex n.

The same works in every dimension: Take all d-faces
(=sets of size d + 1) which contain the vertex n.
Let’s see how this works.

Nati Linial Hypertrees



Can you please show an example of
hypertree?

Arguably the simplest one-dimensional (=graphic)
tree is a star, i.e., all 1-dimensional faces (=edges)
that contain, say, vertex n.
The same works in every dimension: Take all d-faces
(=sets of size d + 1) which contain the vertex n.
Let’s see how this works.

Nati Linial Hypertrees



The d -dimensional hyperstar

Recall the boundary operator ∂d of the full
d-dimensional n-vertex full complex. It is a(
n
d

)
×
(

n
d+1

)
matrix of {0,−1, 1}.

Rows in this matrix represent (d − 1)-dimensional
faces (=sets of size d). These sets fall in two
categories:

Nati Linial Hypertrees



The d -dimensional hyperstar

Recall the boundary operator ∂d of the full
d-dimensional n-vertex full complex. It is a(
n
d

)
×
(

n
d+1

)
matrix of {0,−1, 1}.

Rows in this matrix represent (d − 1)-dimensional
faces (=sets of size d). These sets fall in two
categories:

Nati Linial Hypertrees



The d -dimensional hyperstar (contd.)

I: Sets which do not contain the vertex n, there are(
n−1
d

)
of those.

II: Those which do contain the vertex n, their
number is:

(
n−1
d−1

)
.

It is easily verified that the rows in category I
linearly span those from category II. We can
therefore eliminate the latter without losing in rank.
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The d -dimensional hyperstar (contd.)

Its vertex set is V = [n]. Every subset of V of size
≤ d is a face (its (d − 1)-skeleton is full). A set of
size d + 1 is a d-dimensional face iff it contains the
vertex n.

Why is this a hypertree?
Because after category II rows are eliminated, what
remains from the matrix ∂d is simply the identity
matrix - clearly a full rank matrix. In the row
corresponding to set S , the only nonzero entry is in
the column corresponding to S∪̇{n}.
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Collapsibility in higher dimensions

Let X be a d-dimensional complex.

If some (d − 1)-dimensional face τ is contained in a
unique d-dimensional face σ, then the
corresponding elementary collapse is to eliminate
both τ and σ from X .
X is d-collapsible if it is possible to eliminate all its
d-faces by a series of elementary collapses.
The linear algebra perspective of collapsibility shows
that it implies acyclicity. But....
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A little surprise(
6−1

2

)
= 10
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Figure: A triangulation of the projective plane
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A little surprise

This example shows (at least) two things:

Unlike the 1-dimensional case of graphs, the
definition of a d-dimensional hypertree depends on
the underlying field.

Indeed: The 6-point triangulation of the projective
plane is a Q-hypertree, but not a F2-hypertree.
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In dimension d ≥ 2 d-collapsibility is a stronger
condition than being a hypertree.

In fact, already Kalai posed

Conjecture
For every d ≥ 2 and for every field F and n→∞
almost none of the n-vertex d-dimensional
F-hypertrees are collapsible.

This remains open, and is supported by rigorous
numerical experiments.
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If so...

Q: Can you, at least, come up with more examples
of non-collapsible hypertrees?

A construction: Let n be prime and d ≥ 2. Fix a
subset A ⊂ Zn of cardinality |A| = d + 1. The sum
complex XA corresponding to A has a full
(d − 1)-dimensional skeleton and contains a d-face
σ iff

∑
x∈σ x ∈ A.

Theorem (L., Meshulam, Rosenthal)
The complex XA is always a Q-hypertree. It is
collapsible iff A forms an arithmetic progression.
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Cayley-Kalai Formula

Theorem (Cayley’s Formula, Borchardt 1860)
The number of trees with vertex set [n] is nn−2.

Theorem (Kalai 1983)∑
T

|Hd−1(T )|2 = n(n−2
d )

where the sum is over all n-vertex d-dimensional
hypertrees T .
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But how many d -hypertrees are there?

Open Problem
For d ≥ 2 and large n, find (at least approximately)
the number of d-dimensional n-vertex Q-hypertrees.

Kalai’s Formula yields estimates, but falls short of
an asymptotic formula. In joint work with Y. Peled
these estimates were significantly improved, though
a full answer still eludes us.

Here is the strategy that we used to derive our
bounds.
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A random process

We consider the random process that starts with a
full (d − 1)-dimensional skeleton. At each step pick
a random d-dimensional face σ 6∈ X . If possible, we
add σ to X . Otherwise, we discard σ.

We cannot add σ to X iff this creates a new cycle.
In this case we say that σ is in the shade of X .

To wit: At each step we add to the current complex
a random d-face σ whose addition creates no new
cycle (”σ is not in the shade of X”).
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Living in the shades

Let G = (V ,E ) be a disconnected graph, and let
ij 6∈E . We say that ij is in G ’s shadow if i and j
belong to the same connected component of G .

In other words ij is in G ’s shadow iff the column
corresponding to the edge ij is in the linear span of
the columns of AG .
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Outside the shadow of an evolving graph
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Shadow of an evolving 2-complex
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A lower bound on the number of
hypertrees: A taste of the proof

Claim: If X is an acyclic d-complex, then the

number of d-faces in its shadow Y is ≤ n·|X |
d+1

There are exactly (d + 1) · |Y | pairs (v , σ) with v a
vertex in σ, a d-face in Y . Let W be the set of
d-faces in Y that contain v .
W is an acyclic complex, being part of v ’s
hyperstar. So, the columns corresponding to W are
linearly independent and spanned by X . Therefore
|W | ≤ |X |, which proves our claim.
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A little context - G (n, p)

This is the grandfather of all models of random
graphs. Introduced by Erdős and Rényi in the 60’s,
a mainstay of modern combinatorics and still an
important source of ideas and inspiration.

Start with n vertices. For each pair of vertices
{x , y} independently with probability p include
e = xy in the random graph that you generate.
Closely related model: the evolution of random
graphs starts with n vertices and no edges. At each
step add a random edge to the evolving graph.
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a mainstay of modern combinatorics and still an
important source of ideas and inspiration.
Start with n vertices.

For each pair of vertices
{x , y} independently with probability p include
e = xy in the random graph that you generate.
Closely related model: the evolution of random
graphs starts with n vertices and no edges. At each
step add a random edge to the evolving graph.

Nati Linial Hypertrees



A little context - G (n, p)

This is the grandfather of all models of random
graphs. Introduced by Erdős and Rényi in the 60’s,
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A d -dimensional analog of G (n, p)

About 15 years ago, Roy Meshulam and I
introduced a model of a random d-dimensional
n-vertex complex Xd(n, p). In dimension d = 1 the
X1(n, p) model coincides with G (n, p).

Start with a full (d − 1)-dimensional skeleon. (In
the case of graphs - start with n vertices.)
For each d-dimensional face σ, independently and
with probability p, decide whether σ ∈ X . (For
graphs - same with every edge).
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Some basic facts in G (n, p) theory

Theorem (Erdős and Rényi ’60)
The threshold for graph connectivity in G (n, p) is

p =
ln n

n

E.g., if p ≤ (1− ε) ln n
n , then whp a graph in G (n, p)

is disconnected.
Whereas if p ≥ (1 + ε) ln n

n , whp a graph in G (n, p)
is connected.
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Spelling ”Connectivity” in high dimension

The boundary operator ∂d has a trivial left kernel.

Theorem (L. - Meshulam - Wallach)
The threshold for connectivity of Xd(n, p) is

p =
d ln n

n
.

Specifically, whp, left kernel(∂d(X )) is

I nontrivial for p < (1− ε)d ln n
n , and

I trivial for p > (1 + ε)d ln n
n .
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Phase transition in G (n, p) theory

Erdős and Rényi’s most dramatic discovery is the
phase transition in the evolution of random graphs.

Start with n isolated vertices and sequentially add a
new random edge, one at a time. Initially every
edge is isolated. Later, small and simple connected
components appear.

I small = cardinality O(log n).

I simple = a tree.

I Plus a Poisson number of unicylic graphs with
O(log n) vertices.
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Crescendo - The phase transition

Around step n
2 and over a very short period of time

a giant component emerges.

giant= cardinality Ω(n).

Note: Time n
2 corresponds to p = 1

n .
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In the wake of the revolution

Around step n
2 many sudden changes occur.

E.g.,

for p < 1−ε
n , the probability that the graph is acyclic

is bounded away from both zero and one.

But if p > 1+ε
n , G almost surely contains a cycle.
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Meanwhile in high dimensions.....

There are at least two high-dimensional analogs of
the forest/non-forest dichotomy in graphs.

I Collapsible/non-collapsible complex.

I Acyclic/cyclic: right kernel(∂d)
?
= 0.

Recall: collapsible complexes are acyclic, so clearly

pcollapse ≤ pacyclic

This inequality is strict.
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Concretely

Theorem (Lior Aronshtam, L., Tomasz

 Luczak, Roy Meshulam, Yuval Peled)

I The collapsibility threshold in Xd(n, p) is

(1 + od(1))
log d

n
.

I The threshold for having a cycle whp is

d + 1− od(1)

n
.
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Resolving the remaining major difficulty

We have no notion of a high-dimensional connected
component

Theorem (L., Y. Peled)
Exactly at the same p = c

n where Xd(n, p) almost
surely acquires a cycle, the shadow of the complex
becomes gigantic (=Ω(nd+1) faces).

This statement applies in all dimensions. However,
when d = 1 the limit distribution is continuous but
not smooth, while for d ≥ 2 the limit distribution is
discontinuous.
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A view of phase transition in G (n, p)
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Phase transition in X2(n, p) complexes

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nati Linial Hypertrees



More surprises in the shadows

Easy Observation
Let G be an ”almost tree”, i.e., an n vertex forest
with n − 2 edges (and hence with two connected

components). Then at least (1− o(1))n
2

4 , i.e., at
least half of the remaining edges, are in G ’s shadow.
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Surprises in the shadows (contd.)

Construction: Let X be a 2-dimensional n-vertex
complex with a full 1-dimensional skeleton. The
2-faces of X are the arithmetic triples of difference
6= 1. Easy fact: The number of 2-faces in X is(
n−1

2

)
− 1 (one less than a 2-dimensional hypertree).

Theorem (L., Newman, Peled, Rabinovich)
The complex X is Q-acyclic. Assuming the
Riemann hypothesis1, there are infinitely many
primes n for which X has an empty shadow.

1It actually suffices to assume the weaker Artin’s conjecture
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Sampling hypertrees

Recent work of Anari, Liu, Oveis Gharan and
Vinzant shows that a most natural algorithm for
sampling hypertrees converges in polynomial time.
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Hyperpaths?

A path is a tree where every vertex is in two or
fewer edges.

Can we construct d-dimensional hypertree where
every (d − 1)-dimensional face is contained in d + 1
or fewer d-dimensional face?
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Hyperpaths (contd.)

If so, how many are they? In dimension one: If Pn

denotes the number of n-vertex paths and Tn is the
number of n-vertex trees, then

Pn

Tn
= (

1

e
+ o(1))n

and in higher dimension?
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