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Let ∆n−1 denote the (n − 1)-dimensional simplex. Let Y be a random 2-dimensional
subcomplex of ∆n−1 obtained by starting with the full 1-dimensional skeleton of ∆n−1

and then adding each 2−simplex independently with probability p. Let H1(Y ;F2) denote
the first homology group of Y with mod 2 coefficients. It is shown that for any function
ω(n) that tends to infinity

lim
n→∞

Prob[H1(Y ;F2) = 0] =

{
0 p = 2 log n−ω(n)

n

1 p = 2 log n+ω(n)
n

.

1. Introduction

Let G(n,p) denote the probability space of graphs on the vertex set [n] =
{1, . . . ,n} with independent edge probabilities p. Let log denote the natural
logarithm. A classical result of Erdős and Rényi [2] asserts that the threshold
probability for connectivity of G∈G(n,p) coincides with the threshold for
the non-existence of isolated vertices in G. In particular, for any function
ω(n) that tends to infinity

lim
n→∞

Prob[G ∈ G(n, p) : G connected] =

{
0 p = log n−ω(n)

n

1 p = log n+ω(n)
n

.

In this paper we study an analogous problem for random 2−dimensional
complexes. Unlike the graphical case, there are several distinct notions of
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1-dimensional connectivity of a (connected) 2-dimensional complex X. The
strongest such notion is simple connectivity, i.e. the triviality of the funda-
mental group π1(X). Next comes homological 1-connectivity, i.e. the vanish-
ing of the first integral homology H1(X;Z). Here we are concerned with the
still weaker notion of F2-homological 1-connectivity, namely the vanishing of
the first homology with mod 2 coefficients H1(X;F2).

We recall some topological terminology (see e.g. [3]). For a simplicial
complex X, let fk(X) denote the number of k-dimensional simplices in X
and let X(k) = {σ ∈X : dimσ≤ k} denote the k-dimensional skeleton of X.
Let Ck(X) denote the F2-vector space of F2 k-cochains on X – i.e. the space
of F2-valued functions on the k-simplices of X. The coboundary operator
dk : Ck(X) → Ck+1(X) is given as follows. For f ∈ Ck(X) and a (k+1)-
dimensional σ∈X

dk(f)(σ) =
∑

τ⊂σ , dim τ=k

f(τ) .

Let Zk(X) = ker(dk) denote the space of k-cocycles of X and let Bk(X) =
Im(dk−1) denote the space of k-coboundaries of X. The k-th cohomology
group of X with F2 coefficients is

Hk(X;F2) =
Zk(X)
Bk(X)

.

The k-th homology group Hk(X;F2) is isomorphic to Hk(X;F2). We abbre-
viate Hk(X)=Hk(X;F2).

Let ∆n−1 denote the (n−1)-dimensional simplex on the vertex set [n].
Let Y (n,p) denote the probability space of subcomplexes ∆(1)

n−1⊂Y ⊂∆(2)
n−1

with probability measure

Pr(Y ) = pf2(Y )(1− p)(
n
3)−f2(Y ).

An edge ij ∈
([n]

2

)
is isolated in Y if it is not contained in any of the 2-

simplices of Y . If ij is isolated then the indicator function of ij is a non-
trivial 1-cocycle of Y , henceH1(Y ) �=0. Our main result is that the threshold
probability for the vanishing of H1(Y ) coincides with the threshold for the
non-existence of isolated edges in Y .

Theorem 1.1. Let ω(n) be any function which satisfies ω(n)→∞ then

lim
n→∞

Prob[Y ∈ Y (n, p) : H1(Y ;F2) = 0] =

{
0 p = 2 log n−ω(n)

n

1 p = 2 log n+ω(n)
n

.(1)
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The case p= 2logn−ω(n)
n is straightforward: Let g(Y ) denote the number

of isolated edges of Y . Then

E[g] =

(
n

2

)
(1− p)n−2 = Ω(exp(ω(n))) .

A standard second moment argument then shows that

Prob[H1(Y ) = 0] ≤ Prob[g = 0] = o(1) .

Before proceeding to the main part of the paper we briefly outline the
analogy between the proof of Theorem 1.1 and that of the classical theo-
rem on the threshold for graph connectivity. From a topological perspective,
graph connectivity is homological 0-connectivity and here we are concerned
with F2-homological 1-connectivity. The coupon-collector arguments for es-
tablishing the thresholds for the existence of an isolated vertex/edge are
identical in both cases. The proof that p = logn+ω(n)

n guarantees a.e. con-
nectivity of G ∈G(n,p) may be formulated as follows. For g : [n]→ F2, let
B(g) be the number of edges e= uv in the complete graph Kn, such that
d0(g)(e) = g(u) + g(v) = 1. In other words, B(g) = |g−1(0)||g−1(1)| is the
number of edges in the cut (g−1(0),g−1(1)) of the complete graph Kn. A
graph G=([n],E) is thus disconnected iff there exists a non-constant func-
tion g :V →F2 with d0(g)(e)=0 for all e∈E. For a given g, the probability
of this event in the space G(n,p) is (1− p)B(g). Limiting ourselves, as we
may, to g’s with |g−1(1)|≤n/2, we now apply a union bound to derive the
desired conclusion.

Something similar happens here with p = 2logn+ω(n)
n . For a mapping

f :
([n]

2

)
→ F2, let B(f) be the number of triples σ = uvw for which

d1(f)(σ) = f(uv)+f(vw)+f(uw) = 1. A complex ∆(1)
n−1 ⊂ Y ⊂∆(2)

n−1 is not
F2-homologically 1-connected iff there exists a mapping f :

([n]
2

)
→ F2 that

is not of the form d0(g) for any g, such d1(f)(σ) = 0 for all 2-dimensional
σ∈Y . Again, for a given f , this event has probability (1−p)B(f) in the space
Y (n,p). At this point, the perfect analogy breaks and we need more refined
arguments. In the graphical case, the functions g and 1− g are equivalent,
whence we had the liberty of assuming that |Supp(g)|≤n/2, by switching,
if necessary from g to 1− g. Likewise, here f is equivalent to any function
of the form f + d0(h) for any h : [n] → F2. (Note that d0(h) is simply the
characteristic function of a cut in Kn.) We are thus allowed to consider
only functions f such that |Supp(f)| ≤ |Supp(f +d0(h))| for all h. It turns
out quite easily that we may further restrict ourselves and assume that the
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graph ([n],Supp(f)) has a single nontrivial connected component. (This sim-
plification has no graphical analogue.) Let F ′

n be the class of all functions
f satisfying these two assumptions. As in the graphical case we estimate
Prob[H1(Y ) �=0]≤∑f∈F ′

n
(1−p)B(f). The proof that this sum is o(1) is sig-

nificantly more involved than in the graphical case. There are two main steps
in the proof. First we show (Proposition 2.1) that B(f)≥cn·|Suppf | for every
f ∈F ′

n, where c>0 is an absolute constant. We then derive an upper bound
(Proposition 2.3) on the number of f ∈F ′

n for which B(f)=(1−θ)n·|Suppf |
for θ bounded away from zero.

We turn to a more concrete discussion. For an f ∈C1(∆n−1) denote by
[f ] the image of f in H1(∆(1)

n−1). Let

B(f) =

∣∣∣∣∣
{
σ ∈

(
[n]
3

)
: d1(f)(σ) = 1

}∣∣∣∣∣ .
For any complex Y ⊃ ∆

(1)
n−1 we identify H1(Y ) with its image under the

natural injection H1(Y )→H1(∆(1)
n−1). It follows that for f ∈C1(∆n−1)

Prob[[f ] ∈ H1(Y )] = (1− p)B(f).

Let Suppf = {e∈
([n]

2

)
: f(e)= 1}. The Hamming Weight of the cohomology

class [f ]∈H1(∆(1)
n−1) is defined by

w([f ]) = min{|Suppf ′| : [f ′] = [f ]}
= min{|Supp(f + d0(h))| : h ∈ C0(∆n−1)}.

Let
Fn = {f ∈ C1(∆n−1) : w([f ]) = |Suppf |}.

Associate with any f ∈C1(∆n−1) the simple undirected graph Gf =([n],Ef )
with edge set Ef =Suppf . Let F ′

n consist of all 0 �=f ∈Fn such that Gf has
exactly one connected component which is not an isolated point.

If H1(Y ) �=0 then any 0 �=f ∈Z1(Y ) with minimal support must belong
to F ′

n. Therefore

Prob[H1(Y ) �= 0] ≤
∑

f∈F ′
n

Prob[[f ] ∈ H1(Y )] .

Theorem 1.1 will thus follow from

Theorem 1.2. For p= 2logn+ω(n)
n∑

f∈F ′
n

(1− p)B(f) = o(1) .(2)
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In Section 2 we formulate the problem in graph theoretical terms and
state Propositions 2.1 and 2.3 which are the main ingredients in the proof
of Theorem 1.2. The proofs of these results are given in Sections 3 and 4. In
Section 5 we combine Propositions 2.1 and 2.3 to derive Theorem 1.2. We
conclude in Section 6 with some remarks on possible extensions and open
problems.

2. A Graph Theoretic Formulation

The mapping f→Gf defines a 1-1 correspondence between the 1-cochains
C1(∆n−1) and the (simple undirected) graphs on the vertex set [n]. For a
graph G=([n],E)=Gf we denote B(G)=B(f). Clearly B(G) is the number
of triangles T ∈

([n]
3

)
which contain either one or three edges of G. Let

Gn = {Gf : f ∈ Fn} , G′
n = {Gf : f ∈ F ′

n} .

Suppose G= ([n],E) =Gf ∈ Gn. Then f satisfies w([f ]) = |Supp(f)|. Hence
for all g∈C0(∆n−1)

|Supp(f + d0(g))| ≥ |Supp(f)| .(3)

Let S=Supp(g)= {v ∈ [n] : g(v)=1} then Supp(d0(g))⊂
([n]

2

)
consists of all

|S||S| edges of the cut (S,S).
It follows that G∈Gn if and only if

|E ∩ (S, S)| ≤ |S||S|
2

(4)

for all cuts (S,S). In particular the maximal degree in G∈Fn is less then n
2 .

G′
n consists of all G∈Gn that have at most one connected component which

is not an isolated point. The proof of Theorem 1.2 depends on two results.
In section 3 we prove the following lower bound on B(G):

Proposition 2.1. There exists a constant c ≥ 1
120 such that for any G =

([n],E)∈Gn

B(G) ≥ c|E|n .(5)

Remark. Proposition 2.1 is equivalent to the following result which roughly
says that if Y is close to∆(2)

n−1 then any 1-cohomology class of Y must contain
a cocycle with a small support.
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Corollary 2.2. Let c be the constant of Proposition 2.1. Then for any sim-

plicial complex ∆
(1)
n−1⊂Y ⊂∆(2)

n−1 and any [f ]∈H1(Y ;F2)

w([f ]) ≤ c−1

(n
3

)
− f2(Y )
n

.(6)

Example. Suppose n is divisible by 3. Let [n] =
⋃2

i=0Vi be a partition of
[n] with |Vi|= n

3 and let

Y = ∆
(2)
n−1 −

{
σ ∈

(
[n]
3

)
: |σ ∩ Vi| = 1 for all 0 ≤ i ≤ 2

}
.

The characteristic function f=1E ∈C1(Y ) of the set

E = {{u, v} : u ∈ V0, v ∈ V1}

is a 1-cocycle of Y . It can be checked that f is a cocycle of minimal support
in its cohomology class [f ]. Hence

w([f ]) = |Suppf | = n2

9
= 3

(n
3

)
− f2(Y )
n

.

It follows that c cannot be replaced by any constant bigger then 1
3 .

For k≤
(n
2

)
and 0≤θ≤1 Let

Gn(k) = {G = ([n], E) ∈ Gn : |E| = k}
G′

n(k) = {G = ([n], E) ∈ G′
n : |E| = k}

Gn(k, θ) = {G ∈ Gn(k) : B(G) = (1− θ)kn} .

In Section 4 we prove an estimate on the cardinality of Gn(k,θ):

Proposition 2.3. For any 0<ε< 1
2 there exists a constant C(ε) such that

for any θ≥ε and n
5 ≤k≤n2−ε

|Gn(k, θ)| ≤
(
C(ε) · n2(1−(2−ε)θ)

)k
.(7)



HOMOLOGICAL CONNECTIVITY OF RANDOM 2-COMPLEXES 481

3. A Lower Bound on B(G)

Proof of Proposition 2.1. We show (5) with c= 1
120 . For e∈E let α(e)

denote the number of 2-simplices σ ∈
([n]

3

)
which contain e but whose two

other edges are not in E. Let β(e) denote the number of σ ∈
([n]

3

)
which

contain e and whose two other edges are both in E. Then

B(G) =
∑
e∈E

α(e) +
1
3

∑
e∈E

β(e) .(8)

Suppose for contradiction that

B(G) < c|E|n .(9)

Let δ<1 be a constant whose value will be assigned later, and let

E′ =
{
e ∈ E : α(e) +

1
3
β(e) ≤ cn

δ

}
.

Then (8) and (9) imply that |E′|≥(1−δ)|E|.
For v ∈ [n] let ΓG(v) = {u ∈ [n] : uv ∈E} and let degG(v) = |ΓG(v)|. Recall
that

degG(v) <
n

2
(10)

for all v∈ [n]. Let e=uv∈E′ then
cn

δ
≥ α(e) = n− |ΓG(u) ∪ ΓG(v)| ≥ n− (degG(u) + degG(v))(11)

and
3cn
δ

≥ β(e) = |ΓG(u) ∩ ΓG(v)| .(12)

(10) and (11) imply that degG(u),degG(v)≥(1− 2c
δ )n

2 .
Let G′=([n],E′) then

(1− δ)
∑

u∈[n]

degG(u) = 2(1− δ)|E| ≤ 2|E′| =
∑

u∈[n]

degG′(u) .

Hence there exists a u∈ [n] such that

0 < (1− δ) degG(u) ≤ degG′(u) .

Since u is incident with at least one edge in E′ it follows that degG(u) ≥
(1− 2c

δ )n
2 . Thus

degG′(u) ≥ (1− δ)
(
1− 2c

δ

)
· n
2
.
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Let S=ΓG′(u) then (12) implies that for each v∈S

|ΓG(v) ∩ S| ≤ |ΓG(v) ∩ ΓG(u)| ≤ 3cn
δ
.

It follows that

|ΓG(v) ∩ S| ≥ degG(v) − 3cn
δ

≥
(
1− 2c

δ

)
n

2
− 3cn

δ
=
(
1− 8c

δ

)
· n
2
.

Therefore

|E ∩ (S, S)| =
∑
v∈S

|ΓG(v) ∩ S| ≥

(1− δ)
(
1− 2c

δ

)
n

2
·
(
1− 8c

δ

)
n

2
≥ (1− δ)

(
1− 10c

δ

)
· n

2

4
.

Taking δ=
√
10c we obtain

|E ∩ (S, S)| ≥ (1−
√
10c)2 · |(S, S)| > 1

2
|(S, S)|

in contradiction with (4).

4. Near Transversals

The proof of Proposition 2.3 depends on the following

Claim 4.1. For any 0< ε< 1
2 there exist constants C1(ε), n0(ε) such that

for any ε≤ θ≤ 1 and for any graph G= ([n],E) with n≥n0(ε) and degree
sequence d1, . . . ,dn≤ n

2 which satisfies

n

5
≤ |E| = k ≤ n2−ε and

n∑
i=1

d2
i ≥ θkn(13)

there exists a set of vertices S⊂ [n] such that

|S| ≤ C1(ε) · k
n

and |{e ∈ E : S ∩ e �= ∅}| ≥ (2− ε)θk .(14)

Proof. Pick S at random with Prob[i∈S]= 2di
n and let

X = |{e ∈ E : S ∩ e �= ∅}| .
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Then

E[X] =
∑
ij∈E

(
1−

(
1− 2di

n

)(
1− 2dj

n

))
=

2
n

∑
ij∈E

(di + dj)−
4
n2

∑
ij∈E

(di · dj) ≥
2
n

n∑
i=1

d2
i −

2
n2

(
n∑

i=1

di

)2

≥

2θk − 8k2

n2
≥ (2θ − 8n−ε)k .

It follows that for n≥n0(ε)=(100
ε2

)
1
ε

Prob[X ≥ (2− ε)θk] ≥ Prob
[
X ≥

(
1− ε

3

)
E[X]

]
≥

ε

3
· E[X]

k
≥ εθ

3
≥ ε2

3
.(15)

Since

E[|S|] =
n∑

i=1

2di

n
=

4k
n

it follows by a large deviation estimate (see e.g. Theorem A.1.12 in [1]) that
for β>e

Prob
[
|S| > β 4k

n

]
<

(
e

β

) 4βk
n

≤
(
e

β

) 4β
5

.(16)

Hence for a sufficiently large C1(ε)

Prob
[
|S| > C1(ε) · k

n

]
<
ε2

3
.(17)

(15) and (17) imply that there exists an S⊂ [n] which satisfies (14).

Remark. Claim 4.1 is not far from optimal in the sense that there exist
graphs which satisfy (13), but such that any set of O( k

n) vertices intersects at
most 2θk(1+o(1)) edges. Indeed let θ< 1

2 be fixed and let Ω(n)≤k≤o(n2).
Let A,B,C be three disjoint subsets of [n] such that |A|= 4θk

n , |B|= n
2 , and

|C|= t where
(t
2

)
=(1−2θ)k. Let G=([n],E) consist of the complete bipartite

graph with sides A and B, together with the complete graph on C. Then
|E|=k, di≤ n

2 and
∑n

i=1d
2
i ≥θkn. For any S⊂ [n] such that |S|=O( k

n)

|{e ∈ E : S ∩ e �= ∅}| ≤ 2θk + |S| · t = 2θk(1 + o(1)) .
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Proof of Proposition 2.3. It suffices to consider n ≥ n0(ε). Let G =
([n],E)∈Gn(k,θ). Then di=degG(i)< n

2 and

(1− θ)kn = B(G) ≥
∑
e∈E

α(e) ≥
∑
ij∈E

(n− degG(i)− degG(j)) = kn−
n∑

i=1

d2
i .

It follows that
∑n

i=1 d
2
i ≥θkn hence by Claim 4.1 there exists a subset S⊂ [n]

which satisfies (14). We now estimate |Gn(k,θ)| as follows: The number of
possible subsets S is at most 2n. The number of choices for the edges of G
which are incident with a fixed S is at most

k∑
�=(2−ε)θk

(
|S|n−

(|S|+1
2

)
0

)
< k

(
|S|n
k

)
< k

(
e|S|n
k

)k

< k(eC1(ε))k.

The number of choices for the edges that are not covered by S is at most( (n
2)

k(1−(2−ε)θ)

)
. It follows that

|Gn(k, θ)| ≤ 2n · k · (eC1(ε))k · n2k(1−(2−ε)θ) ≤
(
C(ε) · n2(1−(2−ε)θ)

)k
.

5. Proof of Theorem 1.2

Proof of Theorem 1.2. Let ω(n)→∞ and let p= 2logn+ω(n)
n . Writing (2)

in the equivalent graph theoretic formulation, we have to show that∑
k≥1

∑
G∈G′

n(k)

(1− p)B(G) =
∑

G∈G′
n

(1− p)B(G) = o(1) .(18)

Let c≥ 1
120 denote the constant of Proposition 2.1. We deal separately with

three intervals of k:

(i) 1≤ k≤ n
5 . Recall that G ∈ G′

n(k) has exactly one connected component
which is not an isolated point. It follows that

|G′
n(k)| ≤

(
n

k + 1

)((k+1
2

)
k

)
≤
( en

k + 1

)k+1
(
e(k + 1)

2

)k

< (10n)k+1.

Next note that α(e)≥n−k−1 for all edges e of G, hence B(G)≥k(n−k−1).
It follows that
n/5∑
k=2

∑
G∈G′

n(k)

(1− p)B(G) ≤
n/5∑
k=2

|G′
n(k)|(1 − p)k(n−k−1) ≤

n/5∑
k=2

(10n)k+1
(
n−2e−ω(n)

) 4k
5 ≤

n/5∑
k=2

(10n)k+1n−
8k
5 = O(n−

1
5 ).
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Hence
n/5∑
k=1

∑
G∈G′

n(k)

(1− p)B(G) ≤
(
n

2

)
(1− p)n−2 +O(n−

1
5 )

≤ exp
(
−ω(n)

2

)
+O(n−

1
5 ) .(19)

(ii) n
5 ≤k≤n2−c. We need the following:

Claim 5.1. For any n
5 ≤k≤n2−c and 0≤θ≤1
∑

G∈Gn(k,θ)

(1− p)B(G) = O(n−
k
4 ) .(20)

Proof. If 0≤θ≤ 1
3 then

∑
G∈Gn(k,θ)

(1− p)B(G) ≤
((n

2

)
k

)
(1− p)(1−θ)kn

≤
(
en2

2k

)k

n−2(1−θ)k ≤ (10n2θ−1)k ≤ (10n−
1
3 )k.

Suppose now that 1
3 ≤θ≤1. Applying Proposition 2.3 with ε=c we obtain∑

G∈Gn(k,θ)

(1− p)B(G) ≤ |Gn(k, θ)| · (1− p)(1−θ)kn

≤
(
C(ε) · n2(1−(2−ε)θ)

)k
· n−2(1−θ)k

=
(
C(ε) · n−2θ(1−ε)

)k

≤
(
C(c) · n−

2(1−c)
3

)k

.

For each k the number of θ’s for which Gn(k,θ) is non-empty is at most n3.
It follows by Claim 5.1 that

n2−c∑
k= n

5

∑
G∈Gn(k)

(1− p)B(G) =
n2−c∑
k= n

5

∑
θ

∑
G∈Gn(k,θ)

(1− p)B(G)

≤ n3
n2−c∑
k= n

5

O
(
n−

k
4

)
= n−Ω(n) .(22)
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(iii) k≥n2−c. By Proposition 2.1

∑
k≥n2−c

∑
G∈Gn(k)

(1− p)B(G) ≤
∑

k≥n2−c

((n
2

)
k

)
(1− p)ckn

≤
∑

k≥n2−c

(
en2

2k

)k

n−2ck ≤
∑

k≥n2−c

(2n−c)k = n−Ω(n) .(23)

Finally (18) follows from (19), (22) and (23).

6. Concluding Remarks

We have shown that in the model Y (n,p) of random 2-complexes on n

vertices, the threshold for the vanishing of H1(Y ;F2) occurs at p= 2logn
n . A

straightforward extension of the proof shows that the same result holds for
homology with coefficients in any fixed finite abelian group. We still do not
know the answer to the next set of naturally-arising questions: Where is the
threshold for the vanishing of H1(Y,Z)? For being simply connected? What
happens in the higher-dimensional situation?

We believe the methods of this paper will be relevant to the questions
of homological connectivity of random complexes in higher dimensions. The
problem of simple connectivity will probably require a different approach
and is particularly intriguing, since this property is, in general, undecidable.
One point worth mentioning here is this. The three conditions: Vanishing of
the first homology over F2, over Z, and simple connectivity, are progressively
stronger, in this order. If the thresholds for their occurrence differ, this will
supply us with a large set of instances where some, but not all of these
conditions hold. This may be of interest also outside of combinatorics. If the
thresholds coincide, it will be of interest to develop more refined probabilistic
models which do differentiate between these criteria for connectivity.

At any event, we believe that further study of topological properties of
random complexes will prove both interesting and useful.
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