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Abstract
We study the multiparty communication complexity of high dimensional permutations in the
Number On the Forehead (NOF) model. This model is due to Chandra, Furst and Lipton (CFL)
who also gave a nontrivial protocol for the Exactly-n problem where three players receive integer
inputs and need to decide if their inputs sum to a given integer n. There is a considerable body
of literature dealing with the same problem, where (N,+) is replaced by some other abelian
group. Our work can be viewed as a far-reaching extension of this line of research. We show
that the known lower bounds for that group-theoretic problem apply to all high dimensional
permutations. We introduce new proof techniques that reveal new and unexpected connections
between NOF communication complexity of permutations and a variety of well-known problems
in combinatorics. We also give a direct algorithmic protocol for Exactly-n. In contrast, all
previous constructions relied on large sets of integers without a 3-term arithmetic progression.
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1 Introduction

The multiplayer Number On the Forehead (NOF) model of communication complexity was
first introduced by Chandra, Furst and Lipton [13]. Here k players need to evaluate a given
function f : [n]k → {0, 1}, where we think of f as having k arguments x1, . . . , xk, each
comprised of logn bits. The i-th input vector xi is placed metaphorically on player i’s
forehead, so that every player sees the whole input but one argument. Players communicate
by writing bits on a shared blackboard in order to compute f .

The NOF communication model has turned out to be a fascinating, though exceedingly
difficult object of study. Indeed, good lower bounds in the NOF model would resolve several
longstanding open problems in complexity theory, such as lower bounds on the size of ACC0
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circuits for a natural function in P [40, 23]. They also imply lower bounds for branching
programs, time-space tradeoffs for Turing machines [26], and proof complexity lower bounds
[8]. The implications of good NOF lower bounds go in other, less expected directions as well.
E.g., knowing the communication complexity of specific natural functions, even for k = 3,
would have profound implications in graph theory and combinatorics. Finally, the search for
nontrivial protocols in this area is a wonderful challenge for algorithms designers. There is a
short list of such beautiful examples [13, 22] which begs to be extended.

Furthermore, our understanding of NOF communication complexity, even for k = 3
players, lags well behind our understanding of the standard model (k = 2 players). This
gap is usually attributed to the dearth of proof techniques in the NOF setting. In the
2-party setting, many measures of complexity allow us to prove both upper and lower bounds.
Such measures include matrix rank, various matrix norms, nonnegative rank, discrepancy,
corruption bounds and information complexity. Most of these measures are computationally
simple and admit dual characterizations which are very helpful in proving both upper and
lower bounds. On the other hand, in the NOF setting for k ≥ 3, the key combinatorial
objects are cylinder intersections (rather than combinatorial rectangles) and tensor norms.
These are much more complex, and thus far have resisted a workable characterization.

A case in point is the separation of randomized from deterministic communication
complexity. The 2-party equality function has a randomized protocol of bounded cost,
whereas a simple rank argument shows that every deterministic protocol must incur linear
cost. This provides an optimal separation of deterministic and randomized communication
complexity [26]. On the other hand, for k ≥ 3, the best explicit separation between
nondeterministic and randomized NOF complexity is logarithmic, even though counting
arguments yield linear separations [7]. The Exactly-n function is defined as follows: Input
x1, . . . , xk ∈ [n] is accepted iff

∑
i xi = n. In their seminal paper, Chandra, Furst and

Lipton [13] conjectured that Exactly-n achieves a strong separation, and also connected the
communication complexity of this function to well-known problems in additive combinatorics.
But thus far, despite considerable research effort, the lower bounds for Exactly-n are much
weaker even than the best (logarithmic) explicit separations.

The main goal of our work is to further investigate the connections between NOF com-
plexity of functions and questions in additive combinatorics, with the hope of stimulating
further research to make progress in both directions. A large and rapidly growing body of
work establishes interesting relationships between problems in additive combinatorics and
complexity theory. For example, the study of expander graphs and extractors, pseudoran-
domness, and property testing is closely related, some time even synonymous with similar
notions in additive combinatorics. Moreover, techniques from complexity theory have been
useful in additive combinatorics and vice versa. Some recent examples include the proof of
the cap-set conjecture [14, 17] and Dvir’s resolution [15] of the finite field Kakeya problem,
as well as the beautiful interplay between dense model theorems in additive combinatorics
and the notions of boosting and hardcore sets from complexity theory [11, 38, 29].

Here we consider a broad class of functions called high dimensional permutations. We
uncover strong connections between the NOF communication complexity of these functions
and several fundamental problems in additive combinatorics. Originally defined in [27], a
(k − 1)-dimensional permutation is a function f : [n]k → {0, 1} such that for every index
k ≥ i ≥ 1 and for every choice of x1, . . . , xi−1, xi+1, . . . , xk ∈ [n], there is exactly one value
of xi ∈ [n] for which f(x1, . . . , xi−1, xi, xi+1, . . . , xk) = 1. This class of functions generalizes
many well-studied functions in communication complexity. It is also closely related to many
other functions such as the Exactly-n function mentioned above.
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We will show that many well-studied problems in NOF complexity are not just related,
but are in fact identical or nearly identical to central problems in additive combinatorics.
We feel that this mutual relation deserves much more attention, and that progress in this
area is likely to greatly advance both domains. Specifically we believe that the study of the
communication complexity of high dimensional permutations and related graph functions
(defined in [7]) is a worthwhile undertaking that will help us develop new lower bounds proof
techniques for the notoriously difficult NOF model. Using these connections, we make modest
progress on several upper and lower bounds in NOF communication complexity.

1.1 Our Contributions

As mentioned above, our main goal and contribution is to unveil the strong relationships
between the NOF complexity of high dimensional permutation problems and central problems
in additive combinatorics and Ramsey theory. Already the founding paper of Chandra, Furst
and Lipton [13] makes a connection between the NOF complexity of Exactly-n and the areas
of Ramsey theory and additive combinatorics. A more general framework was introduced
in [10]: Given an abelian group G and T ∈ G, the function fGk,T evaluates to 1 on input
x1, . . . , xk ∈ G iff

∑
i xi = T (this expression is well-defined since G is abelian). The functions

fGk,T are high dimensional permutations. (Note that this holds as well for non-abelian G,
though we need to specify the order at which

∏
i xi is evaluated). Another strong connection

is that the Hales-Jewett theorem, a cornerstone of Ramsey theory, can be interpreted in
terms of communication complexity [35].

We establish a new and close connection between the NOF communication complexity of
high dimensional permutations and dense Ruzsa-Szemerédi graphs. These graphs appear
in various contexts in Combinatorics, Computer Science and Information Theory, thus
highlighting new connections between communication complexity and these various problems.
For example, an efficient deterministic communication protocol for any permutation yields
an efficient wiring scheme for shared directional multi-channels. For more on this, see e.g.,
[12] and [4]. In the classical, k = 2 case, monochromatic submatrices play a key role in the
theory. For higher k this is replaced by the much more poorly understood monochromatic
cylinder intersection. Naturally, much of our work here revolves around these complicated
objects. However, in certain simple cases we are able to get a grip on the largest size of a
cylinder intersection that contains only 1-inputs of f . As we show, in this case knowledge
of this quantity essentially determines the NOF communication complexity of f (see more
on this in the next section). The case in question is k = 3 and the group G = Zn2 . As we
show, the size of the largest cylinder intersection containing only 1-inputs of f is the largest
cardinality of a subset W ⊆ Zn4 such that for every three distinct members x,y, z ∈W there
is an index 1 ≤ i ≤ n for which (xi, yi, zi) 6∈ X, where

X = {(0, 0, 0), (1, 1, 1), (2, 2, 2), (3, 3, 3), (0, 1, 2), (1, 0, 3), (2, 3, 0), (3, 2, 1)}.

This parameter may seem artificial, but in fact, this framework includes several im-
portant problems in combinatorics, for different choices of X. Thus, if we take X :=
{(0, 0, 0), (1, 1, 1), (2, 2, 2), (3, 3, 3), (0, 1, 2)}, then this becomes precisely the density Hales-
Jewett problem, solved in [19]. Also, if X is comprised of all triplets (a, b, c) ∈ Z3

4 with
a + c = 2b, we arrive at the cap-set problem for Zn4 which was recently settled in break-
through papers by Croot, Lev, and Pach, and by Ellenberg and Gijswijt [14, 17]. In the next
subsection we list our new results that stem from these connections.
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1.1.1 Upper Bounds
We give a new algorithm for Exactly-n as well as several other instances of fGk,T . All
previous upper bounds for these functions crucially depend on Behrend’s famous construction
[9] of a large set of integers with no 3-term arithmetic progressions. This yields a large
monochromatic cylinder intersection, and a simple probabilistic translation lemma then shows
how to cover the whole space by monochromatic cylinder intersections, thus providing an
efficient protocol. To show that this indeed yields a large monochromatic cylinder intersection,
we appeal to the notion of corner-free sets [2, 36] which here, too, plays a key role. We cannot
realistically hope to improve the bounds by finding a construction better than Behrend’s, in
view of the many such failed attempts throughout the past 70 years (but note [16]). However,
Behrend’s construction is actually more than we need. The solution of fGk,T only requires
corner-free sets. That is, 3-term AP freeness implies corner-freeness, but we do not expect
that the two concepts are equivalent. We take a first step in this direction and give a new
algorithm which is not dependent on 3-term AP freeness. We hope that this indicates a viable
approach to improved protocols for the Exactly-n function. We also describe a nontrivial
protocol for the fG3,T problem for G = Zn2 .

1.1.2 Lower Bounds
We give a counting argument which shows that almost every k-dimensional permutation
has communication complexity Ω( logn

k ). Clearly, up to the 1
k factor, this is as high as this

quantity can get. Our proof relies on a recent lower bound of Keevash [25] on the number of
high-dimensional permutations. This method resembles the counting argument for graph
functions of [7], which does not apply, though, to permutations.

Regarding bounds on explicit functions, we prove a weak upper bound on the size of
a 1-monochromatic cylinder intersection for any permutation (in fact our result holds for
a wider family of functions that we call linjections). This bound uses a graph theoretic
characterization of the communication complexity of permutations, connecting it also to
Ruzsa-Szemerédi graphs. Not unexpectedly, our proof mirrors a similar result for Ruzsa-
Szemerédi graphs: Solymosi [36] showed that the multidimensional Szemeréedi theorem
follows from the triangle removal lemma. We adapt Solymosi’s proof to our context. The
main tools in the proof are thus the graph and the hypergraph removal lemmas.

We note that previous results were limited to the fGk,T function for abelian groups with
many factors, whereas ours works for general permutations. To emphasize the significance
of the last point, consider the NOF complexity of following three classes of functions: (i)
Permutations that come from Abelian groups, (ii) Those that come from general groups,
(iii) Latin squares. We consider each such function up to an arbitrary renaming of rows and
columns. The sizes of these three classes differ very substantially. For a given order n the
size of the relevant class is (i) exp(O(

√
logn)), (ii) At most exp(( 2

27 + o(1)) log3 n), and (iii)
((1 + o(1)) ne2 )n2 .

For k = 3 we can say more: The communication complexity of every 2-dimensional
permutation [n]3 → {0, 1} is Ω(log log logn). This extends the lower bound of [10] from the
realm of abelian groups to all permutations. The proof of the this lower bound uses only
elementary counting arguments, and is closely related to the result of [20] on monochromatic
corners on the integer grid.

The above lower bound also implies a result of Meshulam that was derived toward the
study of shared directional multi-channels. Meshulam’s result appears as Proposition 4.3 in
[4], where further background can be found.
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1.2 Related Work
The NOF model was introduced by Chandra, Furst and Lipton in [13]. One of the functions
they consider is Exactly-n : [n]3 → {0, 1}. For x, y, z ∈ [n], we let Exactly-n (x, y, z) = 1 if
and only if x+ y + z = n. Surprisingly, they proved that the communication complexity of
this function is only O(

√
logn), but their proof yields no explicit protocol. Although this

function is not a permutation, the proofs go through as well for the modn permutation [10],
and thus far this is the most efficient protocol found for any permutation. The protocol of
[13] is based on Behrend’s famous construction [9] of a large subset of [n] with no three-term
arithmetic progression. In addition, they prove an inexplicit lower bound of ωn(1) on the
complexity of Exactly-n . This is based on Gallai’s result [21, p. 38] that every finite coloring
of a Euclidean space contains a monochromatic homoteth of every finite set in that space.

Beigel, Gasarch and Glenn [10] considered the more general fGk,T problem, where G is an
abelian group, T is an element of G and k ≥ 2 an integer. In this scenario k players need
to decide whether x1 + x2 + · · ·+ xk = T . They show that the communication complexity
of fG3,T is at least Ω(log log logn) for every abelian group G and any T ∈ G. For the case
G = Zn, this follows as well from [20] and a recent result of Shkerdov [34] also yields a similar
lower bound for every abelian group G. For general k ≥ 3 and for an abelian group G that
is the product of t cyclic groups, it is shown in [10] that the deterministic NOF complexity
of fGk,T is ωt(1). The proof is by reduction to a lower bound from [37], that is based on the
Hales-Jewett Theorem (see [21]).

Note that fGk,T can be defined as well in non-abelian groups G. Namely, fGk,T (x1, . . . , xk) =
1 iff x1 · x2 · . . . · xk = T , where now the order of multiplication matters. Note also that the
function fGk,T is a permutation for every group G, every T ∈ G and k ≥ 2.

As mentioned above, [7] studies graph functions and give a nonexplicit strong separation
between randomized and deterministic NOF complexity. To be precise, this counting
argument shows that most graph functions f : [n]k−1 × [N ] → {0, 1} with N ∼=

√
n
k have

deterministic communication complexity Ω(log n
k ). Still, even for k = 3 it remains open to

find explicit graph functions with high deterministic communication complexity. Currently,
the best lower bound on the deterministic communication complexity of a graph function
f : [n]k−1 × [N ]→ {0, 1} for k ≥ 3 is Ω(log logn) proved in [7] (using also results from [5]).
We note that the discrepancy method, used to establish NOF lower bounds (e.g., [6]), cannot
be utilized here since it also applies to randomized communication complexity.

Lastly, we comment on the Hales-Jewett theorem, a pillar of Ramsey theory. It was
previously applied in the study of the combinatorial problems mentioned above. It turns out
that this theorem has an equivalent formulation in the language of communication complexity
[35], and is tightly coupled with the NOF multiparty communication complexity of high
dimensional permutations.

2 Basics

2.1 NOF Communication Complexity
In the Number On the Forehead (NOF) multiparty communication complexity game, k
players collaborate to compute a function f : X1 × . . .×Xk → {0, 1}. Usually, Xi = [n] for
all i ∈ [k], but we also consider occasionally a variation where the last player is exceptional
and Xk = [N ] for some integer N that is not necessarily equal to n.

For (x1, . . . , xk) ∈ X1 × . . . × Xk, and for each i ∈ [k], player i receives x−i ∈ X1 ×
. . . ×Xi−1 ×Xi+1 × . . . ×Xk; that is, all but xi. The players exchange bits according to

ITCS 2019
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an agreed-upon protocol, by writing them on a publicly visible blackboard. The protocol
specifies, for every possible blackboard contents, whether or not the communication is ongoing.
It shows the final output when the communication is over, and shows the next player to
speak if the communication is still ongoing. The protocol also specifies what each player
writes as a function of the blackboard contents and of the inputs seen by that player. The
cost of the protocol is the maximum number of bits written on the blackboard.

The deterministic communication complexity of f , Dk(f), is the minimum cost of a
deterministic protocol for f that always outputs the correct answer. A randomized protocol
of cost c is just a distribution over deterministic protocols each of cost at most c. For
0 ≤ ε < 1/2, the randomized communication complexity of f , Rk,ε(f), is the minimum cost
over randomized protocols such that for every input, err with probability at most ε (over the
distribution of deterministic protocols).

In the k = 2 players case, the key combinatorial objects of study are combinatorial
rectangles: Every cost-c communication protocol for f : X1×X2 → {0, 1} partitions X1×X2
into 2c monochromatic combinatorial rectangles. For k-party NOF communication, a cost-c
protocol induces a partition of X1 × . . .×Xk into 2c monochromatic cylinder intersections:

I Definition 1. A cylinder in dimension i is a subset S ⊆
∏
Xi such that if (x1, . . . , xk) ∈ S,

then (x1, . . . , xi−1, x
′
i, xi+1, . . . , xk) ∈ S for all x′i. A cylinder intersection is a set of the form

∩ki=1Ti, where Ti is a cylinder in dimension i.

2.2 Graph Functions, Permutations and Linjections
I Definition 2. The line L ⊆ [n]k, defined by a pair (a, i), where a ∈ [n]k−1, i ∈ [k], is the
set of vectors v ∈ [n]k such that v−i = a and vi is an arbitrary element in [n].

I Definition 3. A function f : [n]k−1 × [N ] → {0, 1} is a graph function if for every
(x1, . . . , xk−1) there is a unique b ∈ [N ] such that f(x1, . . . , xk−1, b) = 1. In other words,
every line in the kth dimension, L = (a, k), intersects f−1(1) in exactly one point.

Associated with every graph function f : [n]k−1 × [N ]→ {0, 1} is a map A(f) : [n]k−1 →
[N ], where A(f)(x1, . . . , xk−1) = y if and only if f(x1, . . . , xk−1, y) = 1. We consider the two
as one and the same object and freely switch back and forth between the two descriptions.

I Definition 4. Let f : [n]k−1 × [N ]→ {0, 1} be a graph function. We denote by αk(f) the
largest size of a cylinder intersection that is contained in f−1(1). In other words, the largest
cardinality of 1-monochromatic cylinder intersection with respect to f . Also, let χk(f) be
the least number of 1-monochromatic cylinder intersections whose union is f−1(1). We omit
the subscript k when it is clear from context.

Given a graph function f , the measure χ(f) corresponds to the nondeterministic NOF
communication complexity of f , since it is a covering of the 1’s of f by cylinder intersections
[26]. In general, the nondeterministic NOF communication complexity of a Boolean function
can be much smaller than the deterministic complexity – in fact, for the set disjointness
function, nondeterministic complexity is logarithmic in the deterministic complexity (for
constant k). However, graph functions are special; the following lemma shows that for graph
functions, the two notions basically coincide. The proof is an adaptation of a proof from [13];
see also [10, 7] for similar arguments.

I Theorem 5. For every graph function f : [n]k−1 × [N ] → {0, 1}, logχk(f) ≤ Dk(f) ≤
dlogχk(f)e+ k − 1.
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A communication protocol in which players write only one message on the board, of
arbitrary length is called a one-way protocol. This applies to the protocol in the proof of
Theorem 5. The restriction to a single message per player may make one-way protocols much
weaker than standard protocols [30, 5]. However for graph functions, one-way protocols and
regular protocols are equally powerful:

I Corollary 6. For every graph function f : [n]k−1 × [N ] → {0, 1}, Dk(f) ≤ D1
k(f) ≤

Dk(f) + k where D1
k(f) is the one-way communication complexity of f .

Implicit in the proofs of the above statements is the fact that for graph functions,
monochromatic cylinder intersections can be nicely characterized by forbidden (dual) objects
called stars, which we define next. We will see in the next section that stars are very closely
connected to corners (and higher dimensional generalizations) in Ramsey theory.

I Definition 7. A star Star(x,x′) is a subset of [n]k−1 × [N ] of the form

{(x′1, x2, . . . , xk), (x1, x
′
2, . . . , xk), . . . , (x1, x2, . . . , x

′
k)},

where xi 6= x′i for each i. We refer to x = (x1, x2, . . . , xk) as the star’s center, and note that
the center does not belong to the star.

I Lemma 8. Let f : [n]k−1 × [N ]→ {0, 1} be a graph function, and let S ⊆ f−1(1). Then
S is a (1-monochromatic) cylinder intersection with respect to f if and only if it does not
contain a star.

Next we define high dimensional permutations and linjections.

I Definition 9. A (k − 1)-dimensional permutation of order-n is a map f : [n]k → {0, 1}
with the property that for every line L = (a, i) in [n]k,

∣∣L ∩ f−1(1)
∣∣ = 1.

In other words, f is a permutation function if and only if every line contains a unique
1 entry. This property is easily seen to be equivalent to the property that for every choice
of x1, . . . , xi−1, xi+1, . . . , xk ∈ [n], there is exactly one value, Ai(x−i) for xi ∈ [n] such that
f(x1, . . . , xi−1, Ai(x−i), xi+1, . . . , xk) = 1.

I Example 10. For the sake of gaining better intuition we often consider the important
special case k = 3. This is insightful, since 2-dimensional permutations f : [n]3 → {0, 1} are
synonymous with Latin squares. In this case A(f) is an n×n matrix with entries in [n] where
every row and column contains each element in [n] exactly once. Here we see an elementary
but important connection with additive combinatorics; stars coincide with the well-studied
notion of corners [2, 36]. A star is a triplet of entries in f−1(1), (x, y, z′), (x′, y, z), (x, y′, z),
which corresponds to the “corner” or “A-star”, (x, y), (x′, y), (x, y′), where A(x′, y) and
A(x, y′) have the same value (z), but A(x, y) has a different value z′.

I Example 11. High dimensional permutations generalize the family of functions fGk,T for
abelian groups G. For this communication problem, each player receives (on his/her forehead)
an element xi ∈ G, and they want to decide whether or not x1 + . . . + xk = T , that is,
whether the sum of the elements is exactly T .

We can further generalize the notion of a permutation function as follows.

I Definition 12. A linjection is a graph function f : [n]k−1 × [N ]→ {0, 1} with N ≥ n such
that |f−1(1)| = nk−1 and every line contains at most one point at which f = 1. A function
f is a linjection if and only if the restriction of A(f) to any line is an injection.

ITCS 2019
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Linjections are graph functions where N ≥ n, (with permutation functions corresponding
to n = N), but not vice versa. Determining the least possible communication complexity of
a linjection in certain dimensions is an interesting and challenging problem. Henceforth, we
use and study the following two notions.

I Definition 13. Define αk(n,N) = maxf αk(f), and χk(n,N) = minf χk(f), both taken
over all linjections f : [n]k−1 × [N ]→ {0, 1}.

Note that χk(n,N) ≥ nk−1/αk(n,N).

3 High Dimensional Permutations and Additive Combinatorics

3.1 A Graph-theoretic Characterization
In this section we give a new characterization of αk which will turn out to be a variant of
the maximum density of Ruzsa-Szemerédi graphs. We start with the case k = 3.

Recall that we can view a linjection f : [n]2 × [N ]→ {0, 1} as an n× n matrix, A = A(f)
with entries from [N ]. Alternatively we view it as a tripartite graph G(A) with parts R =
[n], C = [n] and W ⊆ [N ]. Its edge set is defined as follows: for every triple (x, y, b) ∈ f−1(1),
we add the triangle (x, y), (y, b), (x, b), x ∈ R, y ∈ C, b ∈W to G(A). In particular, R ∪ C
span a complete bipartite subgraph of G(A) and (i, b), i ∈ R, b ∈W is an edge iff there is a
b entry in row i of A, likewise for columns.

Let us consider the triangles < x, y, b >, x ∈ R, y ∈ C, b ∈ W , in G(A). A triangle
< x, y, b > in G is trivial if A(x, y) = b. However, there can also be nontrivial (induced)
triangles in G, which correspond to centers of stars. We define a G-star to be a triple of
triangles in G of the form < x, y, b′ >,< x′, y, b >,< x, y′, b >. The point is that while
these (trivial) triangles are edge-disjoint, their union contains the additional induced triangle
< x, y, b >. Define α(G) to be the largest cardinality of a family of edge-disjoint triangles
that contains no G-star. In other words, a family of edge-disjoint triangles the union of
which contains no additional triangle.

Let α(n,N) = maxG α(G) where the maximum is over subgraphs of Kn,n,N . Then:

I Theorem 14. For every two integers n,N > 0, if n ≤ N then α3(n,N) ≤ α(n,N). If
N ≥ 2n− 1, then α3(n,N) = α(n,N).

Proof. We show first that α3(n,N) ≤ α(n,N). Let f : [n]× [n]× [N ]→ {0, 1} be a linjection
and let S ⊆ [n]× [n]× [N ] be a star-free subset of f−1(1). We prove the claim by constructing
a G-star-free family T of |S| edge-disjoint triangles in G = G(A(f)). Let

T = {< x, y, b > |(x, y, b) ∈ S}.

The claim follows, since stars {(x′, y, b), (x, y′, b), (x, y, b)} correspond to G-stars in T . Next
we prove the reverse inequality α3(n,N) ≥ α(n,N) when N ≥ 2n− 1.

Given a G-star-free family T of edge-disjoint triangles in a subgraph G of Kn,n,N , we
find a linjection A : [n]× [n]→ [N ] that contains an A-star-free subset S ⊂ [n]2 of size |T |.
In the proof we actually first construct S and only then proceed to define A in full.

We define S to be the projection of T to its first two coordinates. Namely,

S = {(x, y) | < x, y, b >∈ T for some b}.

To define A, we first let A(x, y) = b for every < x, y, b > ∈ T .
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Since T is G-star-free, it follows that S is A-star-free. What is missing is that A is only
partially defined. We show that when N ≥ 2n− 1 this partial definition can be extended to
a linjection. Since the triangles in T are edge-disjoint it follows that in the partially defined
A, no value appears more than once in any row or column. It remains to define A on all the
entries outside of S and maintain this property. Indeed this can be done entry by entry. At
worst there are 2n− 2 values that are forbidden for the entry of A that we attempt to define
next, and therefore there is always an acceptable choice. J

General k. The construction for general k is a natural extension of the case k = 3. We
associate with every linjection A : [n]k−1 → [N ] a k-partite (k−1)-uniform hypergraph H(A).
The parts of the vertex set are denoted Q1, . . . , Qk−1 and W . Each Qi is a copy of [n] and, as
above, W is the range of A. There is a complete (k−1)-partite hypergraph on the k − 1 parts
Q1, . . . , Qk−1. Given x1 ∈ Q1, . . . , xi−1 ∈ Qi−1, xi+1 ∈ Qi+1, . . . , xk−1 ∈ Qk−1 and w ∈ W ,
we put the hyperedge x1, . . . , xi−1, xi+1, . . . , xk−1, w in H(A) iff there is a (necessarily unique)
x∗i ∈ [n] for which A(x1, . . . , xi−1, x

∗
i , xi+1, . . . , xk−1) = w.

We proceed to investigate cliques in H(A), i.e., sets of k vertices, every k − 1 of which
form an edge. For k = 3, we distinguished between those triangles in G(A) that correspond
to an entry in [n]2 and those that form a star, and a similar distinction applies for general k.

It is easy to see that if A(x1, . . . , xk−1) = w, then x1, . . . , xk, w from a clique. Such a
clique is considered trivial. In contrast, x1, . . . , xk−1, w is a nontrivial clique iff for every i
there exists an x′i 6= xi such that A(x1, . . . , xi−1, x

′
i, xi+1, . . . , xk−1) = w.

As above, we define for H = H(A) the parameter αk(H). It is the largest size of a
family K of cliques in H such that: (i) No two share a hyperedge, and (ii) The hypergraph
comprised of all cliques in K contains no additional cliques. Let αk(n,N) = maxH αk(H)
over all k-partite (k − 1)-uniform hypergraphs H. Then

I Theorem 15. For every two integers n ≤ N , αk(n,N) ≤ αk(n,N), and if N > (k−1)(n−1)
then αk(n,N) = αk(n,N).

The proof is similar to the proof of Theorem 14 and appears in the full paper.
As the proofs show, αk(n,N) is the largest cardinality of a star-free subset of [n]k−1× [N ]

that meets every line in [n]k−1×[N ] at most once. To qualify for αk(n,N) this subset must, in
addition, be extendable to a linjection, so clearly αk(n,N) ≥ αk(n,N). We wonder whether
this additional requirement creates a substantial difference between the two parameters.
Specifically, how are αk(n,N) and αk(n,N) related in the range n ≤ N ≤ (k − 1)(n− 1)?
These two parameters need not be equal in this range, since α3(4, 4) = 8 and α3(4, 4) = 9, as
we show in Section 4.3.

Connection to Ruzsa-Szemerédi Graphs. A graph is called an (r, t)-Ruzsa-Szemerédi graph
if its edge set can be partitioned into t edge-disjoint induced matchings, each of size r. These
graphs were introduced in 1978 and have been extensively studied since then. Of particular
interest are dense Ruzsa-Szemerédi graphs, with r and t large, in terms of n, the number of
vertices. Such graphs have applications in Combinatorics, Complexity theory and Information
theory. Also, there are several known interesting constructions, relying on different techniques.

Let G be a tripartite graph with parts R,C,W of cardinalities n, n,N respectively. Let
T be a G-star-free family of edge disjoint triangles in G. Let F be the bipartite graph with
parts R and C where there is an edge between r ∈ R and c ∈ C iff there is some b ∈W such
that (r, c, b) ∈ T . Then F is the union of at most N edge-disjoint induced matchings, since
all the edges that correspond to a given b ∈W form an induced matching.
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This construction can easily be reversed: Let F be a subgraph of Kn,n that is the union
of N edge disjoint induced matchings, with a total of α edges. We can construct a tripartite
G (a subgraph of Kn,n,N ) that contains a family of α pairwise disjoint triangles, and has no
G-stars. We conclude that

I Observation 16. Let n ≤ N be positive integers, then α3(n,N) is the largest number of
edges in a union of N edge-disjoint induced matchings in Kn,n.

This observation exhibits a strong connection between (i) The problem of constructing
dense (r, t)-Ruzsa-Szemerédi graphs, and (ii) The construction of a large star-free subset
S ⊆ [n]× [n]× [t] that meets every line at most once. The two problems differ only slightly.
In one, the underlying graph is bipartite and in the other all induced matching must have
the same cardinality. But these differences can be bridged quite easily, as observed in the
following lemma.

I Lemma 17. 1. (r, t)-Ruzsa-Szemerédi graphs on n vertices imply α3(n2 , t) ≥
rt
2 .

2. α3(n, t) ≥ rt implies that there exists a ( r2 , t)-Ruzsa-Szemerédi graph on n vertices.

Proof. For the first claim, let G = (V,E) be a (r, t)-Ruzsa-Szemerédi graph on n vertices,
and let E1, E2, . . . , Et be the partition of E into induced matchings. We can find (e.g., by
a random choice) a subset A ⊂ V of bn2 c vertices, so that at least |E|/2 edges are in the
cut C = (A, Ā). Also, C ∩ E1, C ∩ E2, . . . , C ∩ Et is a partition of the edges of the bipartite
graph (A, Ā, C) into t disjoint induced matchings. Therefore, α3(n2 , t) ≥

rt
2 .

For the second part, suppose that α3(n, t) ≥ rt. Namely, there is a collection of disjoint
induced matchings M1, . . .Mt ⊆ E(Kn,n) with

∑t
1 |Mi| ≥ rt. We split each Mi into b 2|Mi|

r c
sets of ≥ r/2 edges each. Note that

∑t
1 ai ≥ rt implies that

∑t
1b

2ai
r c ≥ t and a subset of an

induced matching is an induced matching, so we finally have a family of at least t disjoint
induced matchings each of size r

2 . J

3.1.1 Application to Shared Directional Multi-channels
Ruzsa-Szemerédi graphs have various applications in several fields [36, 4, 33, 3, 24, 12]. In [12]
they are applied to Information Theory, and the study of shared directional multi-channels, a
subject that is strongly related to communication complexity. Such a channel is comprised
of a set of inputs and a set of outputs. to which are connected transmitters and receivers
respectively. Associated with each input is a set of outputs, that receive any signal placed
at that input. A message is received successfully at an output of the channel if and only if
it is addressed to the receiver connected to that output and no other signals concurrently
reach that output. Therefore, when communicating over a shared channel, we want the edges
(corresponding to messages sent in one round) to form an induced matching. The challenge is
to partition Kn,n into families of pairwise disjoint induced matchings. The number of parts
correspond to the number of receivers allowed at each output, and the number of matchings
in each partition corresponds to the number of rounds.

The relation to communication complexity is as follows: A c-bit communication protocol
for any linjection A : [n] × [n] → [N ] induces a partition of Kn,n into c such families of
disjoint induced matchings. Thus, such a communication protocol, gives an N round protocol
for the shared directional multi-channel, with c receivers per station, and vice-versa.

In constructing a shared directional multi-channel, we seek to minimize the number of
rounds required for a given number of transmitters. Alon, Moitra, and Sudakov [4] showed
that for any ε > 0 there is partition of Kn,n into at most 2O( 1

ε ) graphs each of which is a
family of at most O(n1+ε) induced matchings. This gives an O(n1+ε) round protocol for
shared directional multi-channel with 2O( 1

ε ) receivers.
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Translated to the language of NOF protocols and combining with Corollary 34 (see
Section 5.3 in the sequel), we conclude:

I Theorem 18. For all ε > 0 and all large enough n, 2O( 1
ε ) ≥ χ3(n, n1+ε) ≥ Ω(log 1

ε ).

3.2 A Characterization of αk(f
Zn

2
k,T )

In this section we focus on the problem fGk,T for the abelian group Zn2 . In other words,
we study the permutation fZ

n
2

k,T . We give an alternative characterization of α3(fZ
n
2

3,T ) which
brings forth the relation between this problem and several known combinatorial objects. The
complexity of fZ

n
2

k,T is independent of T , so we will omit the subscript T in this section. Also,
throughout this section we let AGk = A(fGk ).

Let X ⊂ Z3
4. We call a subset of W ⊆ Zn4 X-free if for every three distinct members

x,y, z ∈W there is an index 1 ≤ i ≤ n for which (xi, yi, zi) 6∈ X.

I Theorem 19. Let

X = {(0, 0, 0), (1, 1, 1), (2, 2, 2), (3, 3, 3), (0, 1, 2), (1, 0, 3), (2, 3, 0), (3, 2, 1)} ⊂ Z3
4,

then α3(AZn2
3 ) is the largest cardinality of an X-free subset of Zn4 .

Proof. Recall that α3(AZn2
3 ) is the largest cardinality of an An-star free subset of (Zn2 )2,

where An = A
Zn2
3 . So it suffices to find a bijection ψ from (Zn2 )2 to Zn4 such that S ⊆ (Zn2 )2

is mapped to an X-free set if and only if S is An-star free.
We define ψ for n = 1 and extend is entry-wise to a mapping from (Zn2 )2 to Zn4 . The

definition for n = 1 is as follows: ψ(0, 0) = 0, ψ(0, 1) = 1, ψ(1, 0) = 2 and ψ(1, 1) = 3.
We need to show that if (x1, y1), (x2, y2), (x3, y3) ∈ (Zn2 )2 is a An-star, then every

coordinate in (ψ(x1, y1), ψ(x2, y2), ψ(x3, y3)) belongs to X, and vice versa. Since the map ψ
is defined coordinate-wise it suffices to check this for n = 1. A triple (x1, y1), (x1, y1 +d), (x1 +
d′, y1) is a (trivial or non-trivial) star in A1 iff x1 + (y1 + d) = (x1 + d′) + y1, i.e., d = d′,
and thus an A1-star is a triple of the form (x1, y1), (x1, y1 + d), (x1 + d, y1). If d = 0 then
obviously (ψ(x1, y1), ψ(x1, y1 + d), ψ(x1 + d, y1)) ∈ {(0, 0, 0), (1, 1, 1), (2, 2, 2), (3, 3, 3)} ⊂ X.
When d = 1 there are four cases to check:
1. x1 = 0 and y1 = 0 then (ψ(x1, y1), ψ(x1, y1 + d), ψ(x1 + d, y1)) = (0, 1, 2) ∈ X.
2. x1 = 0 and y1 = 1 then (ψ(x1, y1), ψ(x1, y1 + d), ψ(x1 + d, y1)) = (1, 0, 3) ∈ X.
3. x1 = 1 and y1 = 0 then (ψ(x1, y1), ψ(x1, y1 + d), ψ(x1 + d, y1)) = (2, 3, 0) ∈ X.
4. x1 = 1 and y1 = 1 then (ψ(x1, y1), ψ(x1, y1 + d), ψ(x1 + d, y1)) = (3, 2, 1) ∈ X.
On the other hand it is not hard to check that for each (a, b, c) ∈ X the triplet ψ−1(a), ψ−1(b),
ψ−1(c) is a star in A1 or a = b = c. This proves the claim. J

Fix an integer s ≥ 2 and let HJ(n, s) denote the largest size of a Ys-free subset of
[s]n, where Ys is the following set of s-tuples: {(1, . . . , s)} ∪ {(i, i, . . . , i)|i = 1, 2, . . . , s}.
The density Hales-Jewett theorem states that HJ(n, s) = o(sn) for every fixed s [19, 31].
Theorem 19, and the observation that the first three coordinates of the 4-tuples in Y4 all
belong to X, imply that α3(AZn2

3 ) ≤ HJ(n, 4).
The cap-set problem for Zn4 also belongs to the same circle of problems. It concerns

the largest size of an arithmetic-triple-free set in Zn4 . We mention in passing the recent
breakthrough [14, 17] in this area which showed that this size is at most 4(γ+o(1))·n with
γ ≈ 0.926. Let Z ⊂ Z3

4 be the set of all ordered triplets (a, b, c) ∈ Z3
4 satisfying a+ c = 2b.

The cap set problems concerns exactly the largest possible cardinality of a Z-free subset of
Zn4 . Since X ⊂ Z it follows that this size is bounded by α3(AZn2

3 ).
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The proof of Theorem 19 extends verbatim to general k ≥ 3. It yields a subset X ⊂ Zk2k−1

such that αk(AZn2
k ) is the largest cardinality of an X-free subset of Zn2k−1 .

By taking X that includes all vectors (a, a, . . . , a) ∈ Zk2k−1 for a ∈ Z2k−1 and the vector
(0, 1, 2, 4, . . . , 2k−2) we can maintain the relation between αk(AZn2

k ) and the density Hales-
Jewett theorem for every k.

4 Upper Bounds

4.1 An Algorithmic Protocol for Exact-T over Zd

The aim of this section is to give the first algorithmic protocol for Exactly-n as well as other
Exact-T functions. Our protocol is explicit, and does not rely on a construction of a large
set without a 3-term AP. We only appeal to the elementary fact that no sphere can contain
three equally spaced colinear points. The algorithm has two main steps. We first provide a
very efficient protocol for Exact-T over Zd, whose cost grows only logarithmically with d.

Let f : ([m]d)3 → {0, 1} be defined via f(x, y, z) = 1 if and only if x+ y + z = T , where
T ∈ Zd is some fixed vector. We provide an explicit NOF protocol for f whose cost is only
O(logmd). In words, players try to compute the vector x + 2y + 3z “to the best of their
knowledge” and then they compare notes.

1. Player 1 computes vx = T − y − z + 2y + 3z.
2. Player 2 computes vy = x+ 2(T − x− z) + 3z.
3. Player 3 computes vz = x+ 2y + 3(T − x− y).
4. Player 1 writes ‖vx‖22 on the blackboard.
5. Player 2 writes 1 or 0 on the blackboard depending on whether ‖vy‖22 = ‖vx‖22.
6. Player 3 writes 1 or 0 on the blackboard depending on whether ‖vz‖22 = ‖vx‖22.
7. The protocol outputs 1 if the last two bits were both equal to 1, and 0 otherwise.

The cost of the above protocol is essentially determined by the largest possible value of
‖vx‖22 in step 4 which is at most O(m2d). Therefore, this cost does not exceed O(logmd).
We turn to prove correctness.

I Lemma 20. The above protocol is correct.

Proof. First note that the protocol outputs 1 if and only if ‖vx‖22 = ‖vy‖22 = ‖vz‖22. Also,
vx + vz = 2vy, so that this condition holds only if all three vectors are equal, in which case
T − x− y − z = 0. J

I Remark (More general protocols). Several variations on the above theme suggest them
selves. Fix integers a, b, c ∈ Z and a d × d positive definite matrix D with integer entries.
The players compute a(T −y− z) + by+ cz, ax+ b(T −x− z) + cz and ax+ by+ c(T −x−y),
and rather than comparing the values of ‖v‖2, they consider the values of vDvt. We wonder
if these, or similar variations can together improve the complexity of the protocol.

4.2 Algorithmic Protocols for Exactly-N and fGk,T over Znm
We seek algorithmically explicit protocols for Exactly-N 2, namely for the function f : [N ]3 →
{0, 1} such that f(x, y, z) = 1 if and only if x+ y + z = N , i.e., the exact-T problem over Z

2 Since n is used as an exponent in this section we use N for the size of input in Exactly-N .
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or equivalently over ZN . We can give an efficient protocol to this problem by reduction to
the protocol in the previous section, even though when applied directly to ZN they give no
improvement over the trivial protocol.

First fix a base m and let n = 1 + dlogmNe. Consider the base-m representation on
the elements of [N ]. Given a representation x ∈ {0, 1, . . . ,m− 1}n of a number base m, for
convenience we consider x1 as the least significant digit. Note that all representations are of
length n, if a number is small its representation is padded with zeros. The following protocol
solves the Exactly-N problem in these settings. Let T be the base-m representation of N .

1. Player 1 computes the vector C ∈ {0, 1, 2}m defined as follows: the i-th entry of C is
equal to k ∈ {0, 1, 2} satisfying

Ti + (k − 1)m < yi + zi + Ci−1 ≤ Ti + km,

where addition is over Z, and we define C0 = 0.
2. Denote by Cx the carry vector computed by Player 1 in step 1. Player 2 and 3 compute

corresponding vectors Cy and Cz, in a similar way.
3. Player 1 writes C = Cx on the board.
4. Player 2 and 3, in turn, write 1 on the board if and only if their vector Cy (Cz) is equal

to Cx.
5. If the last two bits written on the board are equal to 1, continue. Otherwise output 0

and terminate.
6. All players compute (in private) the vector T ′i = Ti +mCi − Ci−1, for i = 1, . . . , n.
7. The players run a protocol for the exact-T problem over Zn with x, y, z and T ′.

The cost of the above protocol is O(n+ 2) for steps 1-5, plus the cost of the protocol used
in step 7. The cost is thus O(n+ logmn) if the players use the protocol from Section 4.1 in
the last step. We prove next that this protocol is correct.

I Lemma 21. The above protocol is correct.

Proof. First assume N = x+ y+ z over Z. It is easy to verify the correctness of the protocol
in this case, except maybe step 5. The correctness of step 5 follows from the following
simple observation: assume xi + yi + zi + Ci−1 = Ti + km (over Z) for k ∈ {0, 1, 2}, then it
must be that the sum of any pair of xi, yi, zi and Ci−1 is larger than Ti + (k − 1)m and at
most Ti + km. Now consider the case T 6= x+ y + z. If the protocol rejects on step 5 then
obviously this is correct. If it does not reject then all players compute the same vector T ′,
and x+ y + z = N over Z if and only if x+ y + z = T ′ over Zn. The correctness now follows
from the correctness of the protocol over Zn. J

The above protocol for Exactly-N is correct for any choice of base m. To get an efficient
protocol we optimize the choice of m. The running time of the protocol is O(n+ logmn) =
O(n+ logm). Since mn = N , we get that logN = n logm, and thus the optimal choice is
roughly m = 2

√
logN which gives a running time of O(

√
logN).

I Remark (The group Znm). The above protocol can also be adapted for Znm (with addition
modulo m). The idea is very similar, the only difference is that in the first steps Player
1 computes the vector Ix ∈ {0, 1, 2}n defined as follows: the i-th entry of Ix is equal to
k ∈ {0, 1, 2} satisfying

Ti + (k − 1)m < yi + zi ≤ Ti + km,

where addition is over Z. The other two players compute analogous vectors.
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4.3 A Protocol for fGk,T over Zn2
In this section we focus on the exact-T problem for the abelian group Zn2 . In other words, we
study the permutation fZ

n
2

k,T . First we prove a lower bound on α3(fZ
n
2

3,T ), and then show that
this lower bound implies the existence of an efficient protocol for fZ

n
2

3,T . The complexity of
f
Zn2
k,T is independent of T , so we can and will omit the subscript T in this section. Throughout
this subsection we let AGk = A(fGk ).

First we prove that AZn2
t -star freeness is preserved under tensor product.

Let S ⊂ (Zn2 )k−1, denote by S ⊗ S the subset of (Z2n
2 )k−1 comprised of all vectors

(x1, y1, . . . , xk−1, yk−1) such that xi, yi ∈ S for i = 1, . . . , k − 1.

I Lemma 22. If S is AZn2
k -star free then S ⊗ S is AZ2n

2
k -star free.

Proof. Let A = A
Z2n

2
k and let

(z1, . . . , zk−1), (z1 + d, . . . , zk−1), . . . , (z1, . . . , zk−1 + d)

be an A-star in S × S, where for each 1 ≤ i ≤ k − 1, zi = (xi, yi) with xi, yi ∈ S. Denote
also d = (d1, d2) where d1, d2 ∈ Zn2 . Then either

(x1, . . . , xk−1), (x1 + d1, . . . , xk−1), . . . , (x1, . . . , xk−1 + d1)

is an AZn2
k -star in S, or

(y1, . . . , yk−1), (y1 + d2, . . . , yk−1), . . . , (y1, . . . , yk−1 + d2)

is an AZn2
k -star in S, since either d1 6= 0 or d2 6= 0. J

It follows that if, for some fixed m, we can find a large AZm2
k -star free subset S, then

tensor powers of S are large AZn2
k -star free sets. We show:

I Lemma 23. α3(AZ2
2

3 ) = α3(n, n) = 8.

Together with Lemma 22 this yields:

I Corollary 24. For every integer n ≥ 2, there holds α3(AZn2
3 ) ≥ 23n/2.

Proof. Let S be a star-free subset in AZ2
2

3 of cardinality 8 = 43/2 as in Lemma 23. The claim
follows by taking the tensor powers of S as in Lemma 22. J

Proof of Lemma 23. We denote the elements of Z2
2 as follows (0, 0) = 0, (0, 1) = 1, (1, 0) = 2

and (1, 1) = 3. The matrix associated with AZ2
2

3 is:

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

The 8 entries in bold form a star-free set, so that α3(AZ2
2

3 ) ≥ 8, and consequently α3(4, 4) ≥ 8.
One can verify that in fact α3(4, 4) = α3(AZ2

2
3 ) = 8. To see this first notice that if there is a

star-free subset of cardinality 9 then one of the values must appear three times which already
determines 10 out of the 16 entries. One can now rule out the existence of a size 9 star-free
subset by exhaustive search. J
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It is interesting to determine αk(n, n) for some small values of n. For example:
Determine α3(8, 8), in particular compute α3(AZ3

2
3 ).

Determine αk(4, 4), in particular compute αk(AZ2
2
k ), for k > 3.

It is interesting to note that, while as shown, α3(4, 4) = 8, there holds α3(4, 4) = 9. The
fact that α3(4, 4) ≤ 9 is easy to verify, and the following example shows the equality:

1 * * 3
* 1 * 4
* * 1 2
2 3 4 *

Thus, continuing the discussion at the end of Section 3.1, α3(n,N) and α3(n,N) need
not be equal when N < 2n− 1.

The following theorem shows that for groups, αk (the size of the largeset 1-monochromatic
cylinder intersection) completely characterizes χk (the minimum number of cylinder inter-
sections that partition the 1’s). The proof is a simple generalization of Theorem 4.3 in
[13].

I Theorem 25. If G is a group of order n, then

χk(fGk ) ≤ O
(
knk−1 logn
αk(fGk )

)
.

Proof. The proof is in two steps:
Step I: A-star freeness is preserved under translation, where A = AGk . Indeed, let S ⊂ Gk−1

and let a = (a1, . . . , ak−1) ∈ Gk−1. If

(x1, . . . , xk−1), (x1 + d, . . . , xk−1), . . . , (x1, . . . , xk−1 + d)

is an A-star in S + a, then

(x1, . . . , xk−1)− a, (x1 + d, . . . , xk−1)− a, . . . , (x1, . . . , xk−1 + d)− a

is an A-star in S.
Step II: Every S ⊂ Gk−1 has O(kn

k−1 logn
|S| ) translates whose union covers all of Gk−1. This

follows from the integrality gap for covering [28], but for completeness here is a proof.
Pick at random t translates a1, . . . ,at ∈ [n]k−1 of S. The probability that a given element
x ∈ [n]k−1 is covered by a random translate of S is exactly |S|

nk−1 . Therefore, and since
the translates are picked independently uniformly at random, the expected number of
uncovered elements of Gk−1 is

nk−1 ·
(

1− |S|
nk−1

)t
.

Taking t = O(kn
k−1 logn
|S| ) makes the expectation less than 1, which proves the lemma. J

I Corollary 26. χ3(fZ
m
2

3 ) ≤ O
(
m · 2m/2

)
.

The bound in Corollary 26 is similar to the bound of Ada, Chattopadhyay, Fawzi and
Nguyen [1] for the case k = 3, with slight improvement in the log factors. Ada et al. proved
χ3(fZ

m
2

3 ) ≤ O(mk+12m/2k−2), by observing that this function is a composed function of the
form NOR ◦XOR and giving non trivial protocols for such cases.
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Note that the proof of Theorem 25 yields a cover of [n]k−1 by A-star free sets, but this is
easily turned into a partition, since a subset of an A-star free set is also A-star free. Therefore,
any lower bound on αk(fGk ) can be translated into an upper bound on χk(fGk ) which in
turn implies an efficient (non-explicit) protocol for fGk (By Theorem 5). Another interesting
consequence of Theorem 25 is that any lower bound on χk(fGk ) significantly larger than logn
improves the known bounds for the size of a corner-free subset of G. This clearly boosts our
interest in the multiparty communication complexity of fGk .

We wonder whether there are analogs of Theorem 25 for every permutation.

I Question 27. How large can χk(A) · αk(A)/nk−1 be for an arbitrary permutation A?

5 Lower Bounds

5.1 Nonconstructive Lower Bounds
We first prove a nearly tight but nonconstructive lower bound on the communication
complexity of random high-dimensional permutations.

I Theorem 28. For every integer k ≥ 3, and for most (k − 1)-dimensional permutations
f : [n]k → {0, 1},

logχk(f) ≥ Ω(logn
k

).

Proof. The lower bound on the number of high-dimensional permutations was recently
improved by Keevash [25] who showed that there are at least 2Ω(nd logn) d-dimensional
permutations. If we view a permutation as a map [n]k → {0, 1}, this means at least
2Ω(nk−1 logn) permutations. In the spirit of the proof of Lemma 3.5 in [7], we now estimate
the number of such permutation for which χk(f) is bounded. Note that we cannot simply
use the estimate from [7] since it only works for functions f : [n]k−1 × [N ]→ {0, 1} with N
that is much smaller than n, roughly N ≤

√
n
k .

Let f : [n]k → {0, 1} be a (k − 1)-dimensional permutation, and let {C1, . . . , Cχ} be
a partition of f−1(1) into χ = χk(f) cylinder intersections. For i ∈ [k] define a function
Ai : [n]k−1 → [χ] as follows: For a = (a1, . . . , ak−1) ∈ [n]k−1, let L = (a, i) be a line in [n]k−1.
There is a unique 1 entry in L and this entry is in exactly one of the cylinder intersections
{C1, . . . , Cχ}, say Cj . In this case we define Ai(a1, . . . , ak−1) = j.

As seen in the proof of Theorem 5, it is possible to recover f from knowledge of the func-
tions A1, . . . , Ak. Namely, f(x1, . . . , xk) = 1 if and only if all the values Ai(x1, . . . , xi−1, xi+1,

. . . , xk−1) for i = 1, . . . , k are equal. But for every i ∈ [k] there are χnk−1 possible functions
Ai : [n]k−1 → [χ]. Thus, the number of (k − 1)-dimensional permutations f : [n]k → {0, 1}
with χk(f) ≤ χ is at most (χnk−1)k = 2knk−1·logχ. Combining this with Keevash’s lower
bound achieves our result. J

A simple corollary of Theorem 28, and Theorem 5 is:

I Corollary 29. For every integer k ≥ 2, almost all (k − 1)-dimensional permutations
f : [n]k → {0, 1} satisfy Dk(f) ≥ Ω( logn

k ).

Theorem 28 proves the lower bound χk(f) ≥ 2Ω( logn
k ) for a random permutation f :

[n]k → {0, 1}. It is interesting to find out how this extends for a random linjection f :
[n]k−1 × [N ]→ {0, 1} with n < N . It is also interesting to see whether the dependency on k
can be removed.
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Finally we turn to the case k = 3. The number of 2-dimensional permutations (aka Latin
squares) is known to be ((1 + o(1)) ne2 )n2 (see [39]). It follows that for most 2-dimensional
permutations f there holds logχ3(f) ≥ 1

3 logn−Θ(1).

5.2 Lower Bounds for χk(n,N)
We prove an upper bound on αk(n,N), using its graph theoretic interpretation from Sec-
tion 3.1, which implies the corresponding lower bound on χk. We start with k = 3:

I Theorem 30. Let A : [n]× [n]→ [N ] be a linjection, where N ≤ n · 2c log∗(n). Then there
exists c > 0 such that α3(A) ≤ O

(
n2

2c log∗(n)

)
.

The proof of Theorem 30 is an adaptation of Solymosi’s [36] simplification of Ajtai and
Szemerédi’s [2] Corners Theorem. We will use the improved version of the triangle removal
lemma [33] due to Fox [18]:

I Lemma 31 (Triangle removal lemma). For every ε > 0 there is a δ > 0 such that every
n-vertex graph with at most δn3 triangles can be made triangle-free by removing εn2 edges.
Specifically δ−1 can be taken as a tower of twos of height 405 log ε−1.

Proof of Theorem 30. Let G = G(A), V = V (G). Notice that |V | = 2n + N . Let
S ⊂ [n]2 be an A-star free subset of size α3(A). As in the proof of Theorem 14 we let
T = {< x, y,A(x, y) > |(x, y) ∈ S} be the family of triangles in G that corresponds to S.
Let F be that subgraph of G whose edge set is the union of all triangles in T . This graph
contains the |S| edge-disjoint triangles in T , and no additional triangles.

Thus, if we denote δ = |S|/|V |3 and ε = |S|/|V |2, then F contains exactly δ|V |3 triangles
and it cannot be made triangle free by removing fewer than ε|V |2 edges. Lemma 31 yields
log∗(δ−1) ≤ 405 log(ε−1), and since δ < n2

(2n+N)3 <
1
N we conclude that

ε ≤ 2
−1
405 log∗(N).

But |S| = ε|V |2 ≤ 9εN2, so that for N ≤ 2c log∗(n)n, with c = (3 ·405)−1, |S| ≤ O
(

n2

2c log∗(n)

)
.

J

We now state the case of general k, proved in the full version.

I Theorem 32. For every natural numbers k ≥ 3 ,n and N it holds that

αk(n,N) ≤ O
(
knk−2N

log∗(n)

)
.

5.3 A Lower Bound on χ3(n,N)
In this section we state our better lower bound for the case k = 3. The proofs appears in the
full version of our paper.

I Lemma 33. Let L = χ3(n,N) for some integers N ≥ n, then logn < (2L+1 − 1) ·
log(4NL/n). In particular for k = 3, we have χ3(n, n) ≥ log logn−O(log log logn).

Another simple corollary of Lemma 33 is due to Meshulam and is reproduced in [4].

I Corollary 34. If χ3(n,N) ≤ L for some integers N ≥ n, then N ≥ 1
4L · n

1+1/(2L−1).

ITCS 2019
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A note on the case k > 3. As we have just seen χ3(A) ≥ Ω(log logn) for every 2-
dimensional permutation A. It is conceivable that a similar bound holds for higher dimensions
as well. This was previously conjectured in [10] for the Exact-T problem. If we try to adapt
the proof of Lemma 33 to higher k, exactly one difficulty arises which we formulate as a
question.

I Question 35. Let S ⊆ [n]k be a set of cardinality m that meets every line at most once.
Determine, or estimate φk(n,m), the least possible cardinality |S̄| of its closure. We use the
shorthand φk(m) when appropriate.

For k = 2 the answer is easy: φ2(m) = m2, since |S̄| = |S|2. But for k > 2 the problem
becomes very hard and no lower bound is known. In fact, for k ≥ 3, and for large enough m
there holds φk(m) = m. In other words, unlike the case k = 2 it may happen that S̄ = S for
large S. For example, as shown in [13], φ3(m) = m when m = n2/2Ω(

√
logn), whereas it is

shown in [34] that φ3(m) > m when m ≥ n2/(log logn) 1
22 . For k > 3 the situation is even

worse, and all we have are the very weak lower bounds from Section 5.2. Namely, it follows
from Theorem 32 that φk(m) must be larger than m when m ≥ Ω

(
knk−1

log∗(n)

)
. Proving any

non-trivial bounds on φk(m) is a very interesting challenge. We raise the following conjecture
in an attempt to improve the lower bounds on χ3(n, n):

I Conjecture 36. There are constants c1, c2 > 0 such that if S ⊆ [n]3 meets every line at
most once, and if |S| ≥ n2/(log logn)c1 , then |S̄| ≥ n3/(log logn)c2 .

6 Conclusion and Open Problems

This paper raises numerous open problems. Below we collect some of the major ones and
explain some implications that would follow from progress on these questions.

I Question 37. Improve the lower bound χ3(n, n) ≥ Ω(log logn).

Any lower bound χ3(n, n) ≥ ω(log logn) yields an improvement to the best known bound
on the number of colors required to color the n× n grid with no monochromatic equilateral
right triangles. This subject goes back to Ajtai and Szemerédi’s corners theorem [2] and its
implications in additive combinatorics due to Solymosi [36]. A lower bound χ3(n, n) ≥ ω(logn)
would improve the best known gap between randomized and deterministic communication
complexity in the 3-players NOF model. A lower bound χ3(n, n) ≥ Ω(logn · log logn) will
improve the best known upper bound on the size of corner-free subsets of G2 for any abelian
group G. And finally, a lower bound χ3(n, n) ≥ Ω(log2 n) will improve the best bounds on
the size of a subset of Zn with no three-term arithmetic progression. This is a classic problem
that goes back at least to the 1950’s [32].

I Question 38. Improve the upper bound χ3(n, n) ≤ 2O(
√

logn).

The construction of denser Ruzsa-Szemerédi graphs than currently known. Namely,
n-vertex graphs which are the disjoint union of n induced matchings, all of the same size r.
This, in turn, reflects on the many applications of these. This would also improve our
understanding regarding the limits of the triangle removal lemma; note that the current gaps
between the bound in this lemma are huge.

I Question 39. Improve the bounds on χk(n, n) for k > 3.

I Question 40. Improve the bounds on αk(n, n) for k > 3.
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That would improve our state of knownledge regarding the bounds for the hypergraph
removal lemma. It is also interesting to determine αk(n, n) for some small values of n. For
example: Determine α3(8, 8), and in particular compute α3(AZ3

2
3 ), or Determine αk(4, 4), and

in particular compute αk(AZ2
2
k ) for k > 3.

I Question 41. What is the relationship between αk(n,N) and αk(n,N) in the whole range
n ≤ N ≤ (k − 1)(n− 1)?
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