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We examine the spectra of boolean functions obtained as the sign of a real polynomial of 
degree d. A tight lower bound on various norms of the lower d levels of the function's Fourier 
transform is established. The result is applied to derive best possible lower bounds on the 
influences of variables on linear threshold functions. Some conjectures are posed concerning upper 
and lower bounds on influences of variables in higher order threshold functions. 

1. I n t r o d u c t i o n  

The  recent emergence of neural networks has revived interest in threshold func- 
tions, boolean functions obtained as the signs of real polynomials  on the hypercube.  
Perhaps  the most  well-known examples of networks involving threshold gates are 
the Bol tzmann  machine [1] and the Hopfield associative memory  model  [12]. The 
back-propagat ion  algori thm for t ra ining circuits with multiple layers of threshold 
gates ([25],[17]), a generalization of the celebrated Percept ron  convergence proce- 
dure, has found many  applications in real-world problem solving. This complements  
work done in the 60's, which focused most ly  on linear threshold logic (e.g. [20,28]). 
In this paper  we s tudy  the computa t iona l  complexi ty of threshold functions. 

The  main mathemat ica l  tool we employ in our analysis is the Fourier t ransform. 
Use of harmonic  analysis on the hypercube  in the context  of boolean functions can 
be t raced back to the pioneering work of Ninomiya [21], where it was used for the 
classification of boolean functions. Only recently has its power been realized in the 
context  of computa t iona l  complexity, one of the most  active fields in theoretical  
computer  science today. These techniques have been applied successfully to derive 
significant results in circuit complexity (e.g. [7,19,4,14]). 

Any  boolean function can be represented uniquely as real 2n-vector of its values 
at the points  of the hypercube,  or as a real 2n-vector of its Fourier coefficients (the 
spectrum of the function).  A recent focus of act ivi ty is characterizing the spectra  of 
boolean functions in various complexi ty classes. This is most ly  done by bounding  
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l~ norms of the spectra of functions in these classes. For example, Bruck [8] has 
made extensive use of the ll and leo spectral norms to characterize polynomial 
threshold functions, boolean functions which are obtained as the sign of a sparse 
real polynomial on the hypercube (one that  consists of a polynomial number of 
terms). Use of these spectral norms enabled him to relate polynomial threshold 
functions to the class of AC ~ functions and the class of function computable by 
depth 2 circuits of linear threshold functions (signs of polynomials of degree 1). 
Linial et al. [19] have obtained results with a slightly different flavor. They show 
that  the spectra of boolean functions in the low complexity class AC ~ have the 
following property: 

Almost all the 12 spectral norm is concentrated on the lower degree Fourier 
coefficients. 

Exploiting this property, they were able to construct an efficient algorithm for 
learning AC ~ functions from examples. Kushilevitz et al. [16] have extended their 
algorithm to learn a wider class of boolean functions; those whose ll spectral norm 
is bounded from above by a polynomial (in n). This restriction eliminates functions 
whose spectrum is "spread out" over a large number of coefficients. 

The result of Linial et al., reminiscent of typical signal processing applications, 
illuminates a possible connection between low complexity and concentration of Ip 
spectral norms on the lower Fourier coefficients. Since the Fourier coefficients of 
a boolean function f are just the coefficients of the representation of f as a real 
polynomial on the hypercube, this result implies that  the boolean function defined 
as the sign of the low degree polynomial obtained by retaining only those terms with 
significant spectral weight is an excellent approximation for f .  This interpretation 
led Gotsman [9] to conjecture that  the opposite is also true, i.e. the l 2 spectral 
norm of a boolean function obtained as the sign of a low degree real polynomial 
has properties similar to the above. More specifically, calling the class of boolean 
functions obtained as the sign of a degree d real polynomial d-threshold functions, 
Gotsman conjectured that  at least a constant fraction of the 12 spectral norm is 
concentrated on the coefficients of degree ___ d. The main objective of this paper is 
to settle this conjecture. Towards this end, we obtain tight lower bounds on the Ip 
spectral norm (1 _<p < 2) of the coefficients of degree <_ d for d-threshold functions. 
This generalizes a lower bound of Bruck's (in a slightly different form in [7]) on the 
11 spectral norm. Bruck's bound seems to be weaker than ours, but it nontheless 
enabled him to obtain useful results on polynomial threshold functions. Since this 
paper was first submitted, Aspnes et al. [3] have obtained results complementary to 
ours, showing that  the highest-degree Fourier coetticient of a d-threshold function 
cannot be too large. 

The theme common to our results and those of [19] is that  the following three 
types of boolean functions are related: 1. low-complexity functions, 2. functions 
obtained as the sign of a low degree polynomial, 3. functions whose spectral norms 
are concentrated on the lower degree Fourier coefficients. 
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2.1. The basics 

Denote by 

~;n = { f :  {q ,1 , -1}  n , ~ }  

the class of real functions on the hypercube, and by 

:~n = { f :  { q - i , - 1 )  n , { q - i , - 1 } }  

the class of boolean functions in n variables. Any function f E Yn may be considered 
as a 2'~-vector in ~ 2~, each coordinate representing the function value on a point 
of the hypercube. We assume an arbitrary, but fixed, ordering of the points of the 
hypereube. What  follows is s tandard harmonic analysis on the hypereube, and its 
use in the context of boolean functions can be traced back as far as [21], [28] and 
[18]. Consider the following inner product on 1~ 2n : 

(1) (fl,f2) = 2-n E fl(x)f2(x). 
x E { q - 1 , - - 1 }  n 

This is the correlation of the random variables f ,  and f2 on the probability space 
{ + 1 , - 1 }  n equipped with the uniform probabili ty distribution. 

Denote In] = { 1 , . . .  ,n}. Now consider the set of 2 n boolean functions 

x = { x  • = H x i :  z c 
iCI 

consisting of products of variables in all possible subsets of {Xl,.--,Xn} (including 
the empty  set - the constant 1 function). The superscript I indicates the subset of 
variables participating in the product,  and if I I [ =  d, X I will be called of order d. 
These functions are also known as the Walsh functions. They are just the pari ty 
functions of the variables. It  is easy to verify that  X is an orthonormal basis for 
:~ 2n : 

(X  I, X J) = 5ij  

so that  any function f E ~ n  can be expressed uniquely as 

(2) f =  E ](I)XI  ; f ( I ) = ( f ,  XI). 
Ic_M 

The vector f is the Fourier transform or spectrum of f ,  and the coefficients f (I)  
the Fourier coefficients, those corresponding to dth order Walsh functions called 
of degree d. There are (~) Fourier coefficients of degree d. Note that  (2) is a 
representation of f as a multilinear polynomial in X l , . . . , xn -  
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The  or thonomal i ty  of the basis is precisely the  reason the normal iza t ion  con- 
s tant  2 - n  was in t roduced in the definition (1) of the inner product .  This  is con- 
venient,  but  raises some other  difficulties. The  s t andard  p rope r ty  of Fourier t rans-  

forms f = f does not hold exactly, bu t  only up to a constant  factor.  
A fundamenta l  tool in the invest igat ion of spec t ra  of functions are the  relat ions 

between norms of f and f .  For l < p _ < e c ,  denote  

[ 1 IIfllp = 2 - n  ~ If(x)] p 
x E { + I , - - 1 }  n 

and 

III]lllp = I]II p 
] 

Here too the normal iza t ion  factor  2 - n  must  be taken  into account,  hence it appears  
in the  definition of Ilfllp, bu t  not in Ill]lllp- Let p be the dual of q (i.e. 1 / p + l / q =  
1). The  Hausdorff-Young inequalities are [15]: 

(3) Ilfllp >- I]lflllq 1 <_ p <_ 2 

(4) llfll~ <- Ill/lllq ~ _< p _< oo 

Equal i ty  exists when p = q = 2. 

(5) IlflI2 = v / ( f , f }  = Illflll2. 

More generally, for any two vectors  f l ,  f2 E ~ 2" , the o r thonormal i ty  of the basis X 
implies Parseval's equality: 

(6) if1, f2} = 2n(fl ,  f2}. 

For boolean functions, I l f l lp=l for all p, so (3), (4) and (5) reduce to 

lllftltp >- 1 1 <_ p <_ 2 

(7) Illflllp <- 1 2 < p < oo 

11111112 = 1 = ~ f 2 ( 5 .  
rc_[~] 

2.2 Influences and average sensitivity 

The  following measures  of complexi ty  of a boolean funct ion were in t roduced 
in [5]: 

Definition 2.1. Let  f E ~ n  be a boolean function. 
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The i'th difference of f at x is 

1 
A~(f, x) = 7I f (x1, . . . ,  xi , . . . ,  ~n) - f (~l , . .  �9 - ~ i , . . . ,  ~n)]. 

The influence of the i 'th variable is 

(8) I n f i ( f ) = l l A i l l l  i - - 1 , . . . , n .  

I n f i ( f )  is the probability that  flipping the i ' th variable of a random boolean 
input will flip the output, i.e. how influential the variable xi is in determining the 
outcome of f .  Since Ai C {0, +1 , -1} ,  the influences may be expressed alternatively 
in terms of other/p-norms for p_> 1: 

(9) In f i ( f ) - - [ IAi l [p  p i - - 1 , . . . , n .  

Definition 2.2. The sensitivity of f at x is 
n 

Sens(f ,  x) -- E ]Ai(f, x)[. 
i----1 

This is n times the probability that flipping any one bit of the input x will flip 
the output. 

Definition 2.3. The average sensitivity of f is 
n 

AS(f )  = Ex[Sens(f ,  x)] = E I n f i ( f ) .  
i = 1  

Obviously 0 ~ I n f i ( f ) ~  1 for i = 1 , . . . , n  and 0 < A S ( f ) ~  n. Regarding Ai as 
a real function on the n-cube, the following holds: 

(10) A i ( x ) =  E f ( I )XI"  
{s:~cs} 

Applying (9) with p--2, (5) and (10) yields: 

In f , ( f ) - -  ~ ]2(I) 
{I:iEI} 

(11) AS(f) = ~ 15f2(/). 
sc_[~] 

Combining (8) with the Hausdorff-Young inequality (3) for p = 1 immediately yields 
the following lower bound on variable influences: 

Lemma 2.1. For any boolean function f 

I n f i ( f )  > max {If(/)l} i = 1 , . . . , n .  ] 
{z:icI) 

For monotone boolean functions, it was observed in [13] that  the definitions 
imply: 
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Lemma 2.2. For any monotone boolean function f 

In f i ( f )  --1]({i})] i = 1 , . . . , n .  II 

This also holds for locally monotone boolean functions, those which are mono- 
tonic increasing or decreasing in each variable. Lemmas 2.1 and 2.2 imply: 

Corollary 2.1. For any locally monotone boolean function f 

I]({i})l > max {I](I)1} i = 1 . . . . , n .  ii 
{I:~Ef} 

This means that  for locally monotone boolean functions, the linear Fourier 
coefficients are the largest in absolute value. 

The average sensitivity of a boolean function f also has a combinatorial inter- 
pretation. Consider the two-coloring of the points of the n-dimensional hypercube 
induced by f .  Connect an edge between any two adjacent vertices whose colors 
differ. The average sensitivity is (twice) the number of these edges, i.e. the size of 
the cut of the two monochromatic sets. 

3. T h e  t h r e s h o l d  f u n c t i o n  h i e r a r c h y  

3.1. Definitions 

In the previous section, we saw that  any n-variable boolean function can be 
expressed exactly and uniquely as a real multilinear polynomial of degree n. Many 
boolean functions may be expressed as the sign of real polynomials of degree < n. 
For example, the majori ty function of 3 variables is expressed exactly as a cubic 
polynomial maj(xl,x2,x3) = Ix I -]- lt~ 2 + ix 3 - -  IXlX2X3, but also as the sign of 
the linear expression (Xl +x2 +x3). The following definition makes these notions 
precise: 

Definition 3.1. The class of threshold functions of degree d in n variables is: 

j d  = {f  E ~ n :  f = sgn( E wlX[ )  for some real vector (w/)}. 

rrl_<d 

If f C J  d, we say that  f is d - t h r e s h o l d .  The wi are called the r e a l i z i n g  w e i g h t s  
of f .  

Without  loss of generality, we assume that  the polynomial P = ~[i[<_dWi X1 
does not vanish on any point of the n-cube. The case d = 1 is the class of linear 
threshold functions. These functions are of major  interest in the theory of neural 
networks. It  is well known [20] that  j d  ~ j d + a  for 0 _< d < n. The separating 
functions are the pari ty functions of any d +  1 variables, i.e. these functions cannot 
be expressed as the sign of a polynomial of degree d. The following lemma shows 
that  the n-variable pari ty function is actually the only function which cannot be 
expressed as a polynomial of degree n - 1. 
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Lemma 3.1. Let f be a n-variable boolean function which is not parity. Then f E J~-l. 

Proof. Express f as a n-degree polynomial f =  }-~-I f ( I )  X I  (its Fourier transform). 
Since f is not the parity function, the uniqueness of the transform implies that 
If([n])l < 1. This, in turn, implies that  omitting f([n]) will not effect the sign of 
the polynomial, therefore f=sgn(~l l l< n f ( I )ZI ) .  | 

In the following sections, the majority function of (odd) n variables f = 
sgn(}-~ n ]  xi) will be constantly referred to as an extremal case. It is easily shown 
that for this function 

J[ )~rI~ = [ 0 ]I] is even 
(12) 

O(n 1/2-1II) III is odd and constant 

and 

If(I)r = I f ( J ) ]  if [I[ + [J] = n + 1. 

3.2 The  main theorem 

Bruck [7] has shown that a d-threshold function f is uniquely determined by 
its Fourier coefficients of degree < d. This is a generalization of the uniqueness 
property of the n + l  Chow parameters (the constant and linear Fourier coefficients) 
of linear threshold functions [28]. Consequently, any property o f f  may be expressed 
using only the Fourier coefficients of degree < d. 

Recalling (7), Linial et al. [19] have shown that  any boolean function f E 
AC ~ (i.e. computable by a constant depth polynomial size circuit of V, A,-7 gates) 
satisfies 

(13) Z /2(I) = 1 -  o(1) 
IIl_<O(log I n) 

where l is the depth of the circuit computing the function. Calling the sum of 
squares of the Fourier coefficients the 12 spectral norm, (13) asserts that  almost all 
the 12 spectral norm of these functions is concentrated on a small (2 p~176 num- 
ber of lower-degree coefficients. Gotsman [9], conjectured that  a similar property 
holds for &threshold functions, namely, most of their 12 spectral norm is contained 
in the coefficients of degree _< d. Independently, Bruck [7] obtained a constant lower 
bound on the 11 spectral norm of the lower d levels of the transform. We general- 
ize Bruck's result for any 1 <_p< 2 and confirm Gotsman's conjecture. Specifically, 
we bound from below the Ip spectral norm on the lower d levels with an expression 
independent of n for 1 < p _< 2. Our results, for the special case p = 2, imply that  
at least a constant fraction of the 12 spectral norm is concentrated on the lower d 
levels. The mathematical tools we use are a set of inequalities, due to Bourgain, on 
the Ip norms of Walsh functions, which, for the case d =  1, reduce to the classical 
Khintchine inequalities: 
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Lemma 3.2. 
degree < d. Then for any 1 <_ p < 2 

IlPlll >_ cdllpIIp 

where Cp 6 (0,1] are constants depending on p alone. | 

We are now ready to state the main theorem of this paper: 

Theorem 3.3. Let f = sgn(P) be a d-threshold function. Denote III]lll~ = 

(El l i<  d [f(I)[P) 1/p. Then 

[][/[][p>C d ; 1_<p_<2 

where Cp is a constant depending on p alone. Moreover, the inequalities are tight 
for the cases p=1,2 ,  except for the numerical value ofcp. 

Proof. Let q be the dual of p. Using the HSlder inequality and Parseval's equality 
(6), noticing that  w is the Fourier transform of P: 

II[flllp" ][]wl[lq -> (],w> = E [ P .  sgn(P)] = IIPIl~. 

Applying Lemma 3.2 and the Hausdorff-Young inequality (3) gives: 

][P][1 _> cdl[P[[p _> edl[[wl[[q 

whence 

lll/lil  >_ 4 
The strongest (and most useful) inequality is the case p = 2. To show that  it is 

tight, it suffices to consider the case d= n - 1 .  Take the n-variable parity function f 
and reverse the function value at any one point of the hypercube. By Lemma 3.1, 
the resulting ~ is a (n-1)-degree threshold function. The 12 distance ] l f - ~ l l  2 is 
exponentially small, therefore (by Parseval's equality) so is the 12 distance between 
their Fourier transforms f and ~. The function f vanishes on the lower n - 1  levels 
and has unit value on the highest coefficient. Therefore ~ has exponentially small 
12 spectral norm on the lower n - 1  levels. For smaller d, the same argument holds 
for the d-parity function on d arbitrary variables. 

The tightness of the inequality for the case p = 1 is treated separately in 
Corollary 3.4. | 

Theorem 3.3 does not hold for spectral norms with p > 2. By (12), the spectral 
norms of the (linear threshold) majority function satisfy 

III]lll o = I ] ( z ) l  p = o ( h I / p - I / 2 )  

t 
which decreases with n for p > 2. | 

Bruck's lower bound on the 11 norm of d-threshold functions is obtained as a 
special case of Theorem 3.3: 

([6]) Let P -- ~-~lll<dWiX I be a weighted sum of Walsh functions of 
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Corollary 3.4. For any d-threshold function f 

>- 1 
[I[~_d 
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Proof. Apply Theorem 3.3 with p = 1, noticing that  Cl = 1. This is tight for the 
parity function of any subset of the variables. | 

Corollary 3.5. Let f be a linear threshold function. Then 

n 
1 /2(o ) + _> 

i=1 

Proof. Apply Theorem 3.3 with p = 2 and d =  1, observing that  the best constant 
in the Khintchine inequality is 1/x/~ [10]. | 

Note 3.1. The converse of Corollary 3.5 does not hold. Widner [28] gives an example 
of a linear threshold function f and a non-linear threshold function g such that  

X : / 2 ( •  =  2(5 
II1_<1 IIl_<l 

Note 3.2. The proof of Theorem 3.3 actually gives a slightly stronger result than 
that  stated. If f is the sign of a polynomial supported on a subset of the Walsh 
functions W C X such that [II < d for all X I E W,  the lp spectral norm of f oil 
those s a m e  Walsh functions is at least c d for 1 _<p< 2. 

An immediate application of Theorem 3.3 is as a necessary condition for a 
boolean function to be d-threshold. 

Corollary 3.6. I f  f is a boolean function such that f ( I )  = 0 for a11 [I[ <_ d, then 
f ~ j d .  m 

Specifically, this eliminates the parity functions of d + l  variables, as mentioned 
in Section 3.1. 

The lower bound for p = 2 is the most intuitively appealing, because of (7), 
i.e. the spectrum is normalized to unity. This also seems to be the strongest and 
we use it in the sequel (Theorem 4.1). Nonetheless, Bruck has used the ll lower 
bound (Corollary 3.4) to obtain results concerning polynomial threshold functions. 
We hope that  this family of bounds will prove useful in future analysis of the 
complexity of threshold functions. 
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4. Lower  b o u n d s  on var iab le  inf luences  

Kahn et al. [13] give a tight lower bound on the sum of squares of the influences 
of variables of a boolean function. Denote by E( f )  the expected value of f (this is 
also ](0)). Then 

n 

~ I n f 2 ( f )  > k ( 1 -  IE(f)])21og 2 n/n  
i=-1 

where k is an absolute constant. Consequently, there always exists a variable 
with influence > v~(1 - ] E ( f ) ] ) l o g u / n  (because of the relation between 12 and 
Ic~ norms). Call f balanced if E ( f )  = 0. For a balanced boolean function, this 
implies the existence of a variable with influence ~(logn/n). The explicit function 
with precisely these influences is obtained as follows [5]: Denote 

re(n) = logn - log log n + O(1) 

Divide the n variables into n/m(n) blocks of re(n) variables each. Define f = 1 iff 
at least one block of variables are all 1. 

Interestingly enough, f is a balanced m(n)-threshold function, implying that  
the smallest possible influence is already obtained by threshold functions of fairly 
low degree. In this section we address the question of lower bounds on influences 
for d-threshold functions, in the range 1 < d <_ m(n). 

4.1. Linear threshold functions 

The result of Section 3.2 enables us to prove a tight lower bound on the 
influences of variables of linear threshold functions: 

Theorem 4.1. Let f be a linear threshold function such that IE(f)] < l /v/2.  Then 

~ I n f 2 ( f )  >_ 1 / 2 -  E2(f) .  
i-=1 

This is tight up to a constant factor. 

Proof. Observe that  linear threshold functions are locally monotone, therefore 
Lemma 2.2 applies: 

By Corollary 3.5 

~- '~inf2(f)  = ~ f2( i ) .  
i----i IIl----I 

n 

~ In f2 ( f )  _> 1/2 - E2(f) .  
i = 1  
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The bound is tight up to a constant factor, for the majority function with odd n 
is balanced and I n f i ( f ) - - 2  - n + l  ([n~2]) for i =  1,...  ,n ([x] is the integer part of x). 

By Stirling's approximation: 

n 

in f , ( f )  -- -2(1 + o(1)) 
7r 

i=-1 

For balanced linear threshold functions, Theorem 4.1 implies: 

Corollary 4.2. I f  f is a balanced linear threshold function, then there exists a 
1 

variable with inttuence ~ ( n -  ~ ). | 

Here again, the majority function is extremal. Note that  the lower bound on 
the ll spectral norm (Corollary 3.4) gives only ~t(1/n), which is even weaker than 
Kahn et al.'s lower bound (~(logn/n)) for general boolean functions. 

4.2. Higher order threshold functions 

We extend the construction of [5] to obtain a balanced d-threshold function 
with small influences in the range 1 < d < re(n). For this we need the following 
lemma in probability theory, which is of independent interest and does not seem to 
be in the literature. 

Lemma 4.3. Let p( x ) be a non-increasing function of x such that p( x ) E [0,1/2] for 
all x. Consider the family of binomial distributions {B(k,p(k)) : h = 1,2,.. .} (k 
trials with success probability p(k)). There exists a K (possibly dependent on p) 
such that for all k > K, if kp(k) is a positive integer, then kp(k) is a median of 
B(k,p(k)). 
Proof. Consider the sequence {m k = kp(k) : k = 1, 2,...}. Without loss of generality, 
we deal only with the subsequence of ink's which are integers. We distinguish 
between two cases: 

1. There is a K such that  for all k > K, m k > 50. This guarantees that  for all k > 
K, mk(1-p(k)) > 25. Now consider a k > K and denote 5-= (2~mk(1-p(h)) -1/2. 
Applying the normal approximation to the binomial distribution of B(k,p(k)) 
([26] p. 130), we have 

Prob[B(h,p(k)) > mk] -- 1/2 + r > 1/2 

where 0 ~ e < 5/6. By the same approximation, the mk'th term of the 
probability density function of B(k,p(k)) is 

Prob[B(k,p(k)) -= mk] = ( kmk)P(k)mk(1-p(k))k-mk = 5 + A 

where IA[ < 1.252. Because ink(1 -p(k))  > 50, obviously IA[ < 55/6, implying: 

Prob[B(k,p(k)) <_ mk] = 1/2 - e + ~ + A _> 1/2 + 5~/6 + A > 1/2 



46 CRAIG GOTSMAN, NATHAN LINIAL 

2. 

as required. 

There is a m < 50 and an infinite subsequence {rnk~ : j = 1,2, . . .} such that  
mk~ = m for all j > 0. The Poisson approximation to the distribution of 
B(kj,p(kj) ) gives: 

m m i  

Prob[B(kj,p(kj)) <_ m] = e-m E -~. + ~(kj) 
i = 0  

where Ir =O(1/kj) ([26] p. 135). This indicates that  the distribution func- 
tion of B(kj,p(kj)) can be made arbitrarily close to Poisson(m) by increasing 
j .  Choose Km such that  

m m 
(14) I~(Km)] <- 0"25e-ra m! 

Watson [27], proving a conjecture of Ramanujan, has shown that  

m-1 mi ram] 1 

where 1/3 < y < 1/2. Using this and (14) completes the proof for this m. 
Define K=max{Km:m=l, . . . ,50}.  The theorem now holds for all k>K. | 

Denote k = n/d, p = 2 -d  and t = kp. Ignoring (for simplicity's sake) issues 
of divisibility and integrability, divide the n variables into k blocks of d variables 
each. Let f be the boolean function such that  f = 1 iff at least t blocks of variables 
are all 1. By Lemma 4.3, f tends to be balanced for sufficiently large n. It is 
also d-threshold as it is equivalent to a linear threshold function composed with 
conjunctions of d variables, themselves expressable as polynomials of degree d. An 
easy calculation yields 

(15) I n f d f )  = 21-n(kt--~)(2d--1)(k-t) i= 1 , . . . , n .  

In the extreme case d =  1 we have k = n and t =n/2, the majority function. At the 
other extreme d=rn(n), we have k--n/re(n) and t =  1, the construction of [5]. In 
the intermediate range, (15) can be simplified to 

(16) I n f i ( ] ) = O ( ~ )  i = l , . . . , n .  

This shows that  there exist balanced d-threshold functions with small influ- 
ences, so that  any lower bound on the influences of variables on balanced functions 
in Jd  n cannot exceed (16). 
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5. Upper  bounds  on the  average sensi t ivi ty  

We now present some upper bounds and conjectures on the average sensitivity 
of threshold functions. 

It is well known [22,2] that for a linear threshold function f 

(17), AS(f)  < 2-n+l  ( _  [n/2]n ) ( n - [ n / 2 ] ) = O ( v / - n )  

where Ix] is the integer part of x. Equality is obtained for the majority function, 
The correct order of magnitude may be obtained simply from the Fourier coefficients 
by applying Lemma 2.2: 

n 

AS(f)  : ~ I n f i ( f ) =  ~ I:(1)1. 
i=1 III=1 

Bounding this with the Cauchy-Schwartz inequality: 

The exact bound is related to the central binomial coefficient. Higher order thresh- 
old functions are more difficult to analyze. We conjecture : 

Conjecture. Let f be a d-threshold function. Then 

(i8) AS(f)  < 2 -n+l  ~ [ ( n -  k)/2] 
k=0 

which is related to the sum of the d central binomial coefficients. For d = o(v~ ) the 
r.h.s, of (18) is O(dv/-n), but in order to obtain an average sensitivity of n(1-o(1)) 
it, is necessary to increase d to f~(n). The symmetric d-threshold function which 
cuts the middle d layers of the hypercube attains this bound. For the same reason, 
this is a tight upper bound on the average sensitivity of symmetric d-threshold 
functions (a symmetric binary function is f ( x l  ,.. �9 ,xn) = g (~ i=l  

6. Re la ted  and  open quest ions 

The results presented here could be improved considerably once answers to the 
following questions are obtained: 

1. For a d-threshold function, how do the Fourier coefficients of degree < d 
determine those of higher degree? 

2. For a d-threshold function f ,  where d>2,  how may Inf i ( f )  be expressed as a 
function of the Fourier coefficients of degree < d ? 
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After the submission of this paper, we were informed of a result complementary 
to ours obtained by Aspnes et al. [3]. They show that  for any d-threshold function f :  

I / ([n]) l--  O(d/v/-~) 

for constant d. This is obtained by the symmetric function cutting the middle d 
layers of the n-cube. 

Recall the combinatorial interpretation of the average sensitivity of a d- 
threshold function f = sgn(P) as the number of edges of the n-cube cut by the 
polynomial P.  A related question is the number of d-degree polynomials required 
to cut all the edges of the n-cube. For the linear (d--  1) case, M. Paterson [23] 
(see also remark in [22]) has established an upper bound of 5n/6 by constructing 5 
hyperplanes which cut all the edges of the 6-dimensional hypercube, contradicting 
a common belief that exactly n hyperplanes are required. J. Hs has observed 
[11] that a lower bound on this quantity would also be a lower bound on the size 
of a depth two linear threshold circuit computing parity. A trivial lower bound of 
~ ( v  ~ )  may be obtained immediately from (17), but it is believed to be much closer 
to O(n). Paturi  et al. [24] have shown that  in the special case where the realizing 
weights are bounded by a polynomial in n, a lower bound of ~(n/log 2 n) holds. 

However, if the realizing weights (the linear coefficients) are restricted to 
be positive, n hyperplanes are necessary and sufficient. This is shown easily by 
observing the path of n edges connecting the following vertices of the n-cube: 

(-i,-i,-i,...,-i), (i,-i,-i,...,-i), (i, i,-i,...,-i),..., (i, i, i,..., i) 

Any given hyperplane cuts exactly one of the edges, therefore at least n are required. 
This is also sufficient as the family of n hyperplanes with positive coefficients 

{ ~ x i  + 2t = 0:  t = - [ n /2 ] , . . . , [ n /2 1 }  
i = 1  

cuts all the edges. 
Once again, the case d > 1 remains an open question. 
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