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and there exists a G such that

4(G)</n+1.
Note ,

The value /\m is also conjectured to be the correct order of magni
tude f
a lower bound on 4(G). Denote I(G) = max(4(G), 40 -Gy
Let m “M, M\“ +vr. Ihw, be a boolean function. The sensitivity of f at x
denoted by s(/, x), 1s the number of neighbors y of x f : ’
The sensitivity of £ is y of x for which f(x) # f(y).
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s(f)=max s(f, x)
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Communicated by the Managing Editors
The sensitivity of f is sometimes called the critical complexity of f.

E.Eooaaom_ computer science, much effort has been expended in the
%m:_:o: of various measures of complexity of boolean functions. Some
are derived from an underlying computational model, such as &mni.e: tree
depth. Iﬂo the function is computed by repeatedly reading input bits, until
Eo ?:.o:oc can be determined from the bits accessed. The cost of m:, al
:::.: is the E::.cﬂ of bits read on the worst case input, and the nom%H
M_me MM a :EQ.SB is the .o.oﬁ of the best algorithm for this function. A
e m:nwmuwm is the certificate complexity. >. 1-certificate (O-certificate)
o gnment .8 some mccwoﬂ.& the variables that forces the value

(0). The certificate complexity of f on x, denoted C(f, x), is the

size of the smallest certi i .
e certificate that agrees with x. The certificate complexity

Received November 5, 1990

Denote by Q, the graph of the hypercube C"={ +1, —1}" The following two
seemingly unrelated questions are equivalent: 1. Let G be an induced subgraph
of Q, such that |V(G)| #2"~'. Denote E@uamkaso.aamn?w and I'(G)=
max(4(G), 4(Q,— G))- Can I'(G) be bounded from below by a function of =.w
2. Let f:C"—{+1, -1} bea boolean function. The sensitivity of fat x, denoted
s(f, x), is the number of neighbors y of x in @, such that f(x)# f(y). The se
sitivity of f is s(f)=max cc s(f, x). Denote by d(f) the degree of the uniq
representation of f as a real multilinear polynomial on C". Can d(f) be bounded

from above by a function of s(f)?  © 1992 Academic Press, Inc.

C(f)=max C(f, x).
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1. PRELIMINARIES

O
ther measures

Denote by Q, the graph on the n-dimensional cube C"= (+1, - .
. gt of complexity are of a combinatorial nature, e.g.

where any two vertices are adjacent iff they differ in exactly oso_, wmsizs@. A related measure is bl S
ponent. For an induced subgraph G of Q,, denote the maximal deg! a“mu {L,..,n) and let R [n] :w . %Q?%EEEQ, defined: Denote
G by 4(G), ie., 3 Med as the vector with ooo&:&:&. e vector (xy, ..., x,), then x'%) is
A(G)= max degg(x).
A V xe V(G) WQA v .x;.k.”%k? ~ﬂ”
” 2 ; ~ — X ieR.
In [1], it was shown that if G contains more than 2"~ ' vertices, t :.h block sensitivity of fat x, d i
there ay: & x, denoted bs( f, x), is the largest number ¢ such
A(G) > Y(logn—loglogn+1) £ #ﬁwm disjoint sets R, .., R, such that for all 1 <i<t, R, [n]

). The block-sensitivity of f is

bs(f)=max bs(f, x).
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Ceng
Tal activity i
t i . -
Wity in this field is determining the relation between various
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measures. The measures of complexity s, and s, are equivalent if Eowu_
polynomially related; i.., there exist polynomials p,(x) and p,(x) such

vf, w_CJM.uNGNA\:, $,(f) < pi(si(f)).

Nisan [3] showed that decision tree depth, certificate complexity,
block-sensitivity are equivalent. Nisan first considered the more nat
measure of sensitivity (which is block-sensitivity restricted to singletop
but was unable to prove equivalence to decision tree depth and certific
complexity. However, only after introducing  block-sensitivity
equivalence obtained.

Yet another complexity measure is obtained from the unique represer
tion of the boolean function f as a real multilinear polynomial o<on,.”,
cube: ,

fo= % T\ [1 x@.

I<[n] iel
Hrn coefficient o, (which satisfies —1<a,<1 for all < [n]) is also ca
f(I), the Fourier transform of f at I. Denote by d(f) the degree of
polynomial, i.e.,
d(f)= max {|1]:a,#0}.

I<[n]

Nisan and Szegedy [4] show that d(f) is also equivalent to the three
plexity measures mentioned above. As for the relation between sensitl
and degree, Szegedy [6] showed that .

d(f)=/s(f)

This can easily be shown to be tight. Whether s(f) is also equivalent !
of the above is still unknown. In particular, an upper bound on d(,
terms of s(f) is sought and is conjectured to be s%(f). Such a bound ¥
mean that sensitivity is equivalent to all the previously mentioned
tities. In the next section we show that this upper bound is equival
a lower bound on I( ).

2. THE EQUIVALENCE THEOREM

4
. For any induced subgraph G of Q, such that V() 7
I'(G) = h(n).
2. For any boolean function f, d(f)<h~"'(s(f))-

proof. <<.o first transform 1 into a statement concerning boolean func-
Associate with the subgraph G a boolean function g such that

ZOBm” ’
wan 1 iff xe V(G). Note that degg(x)=n—s(g, x) for xe V(G) and the
came holds in Q,— G for x ¢ V(G). Denote by E(g) the average value of g

on C" Now 1 and 2 are clearly equivalent to the following:

1. For any boolean function g, E(g)#0 implies 3Ix:s(g, x)<
p—h(n)-
2'. For any boolean function f, s(f) <h(n) implies d(f) < n.

To see the equivalence of 1’ and 2', define

g(x)=f(x) p(x),

where p(x) is the parity function of x: p(x)=]T]/_, x;. Note that for all
xe (", s(g x)=n—s(f, x) and for all /< [n], &(I)=f([n]—1), therefore
E(g) = (&)= f([n]), where f([n]) is the Fourier transform of f at [n],
ie., the highest order coefficient in the representation of f as a polynomial.

1'—2". Assume that d(f)=n, ie, \,;iv#o. This is equivalent to
E(g)#0. By 1, 3dx:s(g, x)<n—h(n); therefore 3Ix:s(f, x)=h(n),
contradicting the premise.

2'—1'. Assume that Vx, s(g, x)>n—h(n). This implies that s(f)<
h(n). By 2, d(f)<n, which is equivalent to f([n])= g(&)=E(g)=0,
contradicting the premise. ||

3. CONCLUSION

N:MWWME\ES@ h(x)= /\Nx in ,:63.05 2.1 shows that the two bounds
mrosm\ﬁw n and d(f v <s°(f) are equivalent. The example from [1] which
. at there exists G such that E@m. n+1 can be used to show
means S:vvon bound on d(f) would ca. tight if it were true. All of this
&?5 mmmﬂ m.vno% of 4(G)>./n would ._Bn_v\ that boolean function sen-
The o nm—.:,.\m_o:ﬂ to m:. other ooBon:x measures mentioned in [3].
alsg _os%mmzi complexity measure s(f) is especially important, since it
f(a Parallq o::am.i f v\:ﬁ time needed by a parallel RAM to compute
 glopy ¢l RAM is a oo__oo:w: of synchronous parallel processors sharing
rﬁn sho memory with no write-conflicts allowed). Cook and Dwork [2]
w.QvW_osM that ﬁ«sv.w log s(f). E fact, Nisan [3] later improved this to
m_Eo: Umu %\J (this is a stronger inequality, since for any f, bs(f) = s(f)).
nnvcs ds on as m_mo. shown that a n-variable boolean function which
all its variables must have sensitivity at least 2(log n).
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