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Abstract. We initiate an investigation of general fault-tolerant distributed computation in the
full-information model. In the full information model no restrictions are made on the computational
power of the faulty parties or the information available to them. (Namely, the faulty players may be
infinitely powerful and there are no private channels connecting pairs of honest players).

Previous work in this model has concentrated on the particular problem of simulating a single
bounded-bias global coin flip (e.g., Ben-Or and Linial [Randomness and Computation, S. Micali,
ed., JAI Press, Greenwich, CT, 1989, pp. 91–115] and Alon and Naor [SIAM J. Comput., 22 (1993),
pp. 403–417]). We widen the scope of investigation to the general question of how well arbitrary fault-
tolerant computations can be performed in this model. The results we obtain should be considered
as first steps in this direction.

We present efficient two-party protocols for fault-tolerant computation of any bivariate function.
We prove that the advantage of a dishonest player in these protocols is the minimum one possible
(up to polylogarithmic factors).

We also present efficient m-party fault-tolerant protocols for sampling a general distribution
(m ≥ 2). Such an algorithm seems an important building block towards the design of efficient
multiparty protocols for fault-tolerant computation of multivariate functions.
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1. Introduction. The problem of how to perform general distributed compu-
tation in an unreliable environment has been extensively addressed. Two types of
models have been considered. The first model assumes that one-way functions exist
and considers adversaries (faults) which are computationally restricted to probabilis-
tic polynomial time [24, 13, 25, 14, 11, 2]. The second model postulates that private
channels exist between every pair of players [3, 7, 8, 17, 15]. Hence, in both models
fault-tolerance is achieved at the cost of restricting the type of faults.

We want to avoid any such assumption and examine the problem of fault-tolerant
distributed computation where the faults are computationally unrestricted, and no
private channels are available. Clearly, the assumption that one-way functions exist
is of no use here. The situation here corresponds to games of complete information.

The general problem can be described informally as follows: m players are inter-
ested in globally computing v = f(x1, . . . , xm), where f is a predetermined m-variate
function and xi is an input given to party i (and initially known only to it). The input
xi is assumed to have been drawn from probability distribution Di (which without
loss of generality can be assumed to be uniform). A coalition F of faulty players may
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favor a particular value v for f and play any strategy to maximize the probability of
such an outcome. We want to bound, for each value v in the range of f , the proba-
bility (under the best strategy for the faults) that the outcome of the protocol used
to distributively compute f is v. How good can this bound be?

Regardless of the protocol under consideration, there is always one avenue that is
open for the faulty players, namely, alter their input values to ones under which the
value v is most likely. This is always possible, since players’ inputs are not visible to
others. That is,

qv := max
xi,i∈F

{Prob(f(~x) = v where xj ∈R Dj , j /∈ F )}

is a lower bound on the influence of coalition F towards value v, no matter what
protocol is used.

Consider the simple procedure in which each player announces its xi, and the
global output is taken to be f(x1, . . . , xm). If all players (including the faulty ones)
act simultaneously, then for every v, the probability of v being the outcome is indeed at
most qv. Unfortunately, in a distributed network simultaneity cannot be guaranteed,
and a delayed action by the faults can result in much better performance for them
(e.g., for f =

∑m
i=1 xi mod N with xi ∈ {0, 1, . . . , N − 1}, q0 = 1

N , but a single faulty
player acting last has complete control of the outcome).

In both of the previously studied models (private channels or computationally
bounded faults) protocols were developed where for all values v and all minority
coalitions F , the probability of outcome v is as close to qv as desired. The key to
these protocols is the notion of simultaneous commitment. At the outset of these
protocols, each player Pi commits to its input xi. It should be stressed that a faulty
party may alter its input in this “committing phase” but not later and that a party’s
commitment is “independent” of the inputs of the other honest parties.

Obviously, in the full-information model such a qualitative notion of commitment
cannot be implemented (even if the faulty parties are in minority). Instead, we need
to look for quantitative results. Faulty players can and will be able to “alter their
inputs” throughout the execution of the protocol in order to influence the outcome.
Yet, we can bound the advantage gained by their improper behavior.

1.1. Results concerning the two-party case. The main focus of this paper is
on the two-player case of this problem. Even this restricted case provides interesting
problems and challenges. We resolve the main problems in this case, showing:

1. A lower bound: for every bivariate function f , for any protocol to compute f ,
and every value v in the range of f , there is a strategy for one of the players,
so that if the other player plays honestly, then the probability for the outcome
f = v is at least max(qv,

√
pv), where pv = Prob(f(~x) = v|xi ∈R Di)).

2. More interestingly, we show a matching (up to polylogarithmic factor) con-
structive upper bound. We describe a probabilistic polynomial-time protocol
that computes f , given a single oracle access to f , such that for all v,

Pr(f evaluates to v) = O(poly log(1/pv) ·max(qv,
√
pv)).

In the special case where qv = pv, this protocol is shown to match the lower
bound up to a constant factor. Namely,

Pr(f evaluates to v) = O(
√
pv).

The spirit of our protocol is best illustrated by the following example.
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Example. Define id(x, y) = 1 if x = y and 0 otherwise. Suppose that the local
inputs x, y are chosen uniformly in {0, 1}n. Clearly, p1 = 1

N , and p0 = 1− 1
N , where

N = 2n. A protocol in which the first player declares x and then the second player
declares y allows the second player complete control on the value of id. A protocol in
which the two players alternately exchange bits in the description of their inputs is
no better if these bits are exchanged in the same order (i.e., both parties send their
respective ith bit in round i). A much better idea is for the two players to alternate
in describing the bits of their inputs but do so from opposite directions (i.e., in round
i the first party sends its ith bit, whereas the second party sends its (n− i+ 1)st bit).
Clearly, whichever player is faulty, the probability that the outcome of this protocol
is “1” is bounded by 1√

N
. In light of the lower bound, this is the best result possible.

This idea of gradually revealing appropriately chosen “bits of information” is the key
to the general problem of two-party computation.

1.2. Results concerning the multiparty case. The problem of m-party com-
putations, where a subset of t < m faults may exist, is more involved than the two-
party case (even for m = 3); see discussion in section 5. Here, we only consider the
problem of collectively sampling a given distribution. Without loss of generality, it
suffices to consider the uniform distribution (say, on strings in {0, 1}l). We provide a
probabilistic polynomial-time sampling protocol such that for every S ⊂ {0, 1}l, for
every t faults,

Pr(sample ∈ S) <
(
|S|
2l

)1−c· tm

for some constant c > 0. This result is the best possible (up to the constant c), and
is superior to the bound obtained by the trivial protocol which consists of l repeated
applications of “collective coin flipping”; consider, for example, the set S consisting of
all strings having at least (1

2 + t
m ) · l ones; under the trivial protocol, t faulty parties

can influence the output to almost always hit S, whereas our result guarantees that
this set S which forms a negligible fraction of {0, 1}l is hit with negligible probability
(for, say, t < m/2c).1

The above sampling protocol can be used to present a (generic probabilistic
polynomial-time) protocol that works well for computing almost all functions (see
our technical report [12]).

1.3. Previous work in the full-information model. Previous work in this
model [4, 5, 16, 1] has focused on the task known as collective coin flipping, which in
our terminology amounts to fault-tolerant multiparty sampling in {0, 1}. Matching
lower and (constructive) upper bounds of 1

2 + θ( tm ) have been shown (by Ben-Or
and Linial [4] and Alon and Naor [1],2 respectively). Our work can be viewed as an
extension of these investigations which were concerned with the influences of players on
Boolean functions (i.e., Range(f) = {0, 1}). The general case considered in this paper
gives rise to additional difficulties. Let us stress that even the problem of sampling
in arbitrary sets is more difficult than collective coin flipping. As mentioned above,
the obvious approach to the sampling problem fails; namely, a sampling protocol that

1Using the above choice of parameters, we have a set S of density ρ ≈ exp{−(t/m)2 · l} which
our protocol hits with probability at most

√
ρ, as long as at most t players are faulty. On the other

hand, when repeated collective coin flippings are used, t faulty players can influence the outcome to
be in S with probability at least 1− ρ, by biasing each coin flip toward 1.

2Furthermore, the upper bound can be met by protocols of logarithmic round-complexity [9, 19].
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consists of repeatedly applying a given coin-tossing protocol can be easily influenced
to almost always output strings in a subset of negligible size.3

However, fault-tolerant computation (of arbitrary functions) is more complex than
sampling, which can be viewed as fault-tolerant computation of a function specially
designed for this purpose.

1.4. Relation to work on slightly random sources. In this paper we present
a multiparty protocol for sampling a set of strings {0, 1}l. In “sampling” we mean
producing a single string in {0, 1}l so that, for every subset S ⊂ {0, 1}l, the prob-
ability that the sample hits S is related to the density of S. Our protocol uses the
collective coin flipping of [1] as a subroutine. In fact, our sampling protocol can be
viewed as a deterministic reduction to the problem of collective coin tossing. The
collective coin can be viewed as a slightly random source in the sense of Santha and
Vazirani [22], i.e., an SV-source.4 Hence, our result can be interpreted as presenting
a sampling algorithm which uses an SV-source (with a parameter γ < 1√

2
). Our

sampling algorithm performs much better than the obvious algorithm which uses as
a sample a sequence of coins produced by the source. (The situation is analogous to
the discussion of the multiparty sampling protocols above.)

Our sampling algorithm provides an alternative way of recognizing languages in
BPP by polynomial-time algorithms which use an SV-source with a parameter γ < 1√

2
.

First, reduce the error probability in the BPP-algorithm so that it is bounded by a
sufficiently small constant. Next, use our sampling algorithm to produce a sequence
of coin tosses for a single run of the new BPP-algorithm. Since the “bad runs”
form a negligible fraction of all possible runs of the BPP-algorithm, it follows that
the probability we will sample a bad run (when using an SV-source with parameter
γ < 1√

2
) is bounded by 1

3 . This simulation method is different from the original
method of Vazirani and Vazirani [23] (adopted also in [6]) where the BPP-algorithm
is invoked many times, each time with a different sequence of coin tosses.

1.5. Other related work. We also present efficient sampling protocols for the
two-party case. The basic sampling protocol guarantees, for every set S ⊆ {0, 1}l, that
as long as one party is honest the output hits S with probability at most O( 4

√
|S|/2l).

(The basic sampling protocol is essential for efficiently implementing our generic two-
party function-computation protocol. Interestingly, the basic sampling protocol is
also used as a building block for a better sampling protocol, which is optimal up to a
constant factor.)

Our basic two-party sampling protocol is very similar to a protocol, called inter-
active hashing, which was discovered independently by Ostrovsky, Venkatesan, and
Yung [20] (see Naor et al. [18]). Interactive hashing has found many applications in
cryptography (cf. [20, 18, 21, 10]). For details see Remark 4.26.

1.6. Organization. We start with some preliminaries (section 2) and lower
bounds (section 3). The main part of this paper is section 4, which presents effi-
cient fault-tolerant two-party protocols. The construction of fault-tolerant multiparty
protocols is discussed in section 5.

3An alternative method which also fails is to try to generalize the work of Alon and Naor [1]
as follows: The method of [1] consists of randomly selecting one of the players who is appointed to
flip a fair coin. Letting this player select a random string is a natural idea, but it is obvious that
this approach performs very poorly for a sample space of nonconstant size. Specifically, each set
S ⊂ {0, 1}l can be hit with probability at least t

m
, independently of S and l.

4An SV-source with parameter γ is a sequence of binary random variables X1, X2, . . . , so that
for every n, α ∈ {0, 1}n and σ ∈ {0, 1}, Prob(Xn+1 =σ|X1, . . . , Xn=α) ≤ γ.
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2. Preliminaries. In this section, we present our conventions regarding func-
tions and protocols. We also explain what we mean when we talk of influence and
sampling.

2.1. Bivariate functions. Throughout the paper we represent the bivariate
function f :{0, 1}n×{0, 1}n 7→{0, 1}∗ as an N -by-N matrix, where N def= 2n. An entry,
(x, y), in the matrix which has value v (i.e., f(x, y) = v) is called a v-entry. The
following quantities, related to the function f and a value v in its range, are central
to our analysis.

Notation. The density of v, denoted pv, is the fraction of v-entries in the matrix
of f (i.e., pv = |{(x, y) : f(x, y) = v}|/22n). The maximum row density of v, denoted
rv, is the maximum, taken over all rows, of the fraction of v-entries in a row of f
(i.e., rv = maxx∈{0,1}n{|{y : f(x, y) = v}|/2n}). The maximum column density of v is
denoted cv = maxy∈{0,1}n{|{x :f(x, y)=v}|/2n}, and qv is defined as max{rv, cv}.

Throughout the paper, we consider the case of uniform input distribution. Namely,
we assume that each input is selected uniformly from {0, 1}n and independently of
the other input(s). The more general case, where each input is selected from an ar-
bitrary distribution (yet independently of the other inputs) can be reduced to the
uniform case as follows. Suppose that the probability for each input can be expressed
as q

2poly(n) , where q is an integer (for some polynomial poly). Then we can replace this
input, say z, by q inputs, denoted (z, 1), (z, 2), . . . , (z, q), and consider the function
F ((x, i), (y, j)) def= f(x, y) (1≤ i≤φ(x)2poly(n) and 1≤ j≤ψ(y)2poly(n), where φ(x) is
the probability of the row-input x and ψ(y) is the probability of the column-input
y). Protocols for computing F (under the uniform distribution) translate easily to
protocols for computing f (under the distribution (φ, ψ)) and vice versa. To efficiently
transform protocols for computing F into protocols for computing f , an efficient al-
gorithm is needed for computing the original density functions (i.e., φ and ψ).

2.2. Protocols. The communication model consists of a single broadcast chan-
nel. Each party can, at any time, place a message on this channel which arrives
immediately (bearing the identity of its originator) to all other parties. It is not
possible to impose “simultaneity” on the channel; namely, the protocols may not con-
tain a mechanism ensuring simultaneous transmission of messages by different parties.
Thus, it is best to think of the model as being asynchronous and of the protocols as
being message-driven. However, asynchronicity is not a major issue here as all parties
share the unique communication medium and thus have the same view.

The output of an execution of a protocol is defined as the last message sent during
the execution. We consider the output of the protocol when the inputs are selected
uniformly.

We call a player honest if it follows the protocol. Dishonest players may deviate
arbitrarily from the protocol. In discussing our protocols we assume, without loss of
generality, that dishonest players do not deviate from the protocol in a manner which
may be detected. This assumption can be easily removed by augmenting our protocols
with simple detection and recovery procedures (which determine the output of the
protocol in case deviation from the protocol is detected). For example, the protocol
may be restarted with the input of the cheating party fixed to some predetermined
value and all its actions being simulated by the other parties.

All our protocols are generic: Players are instructed to take steps that depend
only on their inputs, but not on the function f . When the inputs are finally revealed,
f is evaluated once, and the protocol terminates.
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2.3. Influences. Unlike previous work, we use the term “influence” in a collo-
quial manner. Typically, by talking “the influence of a party towards a value” we
mean the probability that this party can make this value appear as output of the
protocol. When discussing the computation of functions, we treat only the influence
towards a single value; the influence towards a set of values can be treated by defining
a corresponding indicator function.

2.4. Sampling. We also consider the problem of designing two-party and multi-
party protocols for sampling in a universe {0, 1}l. The objective here is to provide
upper bounds for the probability that the output falls in some subset S ⊂ {0, 1}l.
We note that the problem of designing a two-party protocol for sampling {0, 1}l
can be reduced to the problem of designing a protocol for computing any function
f : {0, 1}n × {0, 1}n 7→ {0, 1}l for which all values have the same density and this
density equals the maximum row/column densities (i.e., qv = pv = 2−l for every
v ∈ {0, 1}l). An analogous reduction holds also in the multiparty case.

3. Lower bounds. In this section we present lower bounds which will guide our
search for the best possible fault-tolerant protocols.

THEOREM 3.1. Let f :D1×D2× · · ·×Dm 7→R be a function of m variables, Π
an m-party protocol for computing f , and v ∈ R a value in the range of f . Consider
performing Π where players in the set S are dishonest, while all other players are
honest. Let φS be the maximum, over all strategies of coalition S of the probability of
the outcome being v. Then, for any 1≤ t≤ m there is a coalition Q of t players with
φQ ≥ p

1− t
m

v .
In particular, we have the following result.
COROLLARY 3.2. Let f be any bivariate function, Π any two-party protocol for

computing f , and v a value in the range of f . Then at least one of the players can,
by playing (possibly) dishonestly, force the outcome to be v with probability at least
max{qv,

√
pv} (the other party plays honestly).

Proof of Theorem 3.1. The proof is very similar to that of Theorem 5 in [4],
although some changes are required. One observes first that if the time complexity of
the protocol is no issue, and the only consideration is to keep influences down, then
nothing is lost if all actions are taken sequentially and not in parallel. Therefore, Π can
be encoded by a tree T as follows: leaves of T are marked with values in the range of
f , and each internal node of T is marked with a name of a player. The run of Π starts
at the root of T . Whenever an internal node is reached, player Pi, whose name marks
that node, is to take the next step. For each input value in Di, the protocol Π specifies
a probability distribution according to which the next node, a child of the present one,
is selected (assuming Pi is honest). The key observation, beyond the technique of [4],
is that these distributions (together with the input distribution over Di) induce a
single distribution for the next move of (honest) player i, conditioned on the execution
having reached the present node. The outcome of this process is determined by the
leaf it reaches (i.e., f = u, where u is the mark of the leaf that is reached).

For the analysis, let z be an internal node of T , and consider the same process as
above, performed on the subtree of T rooted at z. Suppose that coalition S plays its
best strategy to make the outcome f = v most likely, and let φ<z>S be that maximum
probability (clearly, when z is taken to be the root of T , then φ<z>S = φS). The key
step in the proof is to establish the following inequality for every internal z:∏

|R|=t
φ<z>R ≥ p(

m−1
t )

v,z ,(1)
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where pv,z is the probability of reaching a v-marked leaf on that subtree, when
all players are honest. Extracting the

(
m
t

)
th root of the above inequality, we get

max|R|=t φ<z>R ≥ p(m−t)/m
v,z . Taking z to be the root of T the theorem follows.

Inequality (1) is proven by induction on the distance from the leaves in T . In
the induction step, we assume that the inequality holds for the children of an internal
node z and derive the inequality for node z. Let I denote the set of edges emanating
from z and let {zi : i ∈ I} denote the corresponding children. Suppose, without loss
of generality, that node z is marked by player 1. The protocol Π and the probability
distributions on the sets Di determine the probabilities, {λi > 0 : i ∈ I}, governing
the player’s next move provided that the player is honest and conditioned on the
execution having reached node z. (This distribution may not be easy to determine,
but we only need to know that it exists.) Now, clearly pv,z =

∑
i∈I λipv,zi and

φ<z>R =
∑
i∈I λiφ

<zi>
R , for every coalition R that does not contain player 1. On

the other hand, for every coalition R which does contain player 1, we have φ<z>R =
maxi∈I φ<zi>R . Now, denoting φ<zi>R by ai,R (where R ⊆ [m], |R| = t) and pv,zi by bi,
the inductive step reduces to proving the following numerical lemma, which in turn
is a generalization of Lemma 5.3 in [4].

LEMMA 3.3. Let I be a finite set, let {ai,R : i ∈ I,R ⊆ [m], |R| = t}, {bi : i ∈ I}
be nonnegative reals, let {λi : i ∈ I} be positive with

∑
i∈I λi = 1, and assume that

for every i ∈ I, ∏
R⊆[m],|R|=t

ai,R ≥ b
(m−1

t )
i .

Furthermore, let αR equal maxi∈I ai,R if 1 ∈ R and
∑
i∈I λiai,R otherwise. Also, let

β =
∑
I λibi. Then, ∏

R⊆[m],|R|=t
αR ≥ β(m−1

t ).

Lemma 5.3 in [4] is a special case of Lemma 3.3 (in which |I| = 2 and λ1 = λ2 =
1
2 ). However, the ideas presented in the proof of Lemma 5.3 in [4] suffice for proving
the general case. In fact, we further generalize Lemma 3.3.

LEMMA 3.4. Let J,K, and I be disjoint finite sets, let {ai,j |i ∈ I, j ∈ J ∪ K},
{bi|i ∈ I} be nonnegative reals, let {λi|i ∈ I} be positive, with

∑
i∈I λi = 1, and

assume that for every i ∈ I, ∏
j∈J∪K

ai,j ≥ b|K|i .

For every j ∈ J , let αj equal maxi∈I ai,j and for every k ∈ K, let αk =
∑
i∈I λiai,k.

Also β =
∑
I λibi. Then, ∏

j∈J∪K
αj ≥ β|K|.

Lemma 3.3 follows from Lemma 3.4 by letting J be the set of all t-subsets of [m]
which contain the element 1 and K be the set of all t-subsets which do not contain 1.

Proof of Lemma 3.4. There is, of course, no loss in assuming

bi =

 ∏
j∈J∪K

ai,j

1/|K|
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for every i ∈ I. Fix all ai,j (over all i ∈ I, j ∈ J) as well as all ai,k (all i ∈ I, k ∈
K \ {k1, k2}). Now consider the minimum of (

∑
i∈I λiai,k1)(

∑
i∈I λiai,k2) subject to

the condition that ai,k1 · ai,k2 are fixed, for all i. A simple calculation with Lagrange
multipliers shows that the vectors (ai,k1 |i ∈ I) and (ai,k2 |i ∈ I) are proportionate.
In other words, there is a nonnegative vector (ui|i ∈ I) and nonnegative constants
ρk(k ∈ K) such that ai,k = ρk · ui for every i ∈ I, k ∈ K. Multiply by λi and sum
over i ∈ I to conclude that for any k ∈ K, αk = ρk

∑
I λiui. We can write now, for

every i ∈ I: ∏
j∈J

αj

1/|K|

=

∏
j∈J

(max
i∈I

ai,j)

1/|K|

≥

∏
j∈J

ai,j

1/|K|

and, (∏
k∈K

ρk

)1/|K|

ui =

(∏
k∈K

ai,k

)1/|K|

.

So, for every i ∈ I,∏
j∈J

αj

1/|K|(∏
k∈K

ρk

)1/|K|

ui ≥

 ∏
j∈J∪K

ai,j

1/|K|

= bi.(2)

Multiply equation (2) by ρtλi, sum over i ∈ I, and use αt = ρt
∑
i∈I λiui and β =∑

i∈I λibi, to conclude that for every t ∈ K,

∏
j∈J

αj

1/|K|(∏
k∈K

ρk

)1/|K|

αt ≥ ρt · β.

Now multiply over all t ∈ K to get the desired conclusion.

4. Two-party protocols. In this section we present protocols which meet the
lower bounds presented in section 3, up to a polylogarithmic factor. We first present a
general framework for the construction of such protocols (subsection 4.1), argue that
this framework does indeed yield protocols meeting the lower bound (subsection 4.2),
and finally use the framework to present efficient protocols meeting the lower bound
(subsection 4.3).

Without loss of generality, we assume throughout that every value v in the range
of f appears in each row and column in the matrix of f at least pv

4 · 2n times. If some
row or column has too few occurrences of v, we’d like to augment them, without a
significant increase in qv. This can be done as follows: Let (A1, . . . , Ak) be a partition
of {1, . . . , 2n}, where each Ai has cardinality between pv

4 · 2n and pv
2 · 2n. It is easy

to see that by changing some elements within the Ai ×Ai minors of the matrix to v,
it is possible to guarantee that v-values have density ≥ pv

4 in every row and column
without increasing the largest density in any row or column beyond qv + pv

4 = O(qv).
Also, without loss of generality, we assume pv ≤ 1/2 (otherwise, the claims hold

vacuously).
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4.1. Framework for protocols meeting the lower bounds. The goal of the
protocol is to enable the parties to gradually reveal their inputs to each other, without
granting any party a substantial influence on the value of f .

The protocol proceeds in rounds, each consisting of two steps. In each step one
party sends one bit of information about its input to the other party. In the next step
the other party sends such a bit. The bits sent by each party specify in which side, of
a bipartition of the residual input space, its actual input lies. These partitions must
satisfy some “value-balance” properties to be discussed below. Following is the code
of the generic protocol.

Inputs: x∈X0
def= {0, 1}n for the row player, y ∈Y0

def= {0, 1}n for the column
player.
Round i: Let (X0

i−1, X
1
i−1) be a partition of Xi−1, and (Y 0

i−1, Y
1
i−1) a partition

of Yi−1.
The row player sends σ∈{0, 1} such that x ∈ Xσ

i−1. Let Xi
def= Xσ

i−1.

The column player sends σ∈{0, 1} such that y∈Y σi−1. Let Yi
def= Y σi−1.

Output: When both residual sets become singletons (i.e., |Xt| = |Yt| = 1 after
round t) the protocol terminates and the output is defined as f(x, y), where
Xt = {x} and Yt = {y}).

The reader may think of the partitions as splitting the current set evenly and, in
fact, this is almost the case as asserted in Property (P0). In such a case, the protocol
terminates after n rounds. For the protocol to achieve its goal (of minimizing the
advantage of each party), it employs bipartitions satisfying various (additional) value-
balance properties. There will be several different types of value-balance properties all
sharing the following features, and being applied to both row partitions and column
partition. A typical row-partition property (resp., column-partition property) requires
that a subset of the rows (resp., columns), specified by some pattern of v-entries, is
split almost evenly between the two sides of the partition. For example, Property (P1)
below (regarding column-partitions) requires that, for each row, the set of columns
containing a v-entry in this row is split almost evenly.

We will introduce the various properties in an ad-hoc manner, each property
being introduced just where it becomes essential for analyzing the generic protocol.
Thus, at the end of this subsection, we will have a set of properties and a proof that
if the protocol utilizes only partitions having these properties, then the advantage of
both parties is bounded as claimed in the introduction. The question of whether such
partitions exist will be ignored altogether in the current subsection but will be the
focus of the next subsection, whereas the third subsection shows how to efficiently
generate “pseudorandom” partitions which satisfy these properties.

4.1.1. Motivation to the analysis of the protocol. In analyzing the influ-
ence of a dishonest party we consider, without loss of generality, the probability that
the row player (following an arbitrary adversarial strategy) succeeds in having the
protocol yield a particular value v (in the range of f). For simplicity, we consider first
the special case where qv = pv. In this case there are exactly K

def= pv ·N entries of
value v in each row of the matrix. The analysis proceeds in three stages:

Stage 1. Consider the first log2K rounds. If every column (resp., row) par-
tition employed halves the number of v-entries in each row (resp., column),
then at the end of this stage the residual 1/pv-by-1/pv matrix contains a single
v-entry in each row (resp., column), thus preserving the density of v-entries
in each row and column. Using a v-balance property of the partitions called
(P1), we show that this is roughly the situation (see Corollary 4.6).
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Stage 2. Consider the next 1
2 · log2(1/pv) rounds. If each row (resp., column)

partition employed halves the number of v-entries in the residual matrix, then
at the end of this stage the residual 1√

pv
-by- 1√

pv
matrix contains a single v-

entry, thus preserving the density of v-entries. Using a v-balance property
of the partitions called (P2), we show that this is roughly the situation (see
Lemma 4.7).
Stage 3. At the last 1

2 · log2(1/pv) rounds the row player can force the outcome
to be v only if the input of the column player is a column containing a v-entry.
The probability that the input column of the column player contains a v-entry
does not exceed ∆ · √pv, where ∆ is the number of v-entries at the outset of
this stage.

4.1.2. Preliminaries. All value-balance properties are geared to guarantee an
“almost even split” of certain sets. This is quantified in the following definition
with bounds that depend on the size of the set to be split. The size ranges are
parameterized by b. For sets smaller than b we require nothing. For sets larger than
b4 we require sublinear discrepancy/bias, and in the midrange we require a small-but-
linear discrepancy.

DEFINITION 4.1 (almost unbiased partitions). Let S ⊆ U be finite sets and b > 1.
A partition (U0, U1) of U is at most b-biased with respect to S if

(1) If |S| ≥ b4 then
∣∣∣|U0 ∩ S| − |S|2

∣∣∣ < |S|3/4.

(2) If b < |S| < b4 then
∣∣∣|U0 ∩ S| − |S|2

∣∣∣ < |S|
20 .

In our analysis of the protocol, we assume that it utilizes partitions which are
at most δ · log2(1/pv))-biased with respect to specific sets, where δ is a constant to
be determined as a function of other constants which appear in the analysis (see
subsections 4.2 and 4.3). We stress that pv denotes the density of v-entries in the
original matrix corresponding to the function f (and not the density in any residual
submatrices defined by the protocol). We denote ∆v

def= δ log2(1/pv). Whenever
obvious from the context, we abbreviate ∆v by ∆.

In addition to value-balance properties, we use the following more elementary
property asserting that the partitions are into almost equal sizes. The parameter of ap-
proximation is determined by the frequency of the value being discussed in the context.

DEFINITION 4.2 (balance property P0). A partition (U0, U1) of U is said to have
Property (P0) (with respect to a parameter ∆) if the partition is at most ∆-biased
with respect to U .When |U | ≥ 2 it is also required that the partition be nontrivial;
namely |U0|, |U1| ≥ 1.

The additional condition guarantees that if the generic protocol uses only parti-
tions with Property (P0) then it terminates. The main condition in Property (P0) im-
plies termination in at most n+∆ rounds (see Claim 4.4 and the proof of Lemma 4.5).

We consider executions of the generic protocol under various strategies of the
row player, typically assuming that the column player plays honestly. The residual
submatrix after i rounds is the submatrix corresponding to Xi × Yi. We denote by
#v(X,Y ) the number of v-entries in the submatrix induced by X × Y . When X is
a singleton, X = {x}, we abbreviate and write #v(x, Y ) instead of #v(X,Y ). For
example, for x ∈ Xi, the number of v-entries in the residual x-row after i rounds
(resulting in the residual submatrix Xi × Yi) is denoted #v(x, Yi).

4.1.3. Analysis of the protocol: The special case of qv = pv . For the
analysis of this special case, we need two types of “value-balance” properties. The
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definition is phrased for column partition. An analogous definition holds for row
partitions.

DEFINITION 4.3 (value-balance properties P1 and P2). Let Xi and Yi be residual
sets of rows and columns and let (Y 0

i , Y
1
i ) be a (column) partition of Yi, and v be a

value in the range of f . We consider the following two properties:
Property (P1). The partition is v-balanced with respect to individual rows if
the following holds. For every (remaining) row x∈Xi, the partition is at most
∆v-biased with respect to set of columns having v-entries in row x (i.e., w.r.t.
the sets {y∈Yi : f(x, y)=v}, for each x ∈ Xi).
Property (P2). Either |Yi| ≥ 2/pv or the partition is v-balanced with respect
to the standard coloring in the following sense. Consider a standard minimum
coloring, ξ, of the v-entries in Xi × Yi, where no two v-entries in the same
column or row are assigned the same color. For every color α, the partition
is at most ∆v-biased with respect to the set of columns containing a v-entry
of color α (i.e., w.r.t. the sets {y∈Yi : ∃x∈Xi s.t. f(x, y)=v and ξ(x, y)=α},
over α ∈ Range(ξ)).

The following is an elementary technical claim, which we use extensively in the
analysis.

CLAIM 4.4. Let α < 1. Suppose that zi+1 <
zi
2 + (zi)α, for every i = 0, . . . , T .

Then, there exists a constant cα, so that zt < z0
2t−1 , for every t < min{T, (log2 z0)−

cα}. Likewise, if zi+1 >
zi
2 − (zi)α, for every 0≤ i≤ T , then zt >

z0
2t+1 , for every

t < min{T, (log2 z0)− cα}.
Proof. By successively applying the inequality t times, we get zt < z0

2t +
∑t
i=1

zαt−i
2i−1 .

Using induction on t, we get

zt <
z0

2t
+

t∑
i=1

(z0/2t−i−1)α

2i−1

=
z0

2t
+ 2 ·

(
2z0

2t

)α
·

t∑
i=1

(
1

21−α

)i
<
z0

2t
+ 21+α ·

(z0

2t
)α
· 1

21−α − 1
,

which is bounded by z0
2t−1 , provided that z0

2t > 2cα where cα
def= 1

1−α ·log2(21+α/(21−α−
1)).

We start by showing that the density of v-entries in individual rows and columns
hardly changes as long as each such row/column contains enough v-entries and the
partitions split them almost evenly. This assertion corresponds to stage (1) in the
motivating discussion.

LEMMA 4.5 (stage 1). Let v be a value in the range of f , and suppose that the
protocol uses column partitions satisfying Property (P1) w.r.t. the value v. Let Kx

denote the number of v entries in the original row x. Then, regardless of the players’
steps, if row x is in the residual matrix after the first i def= log2Kx rounds, then there
are at most ∆v residual v-entries in row x. (i.e., #v(x, Yi) ≤ ∆v). Furthermore, after
t < Kx rounds #v(x, Yt) ≤ ∆v · 2Kx−t.

Proof. The analysis uses the fact that the column partitions are v-balanced with
respect to each row. Using condition (1) of the almost unbiased property (Def. 4.1)
and Claim 4.4, we see that after the first s def= log2Kx − 4 log2 ∆ rounds the residual
row x has at most Kx

2s−1 = 2∆4 entries of value v. For the remaining r
def= 4 log2 ∆

rounds we use condition (2) of the almost unbiased property, to show that the number
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of v-entries in the row is at most ∆. This follows by considering r iterations of
condition (2), namely,

2∆4 ·
(

1
2

+
1
20

)4 log2 ∆

= 2 ·
(

1 +
1
10

)4 log2 ∆

= 2 ·∆4 log2(1+ 1
10 )

< 2 ·∆2/3

≤ ∆,

where in the last inequality we use δ ≥ 8 (and pv ≤ 1/2). The lemma follows.
As an immediate corollary, we get the following.
COROLLARY 4.6 (stage 1 for qv = pv). Let v ∈ Range(f), and suppose that

qv = pv. Suppose that the protocol uses column (resp., row) partitions satisfying
Property (P1) w.r.t. the value v. Then after the first n−log2(1/pv) rounds, the number
of v-entries in each residual row (resp., column) is at most ∆v (= δ · log 1/pv). This
statement holds regardless of the steps taken by the players.

Proof. Observe that qv = pv implies that each (original) row has pv · 2n entries of
value v, and apply Lemma 4.5.

When the number of v-entries in individual rows and columns is small, but not
too small, we’d like to assert something in the spirit of stage (2) of the motivating
discussion. Namely, that the density of v-entries in the entire matrix is preserved as
long as their total number is not too small and the partitions behave nicely w.r.t the
existing v-entries.

LEMMA 4.7 (stage 2). Let M < 2/pv. Consider an M -by-M matrix where no
row or column contains more than B v-entries. Suppose that the protocol is applied
to this matrix, using column and row partitions that satisfy Property (P2) w.r.t. the
value v. Then, after the first 1

2 log2M rounds, the number of v-entries in the residual
submatrix is at most (2B+ 1) ·∆v. This statement holds regardless of the steps taken
by the players.

Proof. The analysis uses only the fact that the row and column partitions are
v-balanced with respect to the standard coloring. (The upper bound on M implies
that this is the only way to satisfy Property (P2).) Note that the standard coloring,
being a minimum coloring, uses at most 2B + 1 colors since the underlying graph
has maximum degree ≤ 2B. Let α be a color. In each row and column there is at
most one v-entry of color α, hence each row/column partition approximately halves
the number of remaining v-entries of color α. Hence, using the same arguments as in
Lemma 4.5, we see that after 1

2 log2M rounds the residual matrix contains at most
∆v v-entries of color α. The lemma follows.

Finally, when the total number of v-entries in the residual matrix is small we
observe that v may be the output only if the input of the column player corresponds to
a residual column containing a v-entry. This corresponds to stage (3) in the motivating
discussion. Thus, using Corollary 4.6 and Lemma 4.7, we get the following.

COROLLARY 4.8 (advantage in case qv = pv). Let qv=pv for v ∈ Range(f). Sup-
pose that the protocol uses only partitions that satisfy Properties (P0), (P1) and (P2)
w.r.t. v. Then the protocol outputs v with probability at most O(∆2

v
√
pv)

(= O((δ log 1/pv)2√pv)), regardless of the row player’s steps.
Proof. Corollary 4.6 and Lemma 4.7 imply that after the first log2(pvN) +

1
2 log2(1/pv) rounds, the number of v-entries in the residual matrix is at most O(∆2).
If in all partitions the two parts have equal size, then the residual matrix has dimen-
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sion
√

1/pv-by-
√

1/pv. Property (P0) is applied to show that the residual submatrix
has size at least 1

2

√
1/pv-by- 1

2

√
1/pv. To this end we use Claim 4.4 and the observa-

tion that
√

1/pv > ∆4
v = (δ log2(1/pv))4, provided that pv is bounded above by some

constant. Such a bound on pv may be assumed, possibly increasing some constants
in the O-terms. Finally, we observe that the output of the protocol is v only if the
input of the column player specifies a column containing a v-entry in the residual
submatrix. The corollary follows.

Using “sufficiently random” partitions, the above bound can be improved to
O(
√
pv). For details see Theorem 4.27.

4.1.4. Analysis of the protocol: The general case — row classes. The
analysis of the general case (where qv may exceed pv) is more cumbersome. To facili-
tate the understanding we precede each technical step by a motivating discussion. As
before, we analyze the advantage of the row player towards some value v. Through-
out the analysis we introduce additional value-balance properties that the partitions
used in the protocol should satisfy for the analysis to proceed. Later in the paper
we discuss how to find such partitions and show that “slightly random” partitions do
have these properties.

We classify the rows by density and apply the analysis separately to each class.
Let ρv(x) denote the density of v-entries in row x of the original matrix; that is,

ρv(x) def=
|{y∈Y0 : f(x, y)=v}|

|Y0|
=

#v(x, Y0)
|Y0|

.(3)

By our assumption, pv
4 < ρv(x) ≤ qv, for every x ∈ X0, and the average of ρv, over

all x ∈ X0, equals pv. For 0≤ j ≤ log2(1/pv) + 1, define Rj as the class of all rows
with v-entry density between 2−j and 2−j−1; that is,

Rj
def= {x∈X0 : blog2(1/ρv(x))c=j}.(4)

Note that the last class, Rlog2(1/pv)+1, contains all rows with v-entry density smaller
than pv/2.

Clearly, the influence of the row player towards value v is bounded by the sum
of its influences (towards v) when restricting itself to inputs/rows of a certain class.
Recall that the row player behavior is always restricted (by our hypothesis that it is
not detected cheating) to sending a single bit in each round. The assumption that the
row player restricts itself to inputs/rows in a particular set means that its answers
must be consistent with some input in the set (i.e., in round i he may send σ only
if Xσ

i intersects the restricted set). The above is summarized and generalized in the
following claim.

CLAIM 4.9. For Z ⊆ X a set of rows, we let θZ be the probability for an outcome
of v, assuming that the actions of the row player are consistent with some row in Z,
but is otherwise free to choose any adversarial strategy. If (Z1, . . . , Zr) is a partition
of the set of rows, then the probability for the protocol to have outcome v does not
exceed

∑
i θZi .

Proof. The claim follows applying a union bound.
We now partition the row classes into two categories: heavy rows with density

above
√
pv and rows below this density. First, we bound the advantage of the row

player when it restricts itself to heavy inputs/rows. A simple counting argument
implies that there are at most

√
pvN heavy rows. We will consider the situation after

log2(
√
pvN) rounds of the protocol. Using an additional v-balance property, denoted
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P3, which asserts that the row partitions split almost evenly the set of heavy rows,
we will show that after log2(

√
pvN) rounds at most ∆ of the heavy rows remain in the

residual matrix and furthermore that each such row maintains its original v-density up
to a multiplicative factor of ∆. Loosely speaking, the row player can now choose only
between ∆ possible inputs/rows with probabilities of success that equal the density of
the residual row. Thus, the advantage of the row player (towards v) when restricting
itself to heavy rows is bounded by ∆2 · qv = O((log2(1/pv))2qv).

DEFINITION 4.10 (value-balance property P3). Let Xi and Yi be residual sets of
rows and columns and and let v ∈ Range(f). A row partition has Property (P3) (is
said to be v-balanced with respect to heavy rows) if it is at most ∆v-biased with respect
to the set of the (remaining) heavy rows (i.e., w.r.t. the set {x∈Xi : ρv(x)≥√pv}).

LEMMA 4.11 (advantage via heavy-row strategies). Suppose that the protocol is
performed using column and row partitions satisfying Properties (P0), (P1), and (P3)
w.r.t. the value v. Then, as long as the row player restricts itself to heavy rows and
the column player plays honestly, the output equals v with probability at most 2∆2

v ·qv.
Proof. Consider the situation after log2(

√
pvN) rounds of the protocol. Heavy

rows have at least
√
pvN entries of value v and so we will be able to apply Lemma 4.5

to these rows. Using Property (P1) and applying Lemma 4.5 to each heavy row, we
conclude that every remaining heavy row x contains at most ∆ · 2i v-entries, where

i
def= log2(ρv(x)N)− log2(

√
pvN)

≤ log2(qvN)− log2(
√
pvN)

= log2(qv/
√
pv).

(We are assuming that heavy rows exist, i.e., qv ≥
√
pv, whence i ≥ 0.) Thus, each

such heavy row contains at most ∆ · qv/
√
pv v-entries. Also, using Property (P3) and

an argument as in the proof of Lemma 4.5, it follows that the residual matrix has at
most ∆ heavy rows. Thus, the entire residual matrix contains at most ∆2 · qv/

√
pv

v-entries in heavy rows. Using Property (P0) we know that the residual matrix at
this stage contains at least 1

2

√
1/pv columns. Thus, by an argument as in the proof of

Corollary 4.8, the probability that the protocol terminates with a pair (x, y) so that
x is heavy and f(x, y)=v does not exceed

#v(H ∩Xi, Yi)
|Yi|

≤
∆2 · qv/

√
pv

1/(2
√
pv)

= 2∆2qv,

where H is the set of heavy rows and Xi × Yi is the residual matrix. The lemma
follows.

Having analyzed strategies where the row player confines itself to heavy rows, we
turn to strategies where it refrains from heavy rows. The analysis is split according
to the remaining row classes; that is, for every 1 ≤ j ≤ 1

2 log2(1/pv), we bound the
advantage of the row player assuming that it restricts itself to the class (of rows)
R

def= Rj+
1
2 log2(1/pv) that have density ≈ √pv2−j . By a counting argument,

|R| ≤ √pv2jN.(5)

Consider the situation after log2(
√
pv2−jN) rounds. Note that this corresponds to

stage (1) in the motivating discussion and thus we can apply Lemma 4.5 and assert
that after these log2(

√
pv2−jN) rounds no residual row of R has more than ∆ v-

entries. Using an additional v-balance property, denoted P4, which asserts that the
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row partitions split R almost evenly, we will show that after these log2(
√
pv2−jN)

rounds the residual matrix contains at most max{∆, 22j+1} rows of R.
DEFINITION 4.12 (value-balance property P4). Let Xi and Yi be residual sets of

rows and columns and v ∈ Range(f). A row partition has Property (P4) (is said
to be v-balanced with respect to row-density classes) if, for every j (1

2 log2(1/pv)≤
j≤1 + log2(1/pv)), it is at most ∆v-biased with respect to the set of the (remaining)
rows in Rj (i.e., w.r.t. the sets {x ∈ Xi : blog2 ρv(x)c = j}, for 1

2 log2(1/pv) ≤ j ≤
1 + log2(1/pv)).

LEMMA 4.13 (strategies restricted to R = Rj+
1
2 log2(1/pv) — the first rounds). Let

v ∈ Range(f), and suppose that the protocol uses row and column partitions satisfying
Properties (P0), (P1), and (P4) w.r.t. the value v. Then after the first i def= n − j −
1
2 log2(1/pv) rounds, the resulting Xi×Yi submatrix satisfies the following conditions,
regardless of the players’ steps:

1. each remaining row of R contains at most ∆v entries of value v (i.e., #v(x, Yi)
≤ ∆v, for every x ∈ R ∩Xi);

2. at most ∆v · 22j+1 rows of R remain (i.e., |R ∩Xi| ≤ ∆v · 22j+1);
3. the number of columns is at least 1

2 ·
2j√
pv

(i.e., |Yi| ≥ 1
2 ·

2j√
pv

).
Proof. Item (1) follows from Lemma 4.5 (using Property (P1)). Using Prop-

erty (P4), we derive item (2) as in the second part of the proof of Lemma 4.11.
Finally, item (3) follows using Property (P0).

For “small” j’s (say, j ≤ log2 ∆) we get into a situation as in the analysis of heavy
rows. Actually, the following applies to any j, but is useful only for j = O(log ∆v).

COROLLARY 4.14 (advantage via R = Rj+
1
2 log2(1/pv) strategies — simple anal-

ysis). Consider a protocol in which all column and row partitions satisfy Proper-
ties (P0), (P1), and (P4) w.r.t. the value v. Then, as long as the row player restricts
itself to rows in R and the column player plays honestly, the output equals v with
probability at most 2j+2∆2

v ·
√
pv.

Proof. Using Lemma 4.13 we infer that the residual matrix after i rounds has
at most ∆2 · 22j+1 v-entries in rows of R and at least 1

2 ·
2j√
pv

columns. Thus, the
probability that the column chosen by the column player has a v-entry in a residual
row of R does not exceed

#v(R ∩Xi, Yi)
|Yi|

≤ ∆2 · 22j+1

1
2 ·

2j√
pv

= 2j+2∆2√pv.

The corollary follows.
So far we dealt with heavy rows and the row classes Rj+

1
2 log2(1/pv) for “small”

j’s, j ≤ log2 ∆v. The rest of the analysis concentrates on row classes Rj+
1
2 log2(1/pv)

for j > log2 ∆v.

4.1.5. Analysis of the protocol: The general case — column subclasses.
Lemmas 4.11 and 4.13 summarize what we can infer by considering only row classes
defined by the density of v-entries. We learned that after i = n − j − 1

2 log2(1/pv)
rounds the resulting matrix has approximately 22j rows of the classR = Rj+

1
2 log2(1/pv)

with no more than ∆ v-entries in each such row. Thus, in total the resulting submatrix
has approximately 22j v-entries in rows of R. Had these v-values been distributed
evenly among the columns, then we could apply an argument analogous to Lemma 4.7
(corresponding to stage (2) in the motivating discussion). At the other extreme, if
these v-values are all in one column, then we should have further applied Lemma 4.5
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to this column. In general, however, the distribution of these v-entries may be more
complex and in order to proceed we classify columns according to the approximate
density of v-entries within each particular row class. Once this is done, the matrix is
split to submatrices such that the density of v-entries in each induced subcolumn is
about the same. Each such submatrix is easy to analyze and we can combine these
analyses to derive the final result.

Let ` def= 1
2 log2(1/pv). Recall that we are currently dealing with an arbitrary

R = Rj+`, where 1 < j ≤ `+ 1. For 0≤k ≤2j, let

Ckj
def= {y∈Y0 : blog2(1/µv(y,Rj+`))c=k},(6)

where µv(y,R) is the density of v-entries in the portion of column y restricted to rows
R, that is

µv(y,R) =
|{x∈R : f(x, y)=v}|

|R| .(7)

Columns having lower v-density within R (i.e., µv < 2−2j−1) are defined to be in
Cj = C2j+1

j and will be treated separately. The advantage of the row player towards
v when restricting its input to R is the sum, over all k, of the probabilities of the
following 2j + 2 events. For k = 0, . . . , 2j + 1, the kth event occurs if the input of
the column player happens to be in Ckj and the output of the protocol is v (when the
row player restricts its input to be in R). Thus, it suffices to bound the probability of
each of these 2j+ 2 events. We first observe that, for j = 0, . . . , l+ 1 and 0 ≤ k ≤ 2j,

|Ckj | ≤
#v(Rj+`, Y0)

miny∈Ckj {#v(Rj+`, y)} ≤
|Rj+`| · (√pv2−j ·N)

2−k−1 · |Rj+`| = 2k+1−j√pv ·N.(8)

Thus, the probability that the input of the column player is in Ckj is bounded by
2k+1−j√pv. This by itself provides a sufficiently good bound for the case k ≤ j and
so it is left to consider the case where j < k ≤ 2j and to deal with the columns in Cj .
We start with the latter. (Warning: the next two paragraphs consist of an imprecise
motivating discussion; a rigorous treatment follows.)

Considering the submatrix R × Cj and using item (2) of Lemma 4.13 we know
that, after i = n− j − ` rounds, each residual row in this submatrix contains at most
∆ v-entries. Assuming that the row partitions split the v-entries in the subcolumn of
this submatrix almost evenly (as postulated in an additional value-balance property,
denoted P6), we conclude that residual subcolumns of the submatrix contain at most
∆ v-entries (note that there are at most 22j+1 rows of R and that the v-density of
columns in R × Cj is at most 2−2j−1). Thus, we can apply an analysis analogous to
stage (2) in the motivating discussion. It follows that after an additional j rounds,
the resulting submatrix contains at most ∆2 v-entries. At this stage, there are still
` = 1

2 log2(1/pv) rounds to go so we conclude that the probability that the column
player’s input is in Cj and the output is v (when the row player restricts its input to
be in R) is at most ∆2√pv. This argument will be made precise as a special case of
the argument for Ckj , k > j.

We now consider the submatrix R × C, where C def= Ckj for k > j. Again, by
Property (P6) we expect each residual subcolumn to contain 2−k · 22j entries of value
v. Assuming that the column partitions split C almost evenly, as postulated in yet
another value-balance property (P5 below), and using equation (8), we expect the
residual submatrix to contain at most 2k+1 columns of Ckj (and, recall, 22j rows of R).



522 O. GOLDREICH, S. GOLDWASSER, AND N. LINIAL

Thus, the next 2j − k < k rounds are expected to preserve the density of C columns
in the residual matrix as well as the density of v-entries in residual subcolumns of the
submatrix R × C, provided that Properties (P5) and (P6) hold. Thus, at this point
(after a total of (n− j − `) + (2j − k) rounds) each remaining row of R is left with at
most ∆ entries of value v and each remaining column of C has at most ∆ entries of
value v in the portion of the rows of R. Furthermore, we expect the residual R × C
to have 22j−(2j−k) = 2k rows and 2k−(2j−k) = 22k−2j columns. We can now apply
an argument analogous to Lemma 4.7 (corresponding to stage (2) in the motivating
discussion). To this end we introduce the last value-balance property, denoted P7,
which analogously to (P2) asserts that, with respect to each color in a standard
minimum coloring of the v-entries in R × C, the row (resp., column) partitions split
almost evenly the set of rows (resp., columns) having v-entries colored by this color.
Finally, consider the situation after another additional k− j rounds. Using (P7) in an
argument analogous to Lemma 4.7, we show that after these k−j rounds, the residual
R × C submatrix has at most ∆2 v-entries. Furthermore, this residual submatrix is
expected to have 2k−(k−j) = 2j rows and 2(2k−2j)−(k−j) = 2k−j columns. Thus,
assuming that the column player’s input, denoted y, is in C the probability that it
falls in one of the residual columns which has a v-entry in the R-portion is at most
∆2/2k−j . It follows that the probability for the input column to be in Ckj and the
output be v (when the row player restricts its input to R) is at most

∆2

2k−j
· 2k−j√pv = ∆2 · √pv.

Thus, the claimed bound follows also in this case.
We now turn to a rigorous analysis of the advantage of the row player in executions

where it restricts itself to inputs in R = Rj+` and the input column happens to fall
in C

def= Ckj , for some k > j > 0. (Recall that for k ≤ j, equation (8) by itself asserts
that input column falls in Ckj with probability at most

√
pv.)

DEFINITION 4.15 (value-balance properties P5, P6, and P7). Let Xi and Yi be
residual sets of rows and columns. Let (X0

i , X
1
i ) be a row partition, (Y 0

i , Y
1
i ) be a

column partition, and v ∈ Range(f). We consider the following three properties.
Property (P5). The column partition (Y 0

i , Y
1
i ) is v-balanced with respect to

column subclasses if, for every j, k satisfying 0 < j < k ≤ 2j ≤ 2` + 2, the
partition is at most ∆v-biased with respect to the set of columns in Ckj (i.e.,
w.r.t. the sets Yi ∩ Ckj , for each j, k s.t. 0 < j < k ≤ 2j ≤ 2`+ 2).

Property (P6). For every j and every y ∈ Yi, either #v(Xi∩Rj+`,y)
|Yi| ≤ pv

4∆v
or

the row partition (X0
i , X

1
i ) is v-balanced with respect to the jth subcolumn y

in the sense that the partition is at most ∆v-biased with respect to the set of
rows in Rj+` having v-entries in y (i.e., w.r.t. {x∈Xi ∩ Rj+` : f(x, y) = v},
for each y ∈ Yi and j s.t. 0 < j ≤ `+ 1).
Property (P7). Either |Yi| ≥ 4/pv or the partition (Y 0

i , Y
1
i ) is v-balanced with

respect to the standard coloring of subclasses in the following sense. For every
j, k as in (P5), consider a standard minimum coloring ξ, of the v-entries in
(Xi∩Rj+`)× (Yi∩Ckj ) so that every two v-entries in the same column or row
are colored differently. For every color α, the partition is at most ∆v-biased
with respect to the set of columns containing a v-entry of color α (i.e., w.r.t.
the sets {y∈Yi ∩ Ckj : ∃x∈Xi ∩ Rj+` s.t. f(x, y) =v and ξ(x, y) =α}, for each
j, k, and α.)
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DEFINITION 4.16 (the (j, k)-event). Let 0 < j ≤ ` + 1 and 0 ≤ k ≤ 2j + 1. Fix
an arbitrary strategy in which the row player restricts its input to rows in Rj+`. The
(j, k)-event (or kth event) is said to occur if both the input column is in Ckj and the
output is v.

LEMMA 4.17 (bounding individual events). Let 0 < j ≤ `+ 1 and 0 ≤ k ≤ 2j+ 1.
Suppose that the protocol uses partitions which satisfy Properties (P0), (P1), (P4),
(P5), (P6), and (P7). Then, for any strategy in which the row player restricts its
input to rows in Rj+`, the probability of the (j, k)-event is at most 5∆4

v ·
√
pv.

We remark that a lower power of ∆v can be obtained by a more careful analysis.
Proof. As observed above, the bound holds in case k ≤ j, since in this case

equation (8) implies that the column player’s input is in Ckj with probability at most√
pv. We thus turn to the case j < k ≤ 2j + 1.

First, we consider the situation after i def= (n − j − `) + (2j − k) = n + j − k − `
rounds. Note that j < k ≤ 2j + 1 implies i ≥ (n − j − `) − 1 ≥ n − log2(2/pv)
and i < n − `. We first bound the number of v-entries in the residual subrows and
subcolumns of R× C.

Claim 4.17.1. Each remaining row of R def= Rj+` contains at most ∆ v-entries;
namely, #v(x, Yi) ≤ ∆, for every x ∈ R ∩Xi.

Proof. Since i ≥ (n− j − `)− 1, we can apply Lemma 4.13, and the claim follows
by item (1).

Claim 4.17.2. Each remaining column of C def= Ckj contains at most ∆ entries of
value v within its R-portion; namely, #v(R ∩Xi, y) ≤ ∆, for every y ∈ C ∩ Yi.

Proof. We first bound the number of v-entries in the R-portion of each column
y ∈ C. By combining the definition of C and equation (5), we get

#v(R, y) ≤ 2−k · |R|
≤ √pv · 2j+n−k

= 2j+n−k−`

= 2i.

We now wish to apply Property (P6) and argue that #v(R∩Xi, y) ≤ ∆·#v(R, y)·2−i,
but we need to be careful since Property (P6) is useful only when #v(R ∩ Xt, y) ≥
pv
4∆ · |Yt|. Thus, before applying Property (P6), we consider the simple case in which
there are many v-entries in the R-portion of y; namely, #v(R, y) ≥ pv · |Y0|. Using
Properties (P6) and (P0), we infer inductively that the ratio #v(R ∩ Xi, y)/|Yi| is
maintained after r < i rounds. In the induction step we assume that the ratio after
r rounds is at least pv/2 and applying Proposition (P6) infer the same for r + 1
rounds, provided #v(R∩Xr, y) ≥ ∆4. In the last (≈ 4 log2 ∆) rounds we maintain as
invariant the assumption that the ratio is at least pv/∆v. We conclude (analogously
to Lemma 4.5) that #v(R ∩ Xi, y) ≤ ∆ · 2i−i = ∆ as claimed. Yet, all the above
is valid only in case the initial number of v-entries in the subcolumn is large enough
(i.e., #v(R, y) ≥ pv · |Y0|), which need not be the case in general. Intuitively, this
cannot be a problem since fewer v-entries in the subcolumn can only help. Formally,
we proceed as follows. Let y0

def= |Y0| and z0
def= #v(R, y). Consider i iterations of the

following rule:
• If yt > ∆4 then set yt+1 to be in the interval [(yt/2)± y3/4

t ]. If yt > ∆ then
set yt+1 to be in the interval [(yt/2)± (yt/20)]. Otherwise, set yt+1 to be in
the interval [0, yt].
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• If zt > (pv/∆) ·yt then set zt+1 analogously to the way yt+1 is set. Otherwise,
(i.e., zt ≤ (pv/∆) · yt), set zt+1 to be in the interval [0, zt].

The above process corresponds to the decline (with t = 0, . . . , i) of |Yt| (represented
by yt) and #v(R∩Xt, y) (represented by zt), as governed by Properties (P0) and (P6).
In case the initial ratio z0/y0 is sufficiently large, say at least pv/∆, Claim 4.4 implies
that zi ≤ ∆. As far as the yt’s are concerned, Claim 4.4 can be applied to yield
yi ≤ ∆ · 2`+k−j , which by k ≤ 2j + 1 and j ≤ `+ 1 yields yi ≤ 2∆ · (1/pv). Thus, it
is clear that zi is bounded by the maximum of the bound obtained in the simple case
(i.e., ∆) and (pv/∆) · yi ≤ 2. The claim follows.

We are now in a situation analogous to the end of stage (1) in the motivating
discussion, except that the bounds on v-entries hold with respect to the residual
R × C submatrix (rather than to the entire residual matrix). Our goal is to now
apply a process analogous to stage (2) in the motivating discussion. To this end we
first consider a minimum coloring of the v-entries in this residual submatrix (i.e., a
coloring in which no v-entries in the same row/column are assigned the same color).
Using Claims 4.17.1 and 4.17.2, we first observe that this coloring requires at most
2∆ + 1 colors (since the degrees in the induced graph do not exceed 2∆). Next we
derive an upper bound on the size of independent sets in the graph, (i.e., on individual
color classes in this coloring). An independent set in this graph meets every row and
column at most once, so its cardinality cannot exceed min{|R ∩Xi|, |C ∩ Yi|}.

Claim 4.17.3. min{|R ∩Xi|, |C ∩ Yi|} ≤ 2∆ · 22(k−j).
Proof. Using Property (P4) and equation (5), we get |R∩Xi| ≤ ∆ · 2(n+j−`)−i =

∆ · 2k, so the claim holds when k ≥ 2j − 1 and in particular for the class Cj =
C2j+1
j . Likewise, using Property (P5) and equation (8) and assuming k ≤ 2j, we get
|Ckj ∩ Yi| ≤ ∆ · 2(n+k+1−j−`)−i = ∆ · 22(k−j)+1. This proves the claim for the range
k ≤ 2j.

We now consider an execution of the next (k−j) rounds. Using Property (P7), we
proceed analogously to Lemma 4.7. First, we upper bound the size of each residual
color class by ∆ · 2∆22(k−j)

22(k−j) = 2∆2 (essentially, its size after i rounds divided by a
factor of 2 for each of the 2(k − j) steps in the next k − j rounds). Adding up the
bounds for all color classes, we obtain a bound on the total number of v-entries in the
resulting R× C submatrix; namely,

#v(Xi+k−j ∩R, Yi+k−j ∩ C) ≤ (2∆ + 1) · 2∆2 < 5∆3.(9)

We are now in a situation analogous to the end of stage (2) in the motivating discus-
sion. We note that till now i+ (k− j) = n− ` rounds were performed. We distinguish
two cases.

Case 1. If |C| < ∆3√pv · N then the bound on the (j, k)-event is obvious by
equation (8) (as in case k ≤ j).

Case 2 (the interesting case). Suppose |C| ≥ ∆3√pv · N . In this case we use
Property (P5) to infer that |C ∩ Yn−`| ≥ 1

∆ ·
|C|√
pvN

. Thus, using equation (9), the
probability for the (j, k)-event is at most

|C|
N
· #v(Xi+k−j ∩R, Yi+k−j ∩ C))

|C ∩ Yn−`|
≤ |C|

N
· 5∆3

|C|/(∆√pvN)

= 5∆4 · √pv.

The lemma follows.
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Combining Lemmas 4.11 and 4.17, we get the following.
THEOREM 4.18 (advantages in the general case). Let f be an arbitrary bivariate

function and suppose the generic protocol is performed with row and column partitions
satisfying Properties (P0) through (P7). Then, for every value v in the range of f , if
one party plays honestly then, no matter how the other player plays, the outcome of
the protocol is v with probability at most O(log6(1/pv) ·max{qv,

√
pv}).

Proof. Just sum up the bounds for the probabilities of the `2 events corresponding
to the advantage from “nonheavy” strategies (provided by Lemma 4.17) and add
the bound on the advantage from heavy strategies provided by Lemma 4.11. (The
summation over the strategies is an upper bound, whereas summation over the events
corresponding to different column subclasses is exact.)

We stress that some logarithmic factors (but not all) can be eliminated by a more
careful analysis.

4.1.6. Digest of the value-balanced properties. The value-balance prop-
erties, referred to in Theorem 4.18, are tabulated in Table 1. Property (P2) is a
specialization of Property (P7) for the case qv = pv and is not used in the proof of
Theorem 4.18 (but rather in the proof of Corollary 4.8). Properties (P2) and (P7)
differ from all other value-balance properties in that their definition depends on a
standard coloring of a graph induced by the current residual matrix Xi × Yi. In
particular, the sets relevant to these properties in different rounds vary in size. In
contrast, we stress that sets relevant to the other properties reduce to about a half
with every round. This “irregularity” of Properties (P2) and (P7) introduces dif-
ficulties in the subsequent subsections. To compensate for these difficulties, these
properties were defined to hold vacuously as long as the residual matrix is “large”
(i.e., Ω(1/pv)). As we pointed out, this convention does not affect the analysis, since
Properties (P2) and (P7) are applied only to “small” residual matrices. For similar
reasons, Property (P6) which refers to many (i.e., |Yi|) sets which may be very small
is also defined to hold vacuously in case the number of sets is much larger than the
size of these sets. Note that all other properties either apply to fewer (i.e., poly(`))
sets or refer to relatively big sets. Specifically, Properties (P3), (P4), and (P5) apply
to poly(`) sets. On the other hand, whenever Properties (P0) and (P1) are applied
to many, say M , sets each of these sets has cardinality at least M/2 and (pv/4) ·M ,
respectively.

4.2. On the existence of value-balanced partitions. In this subsection we
prove the existence of partitions that have all the value-balanced properties used in
the previous subsection. We first bound the probability that a random partition is not
balanced with respect to a specific set. In the analysis we use an unspecified constant,
denoted c1. The constant δ (in the definition of ∆v) is determined in terms of c1 (in
fact δ = O(c1) will do, c1 ≥ 2 suffices for the results of the current subsection and
c1 ≥ 10 suffices for all the results of the entire section).

LEMMA 4.19. Let S ⊆ U be finite sets, with |S| = k. Then, for every c1 > 0 there
exists δ, so that a uniformly selected bipartition of U is ∆v-biased with respect to S
with probability ≥ 1− (pv/k)c1 .

Proof. We consider two cases corresponding to the two conditions of Defini-
tion 4.1. By Chernoff’s Bound, the probability that a uniformly selected partition
fails condition (1) in Definition 4.1 (with respect to a set S with k ≥ ∆4

v) does not
exceed

2 exp{−2(k−1/4)2 · k} = 2 exp{−2k1/2}.(10)
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TABLE 1
Value-balanced properties (recall ` def= (1/2) log2(1/pv)).

stated Description of the property: Number of sets Applicable
for the partition approximately halves the number of for M ×M matrix for

P0 col columns 1 all M
P1 col columns with v-entries in row x, per row M all M
P2 col columns with v-entries in color φ, per color ≤ 2M + 1 M ≤ 2/pv
P3 row heavy rows 1 all M
P4 row rows of approximate weight 2−j , per j = 0, . . . , ` ≤ ` all M
P5 col columns of a weight class inside a row class, < 2`2 all M

per row class and column subclass
P6 row rows with v-entries in subcolumn, M · ` all M

per column and row class
(provided residual subcolumn is sufficiently dense)

P7 col columns with v-entries in color φ, ≤ (2M + 1) · `2 M ≤ 4/pv
per color in rectangle

Using k ≥ (δ log2(1/pv))4, we upper bound equation (10) by

exp{−k1/2} · exp{(δ · log2(1/pv))2},

which for sufficiently large δ (or 1/pv) yields the desired bound (of (pv/k)c1). Similarly,
the probability that condition (2) is not satisfied by a random partition is bounded
by

2 exp{−2(1/20)2 · k} = 2 exp{−k/200}.(11)

Using k > δ log2(1/pv) and δ ≥ 400c1, we upper bound equation (11) by

exp{−k/400} · exp{c1 log2(1/pv)},

which for sufficiently large δ (or 1/pv) yields again the desired bound.
PROPOSITION 4.20 (existence of value-balance partitions). Let the generic pro-

tocol run for i rounds, using only partitions which satisfy all value-balance properties
w.r.t. all values in Range(f). Let Xi× Yi be the residual matrix after these i rounds.
Then there exist a row partition (of Xi) and a column partition (of Yi) that satisfy all
value-balance properties w.r.t. all values. Furthermore, for every v ∈ Range(f), all
but a pc1−1

v fraction of the possible partitions satisfy all v-balance properties.
Proof. We consider only row partitions, the proof for column partitions being

identical. Let v ∈ Range(f). For |Xi| < ∆v every nontrivial partition will do,
so henceforth we assume |Xi| ≥ ∆v. Lemma 4.19 yields an upper bound on the
probability that a uniformly chosen partition of Xi violates one of the v-balance
properties. For each property, we multiply the number of sets considered by the
probability that a uniformly selected bipartition of Xi is not ∆v-biased with respect
to an individual set. An obvious (lower) bound on the size of an individual set
considered is ∆v, but in some cases better lower bounds hold. For each of the eight
properties, we prove an upper bound of pc1−1

v /8 on the probability that a uniformly
chosen partition violates the property.

• Property (P0) is violated with probability at most |Xi| ·(pv/|Xi|)c1 which can
be bounded by pc1−1

v /8.
• Property (P1) is violated with probability at most |Yi|·maxy∈Yi{(pv/#v(Xi, y))c1}.

In case |Yi| < ∆/pv, this probability is easily bounded by (pv/∆v)c1−1 <
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pc1−1
v /8. Otherwise, we argue as follows. Since Property (P1) was satisfied

in previous rounds, it follows (as in Lemma 4.5) that

#v(Xi, y) ≥ 2−i−1 ·#v(X0, y)

≥ pv
8
· |Xi|

and so Property (P1) is violated with probability at most |Yi| · (8/|Xi|)c1 .
Using Property (P0) for the previous rounds we get |Xi| ≥ |Yi|/4 and again
obtain a bound of O((pv/∆v)c1−1) < pc1−1

v /8.
• For Property (P2), we need only consider the case |Xi| < (2/pv). In this

case, Property (P2) is violated with probability at most (|Xi| + |Yi| + 1) ·
(pv/∆v)c1 which is bounded by O(pc1−1

v /∆c1
v ) < pc1−1

v /8. Property (P7) is
dealt similarly, but the bound here is O(pc1−1

v /∆c1−2) < pc1−1
v /8.

• For Property (P6) we need to consider only j ≤ ` + 1 and y ∈ Yi such that
#v(Rj+` ∩Xi, y) ≥ max{∆v, (pv/4∆v) · |Yi|}. Let us denote the set of these
pairs by Pi. Then, Property (P6) is violated with probability at most

∑
(j,y)∈Pi

(
pv

#v(Rj+` ∩Xi, y)

)c1
≤
(pv

∆

)c1−1
·
(
|Pi| ·

pv
(pv/4∆v) · |Yi|

)

≤
(pv

∆

)c1−1
· (`+ 1) · |Yi|
|Yi|/4∆

<
pc1−1
v

8
.

• For the remaining properties (i.e., (P3), (P4), and (P5)) we have a total of
O(log2(1/pv)) sets and so the bound holds easily.

Thus, the probability that a random partition of Xi violates some property with
respect to the value v is at most pc1−1

v . The main claim of the proposition follows by
summing the bounds obtained for all possible v’s and using c1 ≥ 2.

Combining Theorem 4.18 and Proposition 4.20, we get the following.
COROLLARY 4.21 (existence of a protocol meeting the lower bound). Let f be as in

Theorem 4.18. Then, there exists a (deterministic) two-party protocol for computing
the function f , so that for every v ∈ Range(f), if one party plays honestly, then the
outcome of the protocol is v with probability at most O(log6(1/pv) ·max{qv,

√
pv}).

4.3. Efficient protocols meeting the lower bounds. The protocols guaran-
teed by Corollary 4.21 are not efficient. In particular, merely specifying the partitions
used by the protocol takes space that is exponential in length of the inputs, not to
mention that the proof is nonconstructive and that a naive construction would require
double exponential time. An efficient implementation of the protocols is achieved by
using partitions which can be specified by polynomially many bits. These partitions
will not be hardwired into the protocol but rather selected online by the two parties.
Namely, at the outset of each step, the parties perform a sampling protocol to select
a partition for that step. The partition is specified by an mth degree (m = poly(n))
polynomial over the field F

def= GF (2n) and a fixed partition of the elements of F
into two equal parts F 0 and F 1. For example, suppose polynomial P (over F ) is
chosen to specify a partition of Yi, then Y σi is defined as the set of all points y ∈ Yi
satisfying P (y)∈Fσ. This plan is materialized via a two-party protocol for sampling
these partitions and a proof that, with probability at least 1 − Pv, every partition
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selected (for the generic protocol) by the sampling protocol satisfies all v-balance
properties. To this end we first bound the probability that, for an appropriately cho-
sen m = poly(n), a random mth degree polynomial induces a partition that fails to
satisfy some v-balance properties. Next, we present a two-party protocol for sampling
l-bit strings and bound the advantage of each party towards any set as a function of
the density of that set.

Terminology. Partitions induced by (δn)4-degree polynomials are hereafter called
polynomial partitions. We modify these partitions so that they are never trivial (e.g.,
by replacing each trivial partition by a fixed nontrivial partition). Recall that Prop-
erty (P0) forbids trivial partitions, except if the universe is a singleton. The modifi-
cation is introduced to guarantee this.

4.3.1. Bounding the probability of nonbalanced polynomial partitions.
We start by bounding the probability for a random polynomial partition to fail some
v-balance property.

LEMMA 4.22. For every c1 > 0 there exists δ, so that for every set S of cardinality
k, a uniformly selected polynomial partition is not ∆v-biased with respect to S with
probability at most (pv/k)c1 .

Proof. The modification described in the terminology (above) can only decrease
the probability that a partition is not ∆-biased (w.r.t. any set S). Thus, it suffices to
analyze the distribution of unmodified polynomial partitions.

A 2tth moment argument easily shows that if x1, x2, . . . , xk are m-wise indepen-
dent random variables uniformly distributed in {0, 1} then Prob(|

∑k
i=1 xi − k

2 | >
B) < (

√
kt
B )2t, for every t≤m/2. Therefore, the probability for a uniformly chosen

polynomial partition to fail condition (1) in Definition 4.1 does not exceed(√
k · t
k3/4

)2t

=
(

t

k1/4

)2t

(12)

for any t ≤ (δn)4/2. We now use equation (12) with two different settings for t. First
we set t = ∆v/2 (since pv ≥ 2−n, it follows that ∆v ≤ δ · 2n and this t is indeed
smaller than (δn)4/2) and using k ≥ ∆4, we bound equation (12) by(

∆v/2
∆v

)∆v

= pδv < p2c1
v ,

where the last inequality comes from δ ≥ 2c1. Secondly, we set t = 8c1, and bound
equation (12) by (

8c1
k1/4

)16c1

=
(

(8c1)8

k2

)2c1

<
1
4
· k−2c1 ,

where we have used k ≥ ∆4 ≥ 4 · (8c1)8. Multiplying these two bounds, we bound
equation (12) by √

p2c1
v · k

−2c1

4
=

1
2
· (pv/k)c1

as desired. To bound the probability for failure in condition (2), note that for k≤∆4

we have, k ≤ (δn)4 (as previously observed ∆v ≤ δn). Thus, a uniformly selected
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polynomial partition splits k elements exactly as a totally random partition and
so the bound obtained for this case (i.e., for k ≤ ∆4) in Lemma 4.19 holds also
here.

PROPOSITION 4.23 (polynomial-partition satisfy value-balance properties). Fix
v ∈ Range(f), and consider an execution of the generic protocol with uniformly se-
lected polynomial partitions. Let πi be the probability that the first failure of some
v-balance property occurs on the ith round. Then,∑

i≥1

4
√
πi ≤ O(∆v · pv).

The mysterious choice of the 4th roots will be clarified when we apply the propo-
sition (in the proof of Theorem 4.27).

Proof. It suffices, of course, to consider only row partitions. Let πi,t be the
probability that our first failed row partition occurred in round i and that Property
(Pt) was violated (for some 0 ≤ t ≤ 7 and i ≥ 1). Clearly,

∑
i≥1

4
√
πi ≤

∑
i≥1

4

√√√√ 7∑
t=0

πi,t

≤
7∑
t=0

∑
i≥1

4
√
πi,t.

So it remains to bound,
∑
i≥1

4
√
πi,t, for each t = 0, . . . , 7. Analogously to the proof of

Proposition 4.20, we use Lemma 4.22 to upper bound the probability that a uniformly
chosen polynomial partition violates one of the v-balance properties. (Again, for
each property, we multiply the number of sets considered by the probability that a
uniformly selected polynomial partition is not ∆v-biased with respect to an individual
set. An obvious (lower) bound on the size of an individual set considered is ∆v, but
in some cases better lower bounds hold). We now assume c1 ≥ 10.

• We upper bound the probability that Property (P0) is violated for the first
time in the ith round by |Xi−1| · (pv/|Xi−1|)c1 . Letting xj := |Xj |, we have

πi,0 ≤ xi−1 · (pv/xi−1)c1 ,(13)
where xj ≥ max{∆, |X0|/2j−1},(14)

where the lower bound on xj follows, since Property (P0) held in the previous
rounds. Furthermore, if Property (P0) held in all first n rounds, then |Xn| ≤
∆ and henceforth every nontrivial partition satisfies all properties vacuously.
Therefore, ∑

i≥1

4
√
πi,0 =

n∑
i=1

4
√
πi,0

≤
n∑
i=1

4

√
xi−1 ·

(
pv
xi−1

)c1
<

n∑
i=1

pv
xi−1

< pv ·
n∑
i=1

2i+2

2n
,
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where the last inequality uses the lower bounds for the xj ’s. It follows that∑
i≥1

4
√
πi,0 = O(pv).

• Adopting the analysis in the proof of Proposition 4.20, we know that the prob-
ability that the first failure is with Property (P1) in round i is at most 4|Xi−1|·
(pv/|Xi−1|)c1 . Using the same analysis as above, we conclude

∑
i≥1

4
√
πi,1 =

O(pv).
• For Properties (P2) and (P7), we need only consider rounds i so that |Xi| <

(2/pv). Using the analysis in the proof of Proposition 4.20, we bound the
probability that the partition in such a round violates Property (P2) (resp.,
(P7)) by O(pc1−1

v /∆c1
v ) (resp., O(pc1−1

v /∆c1−2)). The bound on
∑
i≥1

4
√
πi,t,

for t = 2, 7, follows, since there are at most ∆ such rounds.
• Following the analysis in the proof of Proposition 4.20, we consider for Prop-

erty (P6) only j ≤ ` + 1 and y ∈ Yi such that #v(Rj+` ∩Xi, y) ≥ max{∆v,
(pv/4∆v) · |Yi|}. Let us denote the set of these pairs by Pi. The probability
that our first violation is on round i and Property (P6) is being violated, is
at most∑
(j,y)∈Pi

(
pv

#v(Rj+` ∩Xi, y)

)c1
≤ |Pi| ·

(pv
∆

)(c1+1)/2
·
(

pv
(pv/4∆v) · |Yi|

)(c1+1)/2

≤ ((`+ 1) · |Yi|) ·
(pv

∆

)4
·
(

4∆
|Yi|

)5

<

(
∆v · pv
|Yi|

)4

.

Using the same analysis as for Property (P0), we obtain
∑
i≥1

4
√
πi,6 < ∆v ·pv.

• For the remaining properties (i.e., (P3), (P4), and (P5)) we have a total
of O(log2(1/pv)) sets and so we can handle each of these sets separately.
Consider, for example, the set Rj+` from the definition of Property (P4).
The row partition of round i + 1 violates the balance property on this set
with probability at most ( pv

|Rj+`∩Xi| )
c1 . Setting xi

def= |Rj+` ∩ Xi|, we can
apply the same analysis as applied to equation (13), except that here we use
Property (P4) for the previous rounds. The desired bound for

∑
i≥1

4
√
πi,t

follows, for t = 3, 4, 5.
Having shown that

∑
i≥1

4
√
πi < ∆v · pv, for each t = 0, . . . , 7, the proposition fol-

lows.

4.3.2. A protocol for string sampling. We now present a two-party protocol
for sampling l-bit strings and bound the advantage of each party towards any set as
a function of the set’s density. The protocol is a simplification of the protocol for
computing a function. The parties proceed in l rounds. In each round one party
should select a pseudorandom partition of the residual sample space and the other
party should flip a coin to select a side of this partition. In the next round the parties
switch roles. All partitions selected by each party must divide the residual space
into two sets of equal cardinality. Specifically, the partition is defined by a linear
combination of the bits in the representation of the sample point. Following is the
code of the protocol (the parties are called P0 and P1).

Round i:
• Pi mod 2 uniformly selects an l-dimensional binary vector vi, which is lin-

early independent of the vectors used in previous rounds, and sends vi
to the other party.
• P(i+1) mod 2 uniformly selects σi∈{0, 1} and sends it to the other party.
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Intuition: The residual sample space after round i consists of all l-dimensional
binary vectors x so that < x, vj > = σj for every j ≤ i (< ·, · > is mod-2
inner product, and this residual set is an affine subspace).

PROPOSITION 4.24 (analysis of the two-party sampling protocol). Let S ⊆ {0, 1}l

be arbitrary and let p def= |S|/2l. If one of the parties that participate in the above
protocol plays honestly, then the probability for the protocol’s outcome to be in S is at
most O(p

1
4 ).

Proof. Let Ui denote the residual sample space after round i; namely,

Ui
def= {x :< x, vj > = σj ∀j≤ i}.

Let Si
def= S ∩ Ui denote the residual target set (U0 = {0, 1}l and S0 = S). We want

to consider the cardinality of Si as i grows (i.e., the execution proceeds) and treat
differently “small” and “large” Si. For “small” Si we bound the probability of hitting
Si as |Si| times the probability of hitting any specific element. If Si is “large,” then
with sufficiently high probability |Si+1| ≈ |Si|/2 and hence the density, |Si|/|Ui|, is
approximately preserved. Details follow.

The following three claims do not depend on the residual sample space Ui. Thus,
Si (the residual target set after i rounds) can be considered fixed, too.

Claim 4.24.1. If the (i+ 1)st partition is chosen by an honest player, then, with
probability at least 1− |Si|−

4
5 :

|Si|
2
− |Si|

9
10 < |Si+1| <

|Si|
2

+ |Si|
9
10 ,

regardless of the choice of σi+1.
Proof. By hypothesis, vi+1 is uniformly selected among the vectors which are

linearly independent of v1, . . . , vi. Instead, let us select vi+1 uniformly at random
from the entire space Zl2. The additional partitions come from vi+1 in the linear span
of (v1, . . . , vi), and thus induce a trivial partition on Ui, so the modified partitioning
procedure is only less likely to yield good partitions.

We show that with very high probability, even the partition induced by a uni-
formly chosen vector is quite balanced. For any σ ∈ {0, 1}, we consider random
variables ζs, (s ∈ Si) where ζs = 1 if < s, vi+1 >= σ and 0 otherwise. Since vi+1
is selected uniformly, each ζs is uniformly distributed in {0, 1}. Furthermore, these
random variables are pairwise independent, as long as |Ui| ≥ 2 (i.e., the protocol did
not terminate). Thus, we have

Prob

(∣∣∣∣∣∑
s∈Si

ζs −
|Si|
2

∣∣∣∣∣ ≥ |Si| 9
10

)
<
|Si|
|Si|2·

9
10

and the claim follows.
On the other hand, the following claim is obvious.
Claim 4.24.2. If σi+1 is selected by an honest player, then the expected cardinality

of Si+1 is |Si|/2.
The probability of hitting Si is bounded by |Si| times the probability of hitting

any specific element of Si, so we have the following.
Claim 4.24.3. With the above notation, the probability that the output of the

protocol is in S (or, equivalently, in Si) does not exceed |Si| · 2−(l−i−1)/2.
Proof. Clearly |Ui| = 2l−i and there remain r

def= l − i rounds to termination,
of which σ will be chosen by an honest player at least br/2c times. Any s ∈ Si
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survives each such round with probability 1
2 , and is the output with probability at

most ·2−br/2c, as claimed.
In case |S| < p−

1
2 the proposition follows by using Claim 4.24.3; namely, the

probability for output in S is bounded by

|S0| · 2−l/2 =

√
|S| · |S|

2l

=
√
|S| · p

< p
1
4 .

So in what remains we consider the case |S| ≥ p− 1
2 . Let the protocol be executed for

t
def= log2 |S|− 1

2 log2(1/p) ≥ 0 rounds. In the rest of the proof we essentially show that,
at this stage, |St| ≈ p−

1
2 . Using Claim 4.24.3 at this point, we obtain (again) the upper

bound of |St|·2−(l−t)/2 = p
1
4 (using l−t = l−log2 |S|+ 1

2 log2(1/p) = (1+ 1
2 )·log2(1/p)).

We assume, without loss of generality, that the honest party picks the partitions
at the even rounds. Also, there is no loss in assuming that his opponent plays a pure
(i.e., deterministic) strategy: since the honest party’s strategy is fixed, the adversary’s
optimal move maximizes his expected payoff. On even-numbered rounds he selects
one side of a partition presented by the honest player, while on round 2i+1 he selects
a partition that is determined by a function Πi. Formally, each of his moves is a
function of the history of the execution, but this whole history is encoded by the
current residual sample space. Thus, we may view each Πi as a mapping Πi : 2U 7→
2U , where U2i−2, the residual sample space after 2i − 2 rounds is partitioned into
(Πi(U2i−2), U2i−2 − Πi(U2i−2)). Having fixed the adversary’s strategy, the residual
sample space after j rounds, Uj is a well-defined random variable. The following
two sequences of random variables, depend now only on the coin tosses of the honest
party:

1. πi is the cardinality of S ∩Πi(U2i−2), for i ≥ 1;
2. ζj is the cardinality of S ∩ Uj , for j ≥ 0 (where, ζ0 = |S| is constant).

The following facts are immediate by the definitions and Claims 4.24.1 and 4.24.3.
Claim 4.24.4. For every i ≥ 1,
1. (effect of round 2i− 1: adversary presents partition)

Prob(ζ2i−1 = πi) = Prob(ζ2i−1 = ζ2i−2 − πi) = 1
2 .

2. (effect of round 2i: adversary selects side)

|ζ2i− ζ2i−1
2 | < ζ

9
10
2i−1 with probability at least 1−ζ−

4
5

2i−1. Always 0 ≤ ζ2i ≤ ζ2i−1.

3. (termination: as a function of the situation after t def= log2 |S| − 1
2 log2(1/p)

rounds)
The protocol terminates with output in S with probability at most

Exp(ζt) · 2−(l−t)/2 = Exp(ζt) · p3/4

the expectation being over the coin tosses of the honest player in the first t
rounds.

In proving item (3), use Exp(ζt · 2−(l−t)/2) = Exp(ζt) · 2−(l−t)/2 and l − t =
l − log2 |S|+ 1

2 log2(1/p) = (1 + 1
2 ) · log2(1/p). It remains to use items (1) and (2) in

order to prove the following.
Claim 4.24.5. Let tdef= log2 |S| − 1

2 log2(1/p) and suppose t ≥ 0. Then

Exp(ζt) = O(p−1/2)

the expectation being over the coins tossed by the honest player in the first t rounds.
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Proof. Using item (2) of Claim 4.24.4, we obtain

Exp(ζ2i+2) ≤ Exp
(
ζ2i+1

2
+ ζ

9
10
2i+1 + ζ

− 4
5

2i+1 · ζ2i+1

)
≤ Exp

(
ζ2i+1

2
+ 2 · ζ

9
10
2i+1

)
.

On the other hand, using item (1) of Claim 4.24.4, we obtain both

Exp(ζ2i+1) =
1
2
· Exp(ζ2i)

and

Exp(ζ
9
10
2i+1) =

1
2
· Exp(π

9
10
i ) +

1
2
· Exp((ζ2i − πi)

9
10 ).

Combining the three (in)equalities, we get

Exp(ζ2i+2) ≤ 1
4
· Exp(ζ2i) + Exp(π

9
10
i ) + Exp((ζ2i − πi)

9
10 )

<
1
4
· Exp(ζ2i) + 2 · Exp(ζ

9
10
2i ).

For 0 < α < 1, the function xα over x ≥ 0 is concave, so we may apply Jensen’s
inequality, and conclude

Exp(ζ2i+2) <
1
4
· Exp(ζ2i) + 2 · Exp(ζ2i)

9
10 .

Setting zi
def= Exp(ζ2i), a minor adaptation of Claim 4.4 yields Exp(ζt) = O( ζ02t ).

Recall now that t = log2 |S| − 1
2 log2(1/p)) and ζ0 = |S|, to conclude the claim.

The proposition follows.
Remark 4.25. The bound provided in Proposition 4.24 is not tight. Yet, it suffices

for the purpose of sampling partitions in the generic protocol (see the proof of Theo-
rem 4.27). Much better protocols can be obtained — see Theorem 4.28. These (more
complex) sampling protocols use the above protocol and the bound from Proposition
4.24 as a bootstrapping step. In our best sampling protocol, if one party plays hon-
estly, the probability for the protocol to land in an element of any set of density p
does not exceed O(

√
p).

Remark 4.26. Our two-party sampling protocol is very similar to interactive
hashing, a protocol that was discovered independently by Ostrovsky, Venkatesan, and
Yung [20] (see Naor et. al. [18]). However, in interactive hashing one party always
picks the partition and the other always chooses the side. Also, interactive hashing
terminates after l − 1 (rather than l) rounds. Interactive hashing was invented for
completely different purposes and consequently its analysis, as in [18] (and subsequent
studies), is very different from what appears above. Interactive hashing was used for
implementing various types of commitment protocols (cf. [20, 18, 21, 10]).

4.3.3. The main result. Combining Propositions 4.23 and 4.24 with Theo-
rem 4.18, we get the following.

THEOREM 4.27 (efficient protocol meeting the lower bound). There exists a
(generic) two-party protocol, for evaluating an arbitrary bivariate function f . This
protocol is performed by a pair of uniform probabilistic polynomial-time programs with
a single oracle call to the function f and satisfies the following properties:
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• If both parties play honestly and their inputs are x and y respectively, then
the output is f(x, y).
• For every value v in the range of f , if one party plays honestly then the

outcome of the protocol is v with probability at most

O(log6(1/pv) ·max{qv,
√
pv}).

Furthermore, in case qv=pv, this bound can be improved to O(
√
pv).

Proof. The protocol is an implementation of the generic protocol where the parti-
tions are determined by poly(n)-degree polynomials that are selected using the sam-
pling protocol described above. This proves the first item. For the second item we
consider the event in which during the execution of the protocol (with at least one
party being honest) a partition was selected which does not satisfy all v-balanced prop-
erties. Using Propositions 4.23 and 4.24, the probability of this event is O(∆v · pv).
(Here we use the fact that Proposition 4.23 bounds the sum of the fourth root of the
density of “bad” partitions.) In the complementary case, when every partition that
is used satisfies all v-balance properties, Theorem 4.18 applies, and the main part of
the second item follows.

A bound of O(
√
pv log2(1/pv)) for the special case of qv =pv can be obtained by

using Corollary 4.8 instead of Theorem 4.18. The better bound of O(
√
pv) requires a

slightly more careful analysis that we turn to perform.
We slightly change the classification of rounds as appearing in the motivating

discussion (subsection 4.1). We first consider the situation after i def= n− log2(1/pv)−
4 log2 ∆v rounds. Following the ideas in the proof of Lemma 4.5 (and using Propo-
sition 4.23 and 4.24), we first observe that, with probability ≥ 1 − pv, the num-
ber of v-entries in each row (column) of the residual matrix is at most 2 · ∆4

v (i.e.,
#v(x, Yi) ≤ 2∆4

v, ∀x ∈ Xi). (Here and below the probability space is comprised
of runs of the generic protocol in which polynomial partitions are selected using the
sampling protocol of Proposition 4.24.) Next, we consider the situation after an addi-
tional ` def= 1

2 log2(1/pv) rounds. Using similar ideas (this time following Lemma 4.7),
we conclude that, with probability ≥ 1 − pv, the total number of v-entries in the
entire residual matrix, is at most (4∆4

v + 1) ·2∆4
v < 9∆8

v (i.e., #v(Xi+`, Yi+`) < 9∆8
v).

Furthermore, with probability at least 1 − pv, the residual matrix at this point is of
size approximately ∆4

v√
pv

by ∆4
v√
pv

. In the original analysis, we did not try to argue
that the number of v-entries in each row/column decreases during these additional `
rounds. But this is most likely to be the case as shown below.

Claim 4.27.1. There exists a constant c so that with probability at least 1 − pv,
after i+ ` = n− 1

2 log2(1/pv)− 4 log2 ∆v rounds, there are at most c v-entries in each
residual row (resp., column) (i.e., #v(x, Yi+`) ≤ c, ∀x ∈ Xi+`).

Proof. We consider again these additional ` rounds, assuming that previously (i.e.,
after i rounds) each residual row/column contains at most 2∆4

v v-entries. We want to
bound, for each individual row x ∈ Xi, the probability that #v(x, Yi+`) > c. Say that
a column partition is good if either there are fewer than c v-entries in the x-row, or
each side of the partition contains at least one-third of these entries. (In a good round,
a good column partition is performed). A uniformly selected polynomial partition fails
to be good with probability that is exponentially small in the number of v-entries,
since at this point, the degree of the polynomials that determine the partition exceeds
the number of v-entries in row x. However, the polynomial partitions are selected
using the sampling protocol of Proposition 4.24. As Proposition 4.24 states, the same
remains valid also when using the sampling algorithm to select the partitions (at the
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cost of a different constant in the exponent). Therefore, there exists a constant c
so that, as long as row x has more than c v-entries, the next round is good with
probability at least 16/17 (a great underestimate for all but the very last rounds). On
the other hand, if we go through at least t def= log3/2(2∆4

v) good rounds, then row x

has at most c v-entries. Thus #v(x, Yi+`) > c only if fewer than t� ` = 1
2 log2(1/Pv)

out of the last ` rounds are good, and the probability of this event is bounded above
by (

`

t

)
· (1/17)`−t < (1/16)(1+ε)·` = p(1+ε)·2

v ,

where ε > 0 is some small constant, the inequality follows by t = o(`) and the equality
uses the definition of `. Summing over all possible x ∈ Xi, the claim follows.

Combining Claim 4.27.1 with the discussion which precedes it, we conclude that
after i+` = n− 1

2 log2(1/pv)−4 log2 ∆v rounds, with very high probability, the residual
matrix contains at most 9∆8

v entries of value v with at most c such entries in any row
or column. Since we are seeking an O(

√
pv) bound, we can and will ignore those rare

runs (of probability O(pv)), for which this is not the case. Proceeding analogously
to subsection 4.1, we could consider the situation after another r = 4 log2 ∆v rounds
and bound by pv the probability that after a total of i + ` + r = n − 1

2 log2(1/pv)
rounds the residual submatrix contains more than ∆v entries of value v. This would
yield a bound of O(∆v ·

√
pv) on the influence towards v. To obtain the better bound

claimed above, we observe that it suffices to bound the expected number of v-entries
in the residual matrix (rather than bounding the probability that too many v-entries
remain). Specifically, we consider a standard coloring of the v-entries after i+` rounds.
This coloring uses at most 2 · c + 1 colors. Fixing one of these colors, we consider
the next r def= 4 log2 ∆v rounds, and bound the expected number of the remaining
v-entries. A diagonal is a set of entries in a matrix that has no more than a single
element in common with any row/column.

Claim 4.27.2. Consider a diagonal D of at most 9∆8
v entries in the residual matrix

(Xi+` × Yi+`). Then the expected number of entries from D in the residual matrix
Xi+`+r × Yi+`+r is O(1).

Proof. It suffices to analyze a process in which 2r = 8 log2 ∆v polynomial parti-
tions, selected by the sampling protocol of Proposition 4.24, are applied to a space
containing 9 ·∆8

v elements so that after selecting each partition we proceed with the
side containing more elements. Our claim is that the expected number of elements
after applying these 2r partitions is O(1). To prove this claim, let us consider first
what happens after applying a single partition. Namely, let S be a subset (of some
universe) and ζ be a random variable representing the number of S-elements in the
S-heavier side (i.e., the side containing more S-elements) of a partition, selected by
the sampling protocol. Clearly,

Exp(ζ) <
[
|S|
2

+ |S|3/4
]

+ Prob
(
ζ >
|S|
2

+ |S|3/4
)
· |S|.

For a uniformly selected polynomial partition the probability that the S-heavy side
contains more than |S|/2 + |S|3/4 elements of S is exponentially small in

√
|S| and

by Proposition 4.24 the same holds (with a smaller constant in the exponent) when
the polynomial partition is selected by the sampling protocol. Thus, Exp(ζ) < |S|

2 +
|S|3/4 +O(1). Hence, we have a sequence of random variables, ζ0, ζ1, . . . , ζ2r, so that
ζ0 < 9∆8

v and Exp(ζi|ζi−1 = s) < s
2 + s3/4 +O(1), for i = 1, . . . , 2r. Manipulating the
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expectation operators (as in the proof of Claim 4.24.5), we conclude that Exp(ζ2r) =
O(1) and the current claim follows.

Combining Claims 4.27.1 and 4.27.2, we conclude that with probability 1− pv we
reach round i+ `+ r = n− 1

2 log2(1/pv) with an expected number of O(1) entries of
value v. Using the analysis of Corollary 4.8 (corresponding to stage 3 in the motivating
discussion) we establish the claimed O(

√
pv) bound and the theorem follows.

As stated in Remark 4.25, we have sampling protocols that improve on Proposi-
tion 4.24. This can be done either directly (with the techniques used in proving Theo-
rem 4.27) or by applying Theorem 4.27 to any function f with qv = 2−l (∀v ∈ {0, 1}l).
In either case, the resulting sampling protocols use the simple sampling protocol (and
the bound presented in Proposition 4.24 as a bootstrapping step).

THEOREM 4.28 (a better two-party sampling protocol). There exists a protocol
for sampling {0, 1}l that is performed by a pair of uniform probabilistic polynomial-
time programs, so that: For every S ⊆ {0, 1}l of density p, if one party plays honestly,
the outcome of the protocol is in S with probability at most O(

√
p).

Proof (using the second alternative). Let f : {0, 1}n×{0, 1}n 7→ {0, 1}l satisfy
qv = 2−l for every v ∈ {0, 1}l. For example, f(x, y) = x + y mod 2l, where x and y
are viewed as residues mod 2n (and n ≥ l, say n = l). An honest party is supposed to
select its input uniformly in {0, 1}n and to invoke the protocol of Theorem 4.27. The
current theorem follows from the (furthermore part of) Theorem 4.27, by considering
the indicator function χS(v) = 1 if v ∈ S (and χS(v) = 0 otherwise). Namely, we
consider the function g(x, y) def= χS(f(x, y)) and take advantage of the fact that the
protocol in Theorem 4.27 is generic (i.e., determines a pair of inputs (x, y) for the
function independently of the function).

5. Towards the multiparty case. We believe that the ideas developed in the
two-party case will prove useful also for the multiparty case. However, even the prob-
lem of computing a 3-argument function by a 3-party protocol in the presence of one
dishonest party is much more involved than the problem of computing a bivariate
function by a 2-party protocol, as in the previous section. A natural extension of our
two-party protocol is to let each round consist of three steps (rather than two) and re-
fer to three partitions of the three residual input spaces. In each step, a predetermined
party announce in which side of the partition its input lies, and by doing so makes its
residual input space smaller. We believe that this (generic) protocol when used with
random partitions, nearly minimizes the advantage of any dishonest party, regardless
of the function that is being computed. We also believe that this protocol nearly min-
imizes the advantage of any coalition of two dishonest players. However, this seems to
require a much more complex analysis, and additional parameters of the function need
to be taken into account. In particular, the advantage of a single adversary towards
a value v depends not only on the density of v-entries in the entire function (denoted
pv above) and on the density of v-entries in the function restricted by the best input
(denoted qv). For example, a single party can influence any protocol for computing
the function f(x, y, z) = x+ y + z mod N to produce output 0 (or any other residue
mod N) with probability N−2/3 (and the generic protocol can be shown to bound
the advantage of a dishonest party to about this value). On the other hand, a single
party can influence any protocol for computing the function g(x, y, z) = x+ y mod N
to produce output 0 with probability N−1/2 (and again the generic protocol meets
this bound). However, both functions have the same pv = qv = 1/N .

Another difficulty which arises in the context of multiparty protocols is that, when
the number of parties is large, we cannot afford to let the parties reveal information
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in a predetermined order (as in the two-party case and the three-part case above).
This difficulty is best demonstrated in the special case where each input is one bit
(i.e., Domain(f) = {0, 1}×{0, 1} · · · ×{0, 1}). Here, the influence of parties which
are last to reveal their input is more substantial than the influence of parties which
reveal their input first. This calls for choosing a random permutation to determine
the order of playing. Thus, the role of a sampling protocol in the multiparty case
is more fundamental than in the two-party situation. (Recall that in the two-party
protocols, sampling was introduced only for increased efficiency.)

5.1. A multiparty sampling protocol. In this paper we confine ourselves to
the presentation of an efficient fault-tolerant multiparty sampling protocol.

THEOREM 5.1 (multiparty sampling protocol). There exists an m-party sampling
protocol that is performed by m (identical) uniform probabilistic polynomial-time pro-
grams, so that: For every set S ⊆ {0, 1}l, if m − t parties play honestly, then the
outcome of the protocol is in S with probability at most O(log(1/p) · p1−O( tm )), where
p

def= |S|/2l.
Our proof of Theorem 5.1 adapts the ideas used in Theorem 4.28 to the multiparty

context. Namely, our protocol uses partitions which are in turn selected by a lower
quality sampling protocol. Specifically, the protocol proceeds in l rounds. In each
round, the m parties first select at random (using a simpler sampling protocol) a
poly(n ·m)-degree polynomial specifying a partition of the residual sample space, and
next use the collective coin tossing protocol of Alon and Naor [1] to choose one side
of this partition. The sampling protocol used to choose poly(nm)-degree polynomials
is similar except that the partitions are specified by linear transformations (as in the
protocol of Proposition 4.24). These linear transformations are selected using a trivial
sampling protocol which consists of selecting each bit individually by the collective
coin tossing protocol of Alon and Naor [1].

We prefer an alternative presentation of our proof, in which the construction of
multiparty sampling protocols is reduced to the construction of sampling algorithms
that use an SV -source as their source of randomness. Recall that an SV-source with
parameter γ ≥ 1

2 (cf. [22]) is a sequence of Boolean random variables, X1, X2, . . . , so
that for each i and every α ∈ {0, 1}i and every σ ∈ {0, 1}:

Prob(Xi+1 =σ|X1 · · ·Xi=α) ≤ γ.

Theorem 5.1 follows from the next proposition.
PROPOSITION 5.2 (sampling with an SV-source). For every constant γ, 1

2 ≤ γ <
1√
2

, there exist a probabilistic polynomial-time algorithm, A1, which on input 1n uses
any SV -source with parameter γ for its internal coin tosses and satisfies, for every
sufficiently large n and every set S ⊆ {0, 1}n,

Prob(A1(1n)∈S) = O(log(1/p) · plog2(1/γ)),

where p def= |S|
2n , and the probability is taken over an arbitrary SV -source with param-

eter γ.
In particular, for γ = 1

2 (1 + ε), we have log2(1/γ) = 1− log2(1 + ε) ≥ 1− 1
ln 2 · ε.

Thus, observing that the Alon–Naor protocol implements an SV -source with param-
eter γ = 1

2 (1 + O( tn )), we derive Theorem 5.1 as a corollary of Proposition 5.2.
Furthermore, Proposition 5.2 yields an alternative way of recognizing BPP languages
in polynomial time using an arbitrary SV-source with parameter γ < 1√

2
≈ 0.7. Con-

sider, without loss of generality, an algorithm A that using n (perfect) random coins
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errs with probability at most ε, where ε > 0 is a small constant (depending on γ).
In order to utilize A when only an SV-source is available, we first use algorithm A1
(with the SV-source) to generate a “somewhat random” n-bit string, r, and then
invoke algorithm A with the string r as a substitute for the n coins required by A.
We stress that algorithm A is only invoked once. To analyze the performance of the
new algorithm, let S be the set of coin sequences on which A errs. By our hypothesis
|S| ≤ ε ·2n and thus using Proposition 5.2 a string r ∈ S is generated with probability
at most log(1/ε) ·εlog(1/γ) < 1/3 for sufficiently small ε > 0. Thus, using an SV-source
(with parameter γ < 1√

2
), our algorithm errs with probability at most 1/3.

The logarithmic factors in Theorem 5.1 and Proposition 5.2 can be eliminated;
see subsection 5.3.

5.2. Proof of Proposition 5.2. Following is a description of the algorithm A1.
The constant δ used in the description will be determined later (as a function of γ).
On input 1n, the algorithm proceeds in rounds, each round consisting of two steps. In
the first step, algorithm A1, uses a second sampling algorithm, denoted A2, to select
a succinct description of a “pseudorandom” partition of the residual sample space. In
the second step, algorithm A1 uses the next bit of the SV-source to determine a side
of this partition and so further restricts the residual sample space. We use two types
of partitions. In the first n − 4 log2 δn rounds, algorithm A1 uses partitions defined,
as in subsection 4.3, by a polynomial of degree (δn)4 over GF (2n). In the remaining
rounds, where the residual sample space is most likely to be smaller than 2(δn)4,
algorithm A1 uses partitions uniformly chosen from the set of all perfectly balanced
partitions (i.e., bipartitions in which the cardinalities of the two sides are either equal
or differ by one). The two-step process is repeated until the residual sample space
contains a unique element. We will see that algorithm A1(1n) almost certainly halts
after no more than n + 2 rounds. (Longer executions can be truncated after n + 2
rounds with an arbitrary output.)

We now turn to the description of algorithm A2, which is invoked by A1(1n) on
input 1m, where m = (δn)4 · n for the first n− 4 log2 δn rounds of A1(1n) and where
m is the size of the residual sample space of A1 later on. On input 1m, algorithm A2
proceeds in m rounds. In the ith round, the algorithm uses a third sampling algo-
rithm, denoted A3, to selects a random m-dimensional binary vector vi that is linearly
independent of previously used vectors. Clearly, the candidate vectors constitute an
(m − (i − 1))-dimensional vector space over GF2. The chosen vector partitions the
residual sample space into two subsets of equal cardinality (as in Proposition 4.24).
Algorithm A2 uses the next bit of the SV-source to select a side of this partition.

Algorithm A3, invoked by A2(1m), on input 1k (for k = m,m − 1, . . . , 1), is the
trivial sampling algorithm which generates a sample point in {0, 1}k by merely using
the next k bits of the SV-source.

We now turn to the analysis of the sampling algorithm A1. We first consider
what happens if one replaces algorithm A2 by an algorithm that uniformly selects the
appropriate partitions (i.e., (δn)4-degree polynomial for the first n− 4 log2 δn rounds
and perfectly balanced partitions for later rounds). The analysis is done following the
paradigm of the previous section. Namely, we first analyze the performance of the
algorithm assuming it employs partitions which satisfy some combinatorial properties
(cf., Claim 5.2.1), and next consider the probability that uniformly selected partitions
satisfy these properties (cf., Claim 5.2.2).

Claim 5.2.1 (A1 with balanced partitions). Let Ui be the residual sample space
after round i, and Si

def= S ∩ Ui (U0
def= {0, 1}n). Suppose that, for every i, algorithm
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A1 partitions Ui−1 in a way that is ∆-balanced with respect to Si−1 as well as to
Ui−1. Furthermore, suppose that for every i > n− 4 log2 ∆, the ith partition chosen
for algorithm A1 is perfectly balanced (i.e., −1 ≤ 2|Ui| − |Ui−1| ≤ 1.) Then

Prob(A1(1n) ∈ S) ≤ 2∆ · plog2(1/γ).

In addition, |Un−4 log2 δn| < 2(δn)4, provided that ∆ ≤ δn.
Proof. The proof is analogous to the proof of Corollary 4.8. Using an argument

analogous to one used in the proof of Lemma 4.5, we conclude that after t def= n −
log2(1/p) rounds the residual sample space contains at most ∆ elements of S (i.e.,
|St| ≤ ∆). Actually, the argument only uses the hypothesis that the ith partition is
∆-balanced with respect to Si−1, for every i ≤ t, and is indifferent to the way in which
the sides of the partitions are selected in these t rounds. Using the hypothesis that the
ith partition is ∆-balanced with respect to Ui−1, for every i ≤ t, we conclude that after
these t rounds, the residual sample space contains at least 1

2p elements (i.e., |Ut| ≥
1/2p). Furthermore, using the hypothesis that also the following s

def= log2(1/p) −
4 log2 ∆ rounds use partitions which are ∆-balanced with respect to the residual
sample space, we conclude that after t+ s = n− 4 log2 ∆ rounds the residual sample
space has cardinality at least 1

2∆4 (use Claim 4.4). Now, since all the remaining

partitions are assumed to be perfectly balanced, there must be at least l def= (4 log2 ∆)−
1 rounds until termination. We now return to the situation after t rounds, and consider
the remaining rounds, which by the above are at least r def= s + l = log2(1/p) − 1 in
number. Since the side of the partition is selected by an SV-source with parameter
γ, the probability that any specific element in Ut survives the remaining (i.e., at least
r) rounds is at most γr. Thus, the probability that some element of St survives these
rounds does not exceed

|St| · γr ≤ ∆ · γlog2(1/p)−1

≤ ∆ · plog2(1/γ) · 2log2(1/γ).

But γ ≥ 1/2, whence log2(1/γ) ≤ 1 and the main part of the claim follows.
The additional part (i.e., |Un−4 log2 δn| < 2(δn)4) follows easily by using Claim

4.4.
Claim 5.2.2 (A1 — probability of balanced partitions). For every ε > 0 there exists

a δ > 0 so that the following holds. Let πi denote the probability that a uniformly
chosen partition for round i is not δ · log2(1/p)-balanced with respect to either Si−1
or Ui−1. Then, ∑

i≥1

πεi < p.

As in Proposition 4.23, it is very useful for the sequel (though, admittedly, not
very natural) to raise the probabilities to the εth power.

Proof. For i ≤ n−4 log2 δn, the proof is identical to the simpler cases (e.g., Prop-
erties (P0) and (P1)) considered in the proof of Proposition 4.23. For i > n−4 log2 δn,
we observe that the probability of any event, assuming a uniformly selected perfectly-
balanced partition is at most

√
|Ui−1| times larger than its probability assuming a

uniformly selected partition. Since the argument of Proposition 4.23 can tolerate
such factors, the claim follows also for i > n− 4 log2 δn.
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Combining Claims 5.2.1 and 5.2.2, we conclude that it suffices to show that for
some constant ε > 0 and for any set of “bad” partitions, B ⊆ {0, 1}m, the probability
that A2(1m) produces an output in B is at most (|B|/2m)ε. Once this is done, the
proposition follows by considering B(i), the set of partitions which are not δ ·log2(1/p)-
balanced with respect to either Si−1 or Ui−1, and noting that δ ·log2(1/p) ≤ δn (which
guarantees that in the last 4 log2(δ log2(1/p)) rounds perfectly-balanced partitions are
used). Namely,

Prob(A(1n)∈S) < Prob(A(1n)∈S|∀i A(1m) 6∈B(i))
+Prob(∃i s.t. A(1m)∈B(i))

< 2δ log(1/p) · plog2(1/γ) +
∑
i≥1

(
|B(i)|
2m

)ε
< 3δ log(1/p) · plog2(1/γ),

where the second inequality is based on Claim 5.2.1 and our hypothesis concerning A2
and the last inequality follows from Claim 5.2.2. Also note that Claim 5.2.1 guarantees
that the residual sample space after n − 4 log2(δn) rounds has size at most poly(n),
whence it is possible to represent and generate random partitions of it. Thus, we turn
to the analysis of algorithm A2. Recall that our goal is to show that for some ε, (that
depends on γ), and for every B ⊆ {0, 1}m of cardinality q · 2m,

Prob(A2(1m)∈B) = O(qε).(15)

Let ε def= log2(1/γ)− 1
2 > 0 and β

def= 1
1+ε < 1 (recall that γ < 1√

2
is assumed). Also,

ε ≤ 1
2 and β ≥ 2

3 , since γ ≥ 1
2 . Henceforth, we fix an arbitrary set B ⊆ {0, 1}m and

let q def= |B|
2m (as above). We separately analyze the performance of A2 throughout the

first t rounds (hereafter referred to as phase 1), and in the remaining m − t rounds
(phase 2), where

t
def= max{0,m− 2β

2β − 1
log2(1/q)}.(16)

Let Bi denote the residual set (of bad polynomials) after i rounds of algorithm A2
(e.g., B0 = B).

Claim 5.2.3 (A2 — phase 1).

Prob(|Bt| > 2q · 2m−t) ≤ O(q2ε).

That is, the probability that Bt is greater than twice its “expected size” is small.
Note that by definition of t, we have m−t = 2β

2β−1 · log2(1/q) and q ·2m−t = 2(m−t)/2β .

Proof. For every i, let bi
def= |B|

2i . Our plan is to prove that with very high
probability, |Bi| ≈ bi for every i ≤ t, which would establish our claim. We consider
the first time when |Bi| 6≈ bi. Thus, the probability that |Bt| > 2q · 2m−t is bounded
above by

Prob
[
∃i < t :

(∣∣∣∣|Bi+1| −
|Bi|

2

∣∣∣∣ > |Bi| 1+β
2

)
∧
(
∀j < i :

∣∣∣∣|Bj+1| −
|Bj |

2

∣∣∣∣ ≤ |Bj | 1+β
2

)]
.
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Now, using Chebyshev’s Inequality (as in the proof of Proposition 4.24), we can show
that for a uniformly chosen random linear partition,

Prob
(∣∣∣∣|Bi+1| −

|Bi|
2

∣∣∣∣ > |Bi| 1+β
2

)
<

1
|Bi|β

.

Call a linear partition for round i+ 1 bad, if
∣∣∣|Bi+1| − |Bi|2

∣∣∣ > |Bi| 1+β
2 . We now know

that the number of bad partitions is bounded by 1
|Bi|β · 2

m−i. We need to bound the
probability that A3(1m−i) selects a bad partition in round i + 1. Using the union
bound, the definition of A3 and Claim 4.4 (for |Bi|), we have

Prob(A3(1m−i) is bad) ≤ 2m−i

|Bi|β
· γm−i

< 2 · γm−i · 2m−i

bβi
,

where the last inequality uses our assumption that all previous partitions are good
(whence for each j < i, |Bj+1| > |Bj |

2 − |Bj |
1+β

2 and, consequently, |Bi| > bi
2 ). Since

bi = 2t−i · bt and bβt = (q2m−t)β = 2(m−t)/2 (see remark above), we get

Prob(A3(1m−i) is bad) < 2 · γm−i · 2m−i

2(t−i)β · 2(m−t)/2

= 2 · γm−i · 2(m−i)−m−t2 −β(t−i)

= 2 ·
(
γ
√

2
)m−i

· 2−(β− 1
2 )·(t−i).

Letting ρ
def= γ ·

√
2 < 1 (as γ < 1√

2
) and using m − i ≥ m − t > 2 log2(1/q) (as

m− t = 2β
2β−1 log2(1/q) and β < 1), we get

Prob(A3(1m−i) is bad) < 2 · ρ2 log2(1/q) · 2−(β− 1
2 )·(t−i)

= 2 · q2 log2(1/ρ) · 2−(β− 1
2 )·(t−i)

= a · bt−i,

where a def= 2q2 log2(1/ρ) and b
def= 2−(β− 1

2 ) < 1 (as β > 1
2 ). Hence, the probability

that A3 chooses a bad partition for some round i, throughout phase 1, is bounded by∑t
i=1 a · bt−i < a

1−b . Using ε = log2(1/γ)− 1
2 = log2(1/ρ) ≤ 1

2 and β = 1
1+ε , we get

a

1− b =
2q2ε

1− 2−
1−ε

2(1+ε)

≤ 2q2ε

1− 2−1/6

< 20 · q2ε,

and the claim follows.
Claim 5.2.4 (A2 — phase 2). Let Bt be the residual target set after t rounds and

consider an execution of the m− t remaining rounds. Suppose that |Bt| ≤ 2bt, where
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bt
def= |B|

2t (as in Claim 5.2.3). Then the probability that A2(1m) terminates with
output in Bt is at most 2qε.

Proof. We consider the executions of rounds t + 1 through m. Regardless of
which linear partitions are used in the remaining m − t rounds, the probability that
a particular element of Bt is output by A2(1m) is bounded by γm−t. Hence,

Prob(A2(1m) hits Bt) ≤ |Bt| · γm−t

≤ 2bt · γm−t

= 2 · 2
m−t
2β · γm−t

= 2 ·
(
γ · 2 1

2β

)m−t
.

Setting (as before) ρ = γ
√

2, and using ε = log2(1/ρ) and β = 1
1+ε , we get 2

1
2β =√

2/ρ. Hence, using again ρ < 1 and m− t > 2 log2(1/q), we get

Prob(A2(1m) hits Bt) ≤ 2 ·
(
γ ·
√

2
ρ

)m−t
< 2 · √ρ 2 log2(1/q)

= 2qlog2(1/ρ)

= 2qε,

and the claim follows.
Combining Claims 5.2.3 and 5.2.4, we have established equation (15) and the

proposition follows.

5.3. Further improvements. Actually, the result of Proposition 5.2 can be
improved using a slightly more careful analysis of the algorithm A1 provided in the
above proof. The improved analysis is analogous to the proof of the tighter bound for
the case qv = pv of Theorem 4.27. Namely, we replace Claims 5.2.1 and 5.2.2 by the
following three claims. In the first two claims we assume that algorithm A2 satisfies
equation (15).

Claim 1. With probability at least 1−p, after i def= n−log2(1/p)−4 log2(δ log2(1/p))
rounds the residual sample space contains at most 2(δ log2(1/p))4 elements
of S; namely,

Prob(|Si| > 2(δ log2(1/p))4) < p.

Claim 2. Consider an arbitrary subset S′ of Ut so that |S′| ≤ 2(δ log2(1/p))4.
Then the expected number of elements of S′ which survive an additional
number of 4 log2(δ log2(1/p)) rounds is bounded above by O(1).

Claim 3. Let t def= n− log2(1/p). Then,

Prob(A(1n) ∈ S) ≤ Exp(|St|) · γlog2(1/p)−1.

(Here, we do use a part of the proof of Claim 5.2.1 to assert that with prob-
ability 1− p the protocol does not terminate before n− 1 rounds.)

Consequently, we get
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• Improvement to Proposition 5.2: For every constant γ, 1
2 ≤ γ < 1√

2
, the

algorithm A1 appearing in the proof of Proposition 5.2 satisfies, for every set
S ⊆ {0, 1}n,

Prob(A1(1n)∈S) = O(plog2(1/γ)),

where p def= |S|/2n, and the probability is taken over an arbitrary SV -source
with parameter γ.

• Theorem 5.1 can be improved analogously. Namely, for every set S ⊆ {0, 1}l,
if m − t parties plays honestly then the outcome of the protocol is in S with
probability bounded above by O(p1−O( tm )), where pdef= |S|/2l.
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