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Abstract. Let G ¼ ðIn;EÞ be the graph of the n-dimensional cube. Namely, In ¼ f0; 1gn and
½x; y� 2 E whenever jjx
 yjj1 ¼ 1. For A � In and x 2 A define hAðxÞ
¼ #fy 2 In n Aj½x; y� 2 Eg, i.e., the number of vertices adjacent to x outside of A. Talagrand,
followingMargulis, proves that for every set A � In of size 2n
1 we have 12n

P
x2A
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hAðxÞ

p

 K

for a universal constant K independent of n. We prove a related lower bound for graphs: Let
G ¼ ðV ;EÞ be a graph with jEj 
 k

2

� �
. Then

P
x2V ðGÞ

ffiffiffiffiffiffiffiffiffi
dðxÞ

p

 k

ffiffiffiffiffiffiffiffiffiffiffi
k 
 1

p
, where dðxÞ is the

degree of x. Equality occurs for the clique on k vertices.

1. Introduction

Let G ¼ ðIn;EÞ be the graph of the n-dimensional cube. That is In ¼ f0; 1gn and
½x; y� 2 E whenever jjx
 yjj1 ¼ 1. Let A � In and define

hAðxÞ ¼ # y 2 In n Aj½x; y� 2 Ef g

Namely, hAðxÞ counts the number of vertices outsideAwhich are adjacent to x.Using
hA we can measure the size of the boundary of A. For example,

P
x2A hAðxÞ is the

number of edges between A and In n A, i.e., the edge boundary of A. Similarly, the
vertex boundary of A, namely, those vertices in A which have a neighbour in In n A,
are exactly those vertices for which hAðxÞ > 0. Talagrand, in [2], following previous
results of Margulis [1] and others, has derived isoperimetric inequalities for the
n-dimensional cube in terms of hA. For example, it is shown that

1

2n

X
x2A

ffiffiffiffiffiffiffiffiffiffiffi
hAðxÞ

p

 K ð1Þ

for every A � In with cardinality jAj ¼ 2n
1. The constant K is independent of n,
the cube’s dimension. More generally, lower bounds on 1

2n

P
x2A

ffiffiffiffiffiffiffiffiffiffiffi
hAðxÞ

p
are

established in terms of jAj. One can view the square root function as a ‘‘middle
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way’’ between the two former quantities of edge and vertex boundaries. Natural
questions that arise here are what the exact optimum is, and which sets are
optimal for this inequality. Let us consider some families of sets that achieveP

x2A
ffiffiffiffiffiffiffiffiffiffiffi
hAðxÞ

p
¼ Oð1Þ. Half cubes

ðx1; x2; . . . ; xnÞ; x1 ¼ 1

do, as well as balls,

ðx1; x2; . . . ; xnÞ;
Xn
i¼1

xi � n=2

In general, for J � f1; 2; . . . ; ng and jJ j odd:

BJ ¼ ðx1; x2; . . . ; xnÞ;
X
i2J

xi � jJ j=2
( )

is a family with the same property. In our quest for sets which optimize this
inequality, we first consider consecutive levels: Let Lm ¼ fx;

P
xi ¼ mg be the m-th

level of the cube. Let LmðAÞ ¼ A \ Lm, lmðAÞ ¼ jðA \ LmÞj. For x 2 LmðAÞ define

hþA ðxÞ ¼ # y 2 Lmþ1ðAÞj½x; y� 2 Ef g

For monotone decreasing sets hþ ¼ h. (Recall that A is monotone decreasing
when it is closed under the operation of changing a coordinate from 1 to 0). The
question here is, given lm; lmþ1, what are LmðAÞ; Lmþ1ðAÞ that minimizeP

x2LmðAÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
hþA ðxÞ

p
? We can essentially solve the problem for m ¼ 1:

Theorem 1.1. Let A � In contain the first level L1. Suppose that l2ðAÞ ¼ n
2

� �

 k

2

� �
.

Then the minimum of
P

x2L1ðAÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
hþðxÞ

p
is attained when L2ðAÞ is the suffix in colex

order.

Theorem 2.1 can be conveniently stated in the language of graphs and their
degree sequence:

Theorem 1.2. Let G be a graph with k
2

� �
edges. Then

X
x2V ðGÞ

ffiffiffiffiffiffiffiffiffi
dðxÞ

p

 k

ffiffiffiffiffiffiffiffiffiffiffi
k 
 1

p

Equality occurs when G is the clique on k vertices.

dðxÞ is, here and elsewhere, the degree of the vertex x.

Comment 1.3. Consider the more general problem of minimizing
P

x2V ðGÞ f ðdðxÞÞ
over all graphs with a given number of edges. One might suspect that a statement
analogous to Theorem 2.2 holds for every concave increasing function f that
vanishes at zero. This is, however, incorrect. Consider the function
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f ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
xþ a

p



ffiffiffi
a

p
. For this f , the minimizing graph need not be the clique. The

star, for instance, is better for certain values of a. We show this for a ¼ k. For the
star with k

2

� �
edges

FstðkÞ ¼
X
V ðGÞ

f ðdðxÞÞ ¼ k
2

	 
 ffiffiffiffiffiffiffiffiffiffiffi
1þ a

p



ffiffiffi
a

p� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2

	 

þ a

s



ffiffiffi
a

p
 !

The same quantity for the clique is

FclðkÞ ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k 
 1þ a

p



ffiffiffi
a

p� �

Substitute a ¼ k to obtain (for large k)

FclðkÞ 

ffiffiffi
2

p

 1
 oð1Þ

� �
k3=2

FstðkÞ �
k2

2

ffiffiffiffiffiffiffiffiffiffiffi
k þ 1

p



ffiffiffi
k

p� �
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� �

� k3=2
1

4
þ oð1Þ

	 


The oð1Þ terms tend to zero for large k. This completes the counterexample.
Consider a monotone decreasing set A � In with l1ðAÞ ¼ n
 a,

l2ðAÞ ¼ n
2

� �

 k

2

� �
. What is the minimum of

P
x2L1ðAÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
hþðxÞ

p
? Theorem 2.1 pro-

vides the answer when l1ðAÞ ¼ n. The graph-theoretic problem that corresponds
to the case l1ðAÞ ¼ n
 a is to minimize

P
x2V ðGÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðxÞ þ a

p
on a graph with

exactly n
 a vertices. An equivalent statement of the problem is to minimizeP
x2V ðGÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðxÞ þ a

p

 ffiffiffi

a
p� �

on a graph with a given number of edges and with no
restriction on the number of vertices. The function f ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
xþ a

p

 ffiffiffi

a
p

therefore
replaces

ffiffiffi
x

p
when l1ðAÞ ¼ n
 a rather than n in theorem 2.1. The counterexample

shows that the minimum of L2ðAÞ is not attained by a suffix in colex order, as in
the theorem.

2. A Family of Extremal Graphs

We turn to prove Theorem 2.2. As a starter, we show an easy argument which
limits the family of possible extremal graphs. In contrast to comment 2.3 the
discussion in this section is valid for every f that is concave and increasing. Here is
an easy but useful observation:

Claim 3.1. Let f be an increasing, concave function. Let G be a graph for
which

P
v2V ðGÞ f ðdðvÞÞ is minimal among all graphs with a given number of edges. If

v;w are adjacent vertices of G, then v is adjacent to every vertex u s.t.
degðuÞ 
 degðwÞ.
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Proof. Otherwise replace ½v;w� with ½v; u� to obtain a better G. (

From the claim we immediately derive a structural description of a minimizing
G:
1. If x is a vertex of minimal degree and ½x; y� 2 EðGÞ, then y is adjacent to all

the vertices in G.
2. In general, divide the graph to sets of vertices by increasing degree: Let

d1 < d2; . . . < dl be the sequence of distinct degrees appearing in the graph. Let Si
be the set of vertices of degree di. The vertices in Sl are adjacent to all the vertices
in the graph, those in Sl
1 to all vertices except those in S1, the vertices in Sl
2 to
[l
i¼3Si and so forth. Thus, a vertex of degree di is adjacent to all vertices of degree

dj if iþ j 
 nþ 1.
We now see that the sequence of distinct degrees in the graph

uniquely determines the graph. Define ai ¼ jSij, the number of vertices with degree
di. Then

di ¼
P

iþj
lþ1 aj 
 1 i 
 ðlþ 1Þ=2P
iþj
lþ1 aj i � l=2

�

Inverting this definition:

ai ¼ dl
iþ1 
 dl
i þ di;dl2e

For each increasing sequence of integers di the corresponding graph is well de-
fined, so we can now forget the graphs and concentrate on the following question
(next section).

3. No Extremum Points

Let d ¼ d1 � d2; . . . � dn be a nondecreasing sequence of real numbers. Define

ai ¼ dn
iþ1 
 dn
i þ di;dn2e ð2Þ

F dð Þ ¼
Xn
i¼1

aidi ð3Þ

G dð Þ ¼
Xn
i¼1

ai
ffiffiffiffi
di

p
ð4Þ

We want to find the minimum of G dð Þ under the condition F dð Þ ¼ const.
The connection with the question about graphs is as follows: If the di are
positive integers, we can realize a graph with the given sequence of distinct
degrees, as was shown in the end of section 3. The ai are the number of vertices
of degree di, F dð Þ is the number of edges, and G dð Þ is the functionalP

v2V ðGÞ f ðdðvÞÞ. A lower bound on G for real sequences yields a lower bound
on integer sequences.
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We proceed to show that the functional G has no local minimum for dimen-
sion (i.e. sequence length) greater than one. This is done using Lagrange
multipliers. In the next section we shall deduce that the global minimum of G
occurs in dimension 1.
Calculating partial derivatives for n even, k ¼ n=2 produces (recall

ak ¼ dn
kþ1 
 dn
k þ ddn2e),

@F
@dk

¼ @

@dk
ðakdk þ akþ1dkþ1Þ

¼ dkþ1 
 dk þ 1þ dkþ1 
 dk
¼ 2ðdkþ1 
 dkÞ þ 1

@G
@dk

¼ @

@dk
ak

ffiffiffiffiffi
dk

p
þ akþ1

ffiffiffiffiffiffiffiffiffi
dkþ1

p� �

¼ ðdkþ1 
 dk þ 1Þ
2
ffiffiffiffiffi
dk

p þ
ffiffiffiffiffiffiffiffiffi
dkþ1

p



ffiffiffiffiffi
dk

p

For n odd let k þ 1 ¼ nþ1
2 and take @

@dkþ1
to obtain:

@F
@dkþ1

¼ @

@dkþ1
akþ1dkþ1 þ akdkð Þ

¼ dkþ1 
 dk þ 1þ dkþ1 
 dk
¼ 2 dkþ1 
 dkð Þ þ 1

@G
@dkþ1

¼ @

@dkþ1
akþ1

ffiffiffiffiffiffiffiffiffi
dkþ1

p
þ ak

ffiffiffiffiffi
dk

p� �

¼ dkþ1 
 dk þ 1ð Þ
2
ffiffiffiffiffiffiffiffiffi
dkþ1

p þ
ffiffiffiffiffiffiffiffiffi
dkþ1

p



ffiffiffiffiffi
dk

p

Note that the F derivatives are the same, while in the G derivative the dk in the
denominator changes to dkþ1.
Similarly, for all n > 1,

@F
@dn

¼ 2ðd1 
 d0Þ

@G
@dn

¼ d1 
 d0ð Þ
2
ffiffiffiffiffi
dn

p þ
ffiffiffiffiffi
d1

p



ffiffiffiffiffi
d0

p

We claim that there is no local extremum for G when F is fixed if d is increasing.
This is shown by calculating Lagrange multipliers. First with n even and 2k ¼ n.
We must satisfy

@G
@dk

¼ k
@F
@dk

;
@G
@dn

¼ k
@F
@dn

which produces the equations
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dkþ1 
 dk þ 1ð Þ
2
ffiffiffiffiffi
dk

p þ
ffiffiffiffiffiffiffiffiffi
dkþ1

p



ffiffiffiffiffi
dk

p
¼ k 2ðdkþ1 
 dkÞ þ 1ð Þ

d1 
 d0ð Þ
2
ffiffiffiffiffi
dn

p þ
ffiffiffiffiffi
d1

p



ffiffiffiffiffi
d0

p
¼ k2 d1 
 d0ð Þ

Set uk ¼
ffiffiffiffiffi
dk

p
. The condition can be re-written as

ðuk þ ukþ1Þð2k 
 1=2ukÞ þ
k 
 1=2uk
ukþ1 
 uk

¼ 1

ðu0 þ u1Þð2k 
 1=2unÞ ¼ 1

multiply each equation by 2 and replace 4k with l to get

ðuk þ ukþ1Þðl 
 1=ukÞ þ
l=2
 1=uk
ukþ1 
 uk

¼ 2

ðu0 þ u1Þðl 
 1=unÞ ¼ 2

The second equation gives (with monotonicity of the ui) uk; ukþ1 > 2=l. Put this in
the first equation to get: (note that the second summand of the first equation is
positive – l=2
 1=uk > 0 by the second equation).

4=lðl 
 1=ukÞ < 2

4
 4=ðlukÞ < 2

luk < 2

which contradicts the second equation.
Now do all the calculations for odd n. The Lagrange condition becomes

dkþ1 
 dk þ 1ð Þ
2
ffiffiffiffiffiffiffiffiffi
dkþ1

p þ
ffiffiffiffiffiffiffiffiffi
dkþ1

p



ffiffiffiffiffi
dk

p
¼ kð2ðdkþ1 
 dkÞ þ 1Þ

d1 
 d0ð Þ
2
ffiffiffiffiffi
dn

p þ
ffiffiffiffiffi
d1

p



ffiffiffiffiffi
d0

p
¼ k2 d1 
 d0ð Þ

which produces, after the same calculation as above (the only difference is the dk
in the denominator, which changes to dkþ1):

ðuk þ ukþ1Þðl 
 1=ukþ1Þ þ
l=2
 1=ukþ1
ukþ1 
 uk

¼ 2

ðu0 þ u1Þðl 
 1=unÞ ¼ 2

Again uk; ukþ1 > 2=l by the second equation, so

4=lðl 
 1=ukþ1Þ < 2

which yields the same contradiction.
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4. Vector Shortening

Claim 5.1. Let d ¼ d1 � d2; . . . � dn be a monotone vector and dk ¼ dkþ1. Then
there exists a shorter vector ~dd which satisfies H dð Þ ¼ H ~dd

� �
for all H of the form

H dð Þ ¼
P

aif ðdiÞ where ai is as in section 3.

In particular this is true for F ;G of the last section. The way to construct ~dd is:
if 2k ¼ n or 2k þ 1 ¼ n (i.e. k ¼ dn2e) omit dk to create a new vector of length n
 1.
Otherwise omit dk; dn
k to create a vector of length n
 2. The proof is by example
on the three cases:

Case 1. k 6¼ dn2e

Here is an example with n ¼ 10; k ¼ 3, i.e. d3 ¼ d4. Let

d ¼ d0; d1; d2; d3; . . . d10

where d0 ¼ 0. Define

~dd ¼ d0; d1; d2; d4; d5; d6; d8; d9; d10

We omitted d3; d7. We want to show that every element aif ðdiÞ appears in Hð~ddÞ.
Let us examine the terms of H ~dd

� �
. For i < 3 it is easy to note that ~aai is the same

as ai. f d4ð Þ is multiplied by d8 
 d6 ¼ a3 þ a4. f d5ð Þ is multiplied by =
d6 
 d5 ¼ a5. f d6ð Þ is multiplied by d5 
 d3 þ 1 ¼ d5 
 d4 þ 1 ¼ a5. (The þ1 is
because 4 ¼ d82e and the new sequence has 8 terms). f d7ð Þ is multiplied by
d3 
 d2 ¼ a7 and the same works up to d10. It is easy to see that every element
aif dið Þ appears in H ~dd

� �
. Note that the ‘‘missing’’ element a7f d7ð Þ is zero since

a7 ¼ d4 
 d3 ¼ 0, and the term a3f d3ð Þ appears as a summand of the new term for
f d4ð Þ, which is equal f d3ð Þ. Let us summarize in a table: define bi ¼ dn
iþ1 
 dn
i,
so ai ¼ bi þ ddn2e. The following array is the original d and the coefficient to
multiply by:

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

And here is the same array for the new ~dd:

d1 d2 d4 d5 d6 d8 d9 d10

d10 
 d9 d9 
 d8 d8 
 d6 d6 
 d5 d5 
 d4 d4 
 d2 d2 
 d1 d1 
 d0

b1 b2 b3 þ b4 b5 b6 b8 b9 b10

By observing the array, we can easily verify that
P

bif ðdiÞ ¼
P ~bbif ð~ddiÞ. Since

the element number dn2e did not change its value, this is also true with ai instead
of bi in the last equality. This works for every k; n when k þ 1 < n
 k, or
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k > n
 k, which is symmetrical. The idea is as above: We can omit dn
k since
an
k ¼ dkþ1 
 dk ¼ 0, and to omit dk is O.K. since in the new vector f ðdkþ1Þ is
multiplied by dn
kþ1 
 dn
k
1 ¼ ak þ akþ1, which compensates for f ðdkÞ and
f ðdkþ1Þ simultaneously. The other terms are not affected by the shortening.
Note that the special element ddn2e is never affected by our erasures, and that it
remains the special element (which is now dn
22 e ¼ dn2e 
 1), in the new, short-
ened vector.

Case 2. 2k ¼ n:

We do the example for n ¼ 10; k ¼ 5. Let

d ¼ d0; d1; d2; d3; . . . d10

where d0 ¼ 0 and d5 ¼ d6. Define

~dd ¼ d0; d1; d2; d3; d4; d6; d7; d8; d9; d10

We omitted only d5. Let us check the terms of H ~dd
� �

: for i < 5 we get ~aai ¼ ai.
f d6ð Þ ¼ f d5ð Þ is multiplied by d6 
 d4 þ 1 ¼ d5 
 d4 þ 1 ¼ a5 þ a6 (The þ1 is
because d6 is the special element of the new sequence). f d7ð Þ is multiplied by
d4 
 d3 ¼ a7 and this continues up to d10. Again we see that all the terms coincide.
The ‘‘missing’’ term a5f ð5Þ appears in the new term for d6 – note that
a5 ¼ d5 
 d4 þ 1 ¼ 1. The following array is the original d and the coefficient to
multiply:

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

And here is the same array for the new ~dd:

d1 d2 d3 d4 d6 d7 d8 d9 d10

d10
d9 d9
d8 d8
d7 d7
d6 d6
d4 d4
d3 d3
d2 d2
d1 d1
d0

b1 b2 b3 b4 b5þb6 b7 b8 b9 b10

Case 3. 2k þ 1 ¼ n:

We do the special case for 11 elements,

d ¼ d0; d1; d2; d3; . . . d10; d11

where d0 ¼ 0 and d5 ¼ d6. Define

~dd ¼ d0; d1; d2; d3; d4; d6; d7; d8; d9; d10; d11
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d1 d2 d3 d4 d6 d7 d8 d9 d10 d11

d11
d10 d10
d9 d9
d8 d8
d7 d7
d6 d6
d4 d4
d3 d3
d2 d2
d1 d1
d0

b1 b2 b3 b4 b5þb6 b7 b8 b9 b10

And we can check our equalities again. This completes the verification of the
claim.

5. Global Minimum

Recall that we want to minimize G dð Þ under F dð Þ ¼ C. Finding the global
minimum is now easy: We claim that it occurs when the length of d is 1. First,
there is only one solution for F dð Þ ¼ C when the length is 1. Consider an
increasing counterexample at a higher dimension, and assume this is the
minimal dimension in which these exist. If it is not strictly increasing, apply
vector shortening. Otherwise it is not a local minimum, so we can move to a
worse example. Legal d values are bounded since andn ¼ d1dn � F dð Þ ¼ C and
our Lagrange multiplier considerations only changed ddn2e; dn, so d1 remains
constant. Thus, we will reach a counterexample with two coordinates equal.
Then we can apply vector shortening, which gives a shorter counterexample,
a contradiction. Theorem 2.2 follows now by noting that a vector of length 1
corresponds to a clique in the identification we used. The condition that
the number of edges is k

2

� �
is used to get a vector of length 1 with integer

value.

Open Questions. 1. We found the minimal graph for a graph with k
2

� �
edges, and

found that the clique is the minimal graph. What about k
2

� �
þ l, where l < k þ 1?

We expect the minimal graph here to be a union of a clique on k vertices and a
single vertex adjacent to l vertices of the clique. This result does not follow
immediately from our methods, but we believe it could be derived with some extra
effort.

2. Comment 2.3 shows the result cannot be extended to every concave in-
creasing function. What is the family of functions for which the clique is the
minimal graph? Are all functions xc with c < 1 minimized on the clique ?
3. Perhaps there is a small family of graphs which contain the minimal graph

for every increasing concave function f ? For example, is every function minimized
on the clique or the star?
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