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Abstract

Let G be a k-regular graph, k ≥ 3, with girth g. We prove that
every embedding f : G → �2 has distortion Ω(

√
g). Two proofs

are given, one based on Markov type [B] and the other on quadratic
programming. In the core of both proofs are some Poincaré-type
inequalities on graph metrics.

1 Introduction

Finite metric spaces and their embeddings in other metric spaces have
been intensively investigated in recent years. For metric spaces (X, dX)
and (Y, dY ), and an embedding f : X → Y we define the distortion of f by

dist(f) = sup
x,y∈X

dY (f(x), f(y))
dX(x, y)

· sup
x,y∈X

dX(x, y)
dY (f(x), f(y))

.

We denote by cY (X, d) the least distortion with which (X, d) may be
embedded in Y . For p ≥ 1 we denote cp(X, d) = c�p(X, d). A special case
of interest is when Y is the Euclidean space �2. In this case, a fundamental
result of Bourgain [Bou1] states that c2(X, d) = O(log n) for every n-point
metric space (X, d).
One natural source for examples of metrics comes from graphs. A graph

G induces a metric dG on its vertex set, where dG(u, v) is the length of the
shortest path in G joining u and v. Special families of graphs define spe-
cial families of metrics, e.g. expander graph metrics are studied in [LLR],
[M1], [LM], tree metrics in [Ba], [Bou2], [LS], [M2], metrics of graphs with
forbidden minors in [R], [GNRS], [KPR] and many more. Here we con-
sider regular graphs with constant degree, and wish to study the Euclidean
distortion of these graphs as a function of their girth.

N.L. was supported in part by grants from the Israel Science Foundation and the
Binational Science Foundation Israel-USA. A.N. was supported in part by the Binational
Science Foundation Israel-USA and the Clore Foundation. This work is part of a Ph.D.
thesis being prepared under the supervision of Professor Joram Lindenstrauss.



Vol. 12, 2002 GIRTH AND EUCLIDEAN DISTORTION 381

In [LLR], Bourgain’s upper bound for the Euclidean distortion was
shown to be tight. In fact, the Euclidean distortion of an n point constant
degree expander is Ω(log n). This fact is striking since for any graph G, the
trivial bound c2(G, dG) ≤ diam(G) follows by embedding G as a simplex
in �2. When G is an n-point expander, diam(G) = O(log n), so that up to
constant factors, the best way to embed an expander in Hilbert space is to
ignore its structure altogether and embed it as if it were a clique! A new
proof of this phenomenon follows from the results presented in this article.
In most examples we know, metrics are far from being Euclidean, since

they include “too many” triples for which the triangle inequality holds as
(a near) equality. The simplest example is K1,3 that cannot be embedded
isometrically in Euclidean space, since there cannot be three geodesics be-
tween three different points that meet in their interior. For the hypercube
of dimension m, there are m! geodesics between every pair of antipodes,
and consequently we get a large Euclidean distortion [E], [LM].
It is known that for a tree T on n vertices, c2(T, dT ) = O(

√
log log n),

and this bound is tight, as the Euclidean distortion of the complete binary
tree on n vertices is Θ(

√
log log n) (see [Bou2], [M2], [LS]). Motivated by

this, Linial, London and Rabinovich considered graphs with vertex degrees
bigger than 2 and with girth g. Any such graph contains isometrically a
tree of depth g/2−1, which immediately gives the lower bound c2(G, dG) =
Ω(

√
log g). Unlike the complete binary tree example, every vertex in the

graph is a root of such a tree. In [LLR], Linial et al. conjecture that
c2(dG) = Ω(g). In this paper we prove c2(dG) = Ω(

√
g) for k-regular

graphs, k ≥ 3.
A key ingredient (sometimes stated explicitly and often implicit in the

proofs) in all the existing proofs of lower bounds for the Euclidean dis-
tortion of graphs is a Poincaré type inequality. Let G be a graph, and
take any function f : V (G) → �2. A Poincaré type inequality bounds the
average size of {‖f(u) − f(v)‖2}u,v∈V (G) in terms of its average “gradi-
ent” {‖f(u) − f(v)‖}[u,v]∈E(G). Such an inequality measures how often an
equality holds in the triangle inequality. A lower bound on the Euclidean
distortion of an n-point k-regular expander with conductance Φ, G, can be
derived from the following Poincaré inequality for functions f : V (G)→ R

(see [M1]): ∑
u,v∈V (G)

∣∣f(u)− f(v)
∣∣ ≤ n− 1

Φ

∑
[u,v]∈E(G)

∣∣f(u)− f(v)
∣∣ .

For the embeddability of the Hamming cube Dn = {0, 1}n in a metric space
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(X, dX ), the following Poincaré inequality is relevant:∑
dH(u,v)=n

d2
X

(
f(u), f(v)

) ≤ K2n
2
p
−1

∑
[u,v]∈E(Dn)

d2
X

(
f(u), f(v)

)
,

where dH is the Hamming metric, and f : Dn → X is any function. When
such an inequality holds, for some p > 0, for every n and with K indepen-
dent of n and f , we say that (X, dX) has metric type p with constant K.
This fundamental notion was introduced in [BouMW], where it was proved
to essentially control the growth of cX(Dn). When X is a Banach space,
metric type is studied via an important Poincaré inequality due to Pisier
(See [P]. See also [W] for a different proof, and [T] for an improvement
when X is the real line). We refer also to [BouMW], [P] for a related
Poincaré inequality known as Enflo-type, or roundness.
Let T be the complete binary tree of depth N . The following Poincaré

inequality is implicit in [LS], where a new proof of the estimate c2(TN ) =
Ω(

√
logN) is obtained. Denote by r the root of T , and for every integer k

let Fk be the set of all unordered pairs of vertices {u, v} ⊂ V (T ) such that
dT (u, r) = dT (v, r) and dT (u, v) = 2k. Then, for every f : V (T )→ R,

�log2N�∑
k=1

∑
{u,v}∈Fk

2−dT (u,r)−2k−1−2k · ∣∣f(u)− f(v)
∣∣2

≤ C
∑

[u,v]∈E(T )

2−dT (u,r)
∣∣f(u)− f(v)

∣∣2,
where C is an absolute constant.

This paper further develops the above theme. We introduce two Poincaré
type inequalities which are useful in the search of lower bounds for Eu-
clidean distortion of graphs with large girth. The first is the notion of
Markov type, due to K. Ball [B], which concerns the wandering of symmet-
ric Markov chains whose state set is a metric space. We refer to section 2 for
the definition. We also prove the following theorem, which can be viewed
as a new Poincaré type inequality :

Theorem 1.1. Let H be a Hilbert space and G be a k-regular graph,
k ≥ 3, with girth g. Fix some 1 < s < g/2. For every f : V (G) → H the
following inequality holds:∑

dG(u,v)=s

∥∥f(u)− f(v)
∥∥2 ≤ Cs(k − 1)s−1 ·

∑
[u,v]∈E(G)

∥∥f(u)− f(v)
∥∥2

,

where C is an absolute constant.
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If, in addition, the graph G has a spectral gap, we can prove a stronger
inequality. This leads to a new simple proof of the tightness of Bourgain’s
embedding theorem:

Theorem 1.2. Let H be a Hilbert space and G be a k-regular graph,
k ≥ 3, with girth g and spectral gap ε > 0. Fix some 1 < s < g/2. For
every f : V (G)→ H the following inequality holds:∑
dG(u,v)=s

∥∥f(u)−f(v)
∥∥2 ≤ C(k−1)s · 1− e−Cεs/k

ε
·

∑
[u,v]∈E(G)

∥∥f(u)−f(v)
∥∥2

,

where C is an absolute numerical constant.

We apply the above inequalities to prove our main result:

Theorem 1.3. There is a universal constant C > 0 such that c2(G) >
C
√

g for every k-regular (k > 2) graph G with girth g. If, in addition, G
has a spectral gap ε > 0 then

c2(G) ≥ Cg√
min

{
g, kε

} .

Remark. It is well known and not hard to show by probabilistic argu-
ments that for every integer k ≥ 3, there is an ε = εk > 0 and n0 = n0(k)
such that if n ≥ n0 and kn is even, there exist k-regular graphs of order n,
spectral gap greater than ε and girth Ω(logn). In view of Theorem 1.3 these
graphs show that Bourgain’s upper bound is tight. A curious feature of our
estimate is that the lower bound for the Euclidean distortion of constant
degree graphs with girth g does not depend on the graph’s degree.

This paper contains two proofs for the first part of Theorem 1.3. We
first present a proof based on the notion of Markov type. Next, we prove
the inequalities in Theorems 1.1 and 1.2 to deduce the full statement of
Theorem 1.3. This proof is based on quadratic programming. In section 4
we discuss the interrelations between the two methods.

2 A Proof Based on the Concept of Markov Type

The first proof we present is based on the important notion of Markov type,
due to Ball [B]. This concept is a Lipschitz invariant of metric spaces. It is
related to other “types” that are central to the modern theory of Banach
spaces. The basic assumption of this concept can also be viewed as a
Poincaré inequality on metric spaces. Although we will see later that the
Markov type method cannot yield the second statement in Theorem 1.3,
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it does give a simple and conceptual proof of the first statement. We first
recall some definitions from [B].
Let (X, d) be a metric space. A symmetric Markov chain on X is a

Markov chain {Zk}∞k=0 on a state space {x1, . . . , xm} ⊂ X with a symmetric
transition matrix and such that Z0 is uniformly distributed on {x1, . . . , xm}.
In other words, there is a m × m symmetric stochastic matrix A = (aij)
such that for all k, P (Zk+1 = xj|Zk = xi) = aij and P (Z0 = xi) = 1/m.
For p > 0 and an integer T let Mp(X,T ) be the smallest constant C > 0
such that for every symmetric Markov chain on X, {Zk}∞k=1

E dp(ZT , Z0) ≤ CpTE dp(Z1, Z0) .
We say that (X, d) has Markov type p if Mp(X) := supT Mp(X,T ) < ∞.
In this case Mp(X) is called the Markov type p constant of X.
The space L2 has Markov type 2 with constant 1, as shown in [B]. For

the sake of completeness, we prove here a somewhat stronger and rather
intuitive claim. We first observe that the Markov type 2 property for R

implies, by integration, the same conclusion for L2. For symmetric Markov
chains on R we prove the following negative correlation inequality that
implies Markov type 2. Let {Zk}∞k=1 be a symmetric Markov chain with
transition matrix A and state space {x1, . . . , xm} ⊂ R. The symmetry as-
sumption makes it intuitively plausible that ZT − ZT−1 and ZT−1 − Z0

must be negatively correlated. To prove this, notice that Zk is uniformly
distributed on {x1, . . . , xm}, for every k. Since A is symmetric and stochas-
tic, its spectrum is in [−1, 1], and we deduce that (I−A)(I−Ak) is positive
semi-definite for every k. Therefore,
E(ZT − ZT−1)(ZT−1 − Z0) = EZTZT−1 − EZTZ0 − EZ2

T−1 + EZT−1Z0

=
1
m

[ m∑
i,j=1

(A)ijxixj −
m∑
i,j=1

(AT )ijxixj −
m∑
i=1

x2
i +

m∑
i,j=1

(AT−1)ijxixj

]
= − 1

m

〈
(I +AT −A −AT−1)x, x

〉
= − 1

m

〈
(I −A)(I −AT−1)x, x

〉 ≤ 0 ,
where x = (x1, . . . , xm). Hence,
E(ZT − Z0)2 = E(ZT−1 − Z0 + ZT − ZT−1)2

= E(ZT−1−Z0)2+2E(ZT−ZT−1)(ZT−1−Z0) + E(ZT−ZT−1)2

≤ E(ZT−1 − Z0)2 + E(Z1 − Z0)2.
By summing this inequality over T = 1, . . . , N , we deduce that the real line
has Markov type 2 with constant 1.
The following simple consequence of the above analysis will be useful

for us:
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Corollary 2.1. For every metric space (X, d), c2(X, d) ≥ M2(X).

Proof. Fix some embedding f : X→L2 such that 1/D≤‖f(x)−f(y)‖/d(x, y)
≤ 1 for every x, y ∈ X. For every symmetric Markov chain {Zk}∞k=0 on X,
the Markov type 2 property of L2 applied to the Markov chain {f(Zk)}∞k=0

gives
1
D2 E d2(ZT , Z0) ≤ E

∥∥f(ZT )− f(Z0)
∥∥2 ≤ TE

∥∥f(Z1)− f(Z0)
∥∥2

≤ TE d2(Z1, Z0) ,

so that D ≥ M2(X). ✷

The first assertion in Theorem 1.3 follows from the following:

Proposition 2.2. Let G be a k-regular graph with girth g. Then

M2(G) ≥ k − 2
k

√⌈g
2
− 1
⌉
.

Proof. Consider the symmetric Markov chain {Zt}∞t=0 that corresponds to
the canonical random walk on G. Namely, Z0 is uniformly distributed on
V (G) and P (Zt+1 = v|Zt = u) equals 1/k if u and v are neighbors, and
0 otherwise. Note that every vertex v ∈ V (G) is the root of an induced
k-regular tree of depth g/2. In other words, the metric of each ball of radius
smaller than g/2 in G is isometric to such a tree, whose root is the center of
the ball. As long as T < g/2, each step of the random walk {Zt}Tt=0 moves
away from Z0 with probability at least k−1

k (if Zt = Z0 then this probability
is 1) and towards it with probability at most 1/k. In other words, as long as
T < g/2, the random walk has a positive drift away from Z0. To quantify
this, for every 1 < T < g/2 we have

E dG(ZT , Z0) ≥ k − 1
k

(
E dG(ZT−1, Z0) + 1

)
+
1
k

(
E dG(ZT−1, Z0)− 1

)
= E dG(ZT−1, Z0) +

k − 2
k

.

Hence, for every T < g/2,

E d2
G(ZT , Z0) ≥

(
E dG(ZT , Z0)

)2 ≥
(

k − 2
k

)2

T 2.

On the other hand,

E d2
G(ZT , Z0) ≤ M2(G)2TE d2

G(Z1, Z0) =M2(G)2T .

The proposition follows by taking T =
⌈ g

2 − 1⌉. ✷
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3 Bounding the Distortion via Poincaré Inequalities

In what follows G is a k regular graph with girth g.
Semi-definite programming has proved to be a central tool in establish-

ing lower bounds on c2(·). Our proof of Theorems 1.1 and 1.2, and our
second proof of Theorem 1.3 are all based on this point of view, together
with an analysis of the algebraic properties of the graphs in question. We
first present the necessary background.
Let PSDn be the cone of positive semi-definite symmetric n×n matri-

ces. Define Bn to be {Q ∈ PSDn|Q+1 = 0}, and let

δ(Q, d) =

( ∑
i,j:Qi,j>0 d2(i, j)Qi,j∑
i,j:Qi,j<0 d2(i, j)|Qi,j |

)1/2

,

if the denominator is not 0, and 1 otherwise.
The following lemma gives a formula for c2.

Proposition 3.1 (Linial, London, Rabinovich [LLR]). Suppose X is finite,
|X| = n, then

c2(X, d) = sup
Q∈Bn

δ(Q, d)

In order to make use of the algebraic properties of G, we turn to some
background on the following very useful concept.

3.1 Geronimus polynomials. Let G be a k-regular graph with girth g
and let A be its adjacency matrix. We define A(t) as G’s distance t matrix.
Namely, A(t)

i,j = 1 if the distance dG(i, j) = t and 0 otherwise.
There exist polynomials Pt, such that Pt has degree t and Pt(A) = A(t)

for every t < g/2. The conditions that define these polynomials easily trans-
late to a simple recurrence relation. Clearly P0(x) = 1, and P1(x) = x.
Note that A(t) − A · A(t−1) equals −kA(t−2) = −k · I for t = 2, and
−(k − 1)A(t−2) for 2 < t < g/2. Therefore,

P2(x) = xP1(x)− kP0(x) = x2 − k ,

and
Pt(x) = xPt−1(x)− (k − 1)Pt−2(x) for every t > 2 .

These polynomials are often called in the literature “Geronimus Poly-
nomials”, a name that we adopt. Basic facts about Geronimus polynomials
can be found in [Bi], [S] (but note the different normalization used in these
references). To make this discussion self-contained, we briefly review some
of the necessary facts and sketch their proofs.
In order to understand the analytical properties of the Geronimus poly-

nomials, one first solves the recursion and finds an explicit formula for
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them. The following trigonometric expression is obtained:

∀t > 0 Pt
(
2
√

k − 1 cos θ) = (k− 1)t/2−1 (k−1) sin((t+1)θ)− sin((t−1)θ)
sin θ

.

(1)
To verify this identity, check the cases t = 1, 2 and note that for t > 2 the
recursion relation holds.
Our next observation is that all the roots of Pt are real and they all

lie between −2√k − 1 and 2√k − 1. This can be derived from the general
theory of orthogonal polynomials (e.g. [Sz]), but we provide a direct proof.
By identity 1 it suffices to show there are t distinct real values of θ in [0, π)
for which the above expression vanishes. Indeed, define θq =

(
π
2+qπ

)/
(t+1)

for q = 0, 1, . . . , t− 1. Now, it is not hard to see that Pt
(
2
√

k − 1 cos θq
)
is

positive for even q, and negative for q odd. Therefore, there is a zero for
some value of θ between θq and θq+1, yielding t zeros in the desired interval.
The last two facts that we need are easily verified by induction:

Pt(k) = k(k − 1)t−1 ∀t > 0 ,

and

P ′
t(k) =

1
(k − 2)2

(
t(k − 1)t+1 − 2(k − 1)t − t(k − 1)t−1 + 2

)
.

3.2 Technical lemmas. Even though the Geronimus polynomials are
not convex throughout [−k, k], we now prove an inequality that reflects
the fact that their non-convexity is restricted to the relatively small range
[−2√k − 1, 2√k − 1]. The proof uses the classical Markov inequality (see
[BoE]): ‖P ′‖L∞[−1,1] ≤ n2‖P‖L∞[−1,1] for every real polynomial P of de-
gree n, where ‖f‖L∞[−a,a] = sup|x|≤a |f(x)|. A more direct proof can be
given by differentiating formula 1, but use of Markov’s inequality elimi-
nates a tedious calculation which leads, essentially, to the same estimate.

Lemma 3.2. Let s ≥ 40 be an even integer. For every ε > 0 and
x ∈ [−k, k − ε],

Ps(k)− Ps(k − ε)
ε

≥ Ps(k)− Ps(x)
k − x

.

Proof. Define

f(x) =
Ps(k)− Ps(x)

k − x
.

We need to show that f is non-decreasing on [−k, k]. By taking a derivative
of the right-hand side and expanding, this follows from the claim that for
all x ∈ [−k, k],

h(x) := Ps(x) + (k − x)P ′
s(x) ≤ Ps(k) .
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Note that h(k) = Ps(k) and, since Ps is an even function (for s even), it
follows that h(−k) = Ps(k) − 2kP ′

s(k) < Ps(k) (since P ′
s(k) > 0). It is

therefore enough to show that h(x0) ≤ Ps(k) whenever h′(x0) = 0. Now,
h′(x) = (k− x)P ′′

s (x), so that the zeros of h
′ coincide with the zeros of P ′′

s .
Since Ps has all its roots in the interval, [−2

√
k − 1, 2√k − 1], the same

holds for P ′′
s . It therefore suffices to show that h(x) ≤ Ps(k) throughout

the interval [−2√k − 1, 2√k − 1]. Every point in this interval has the form
x = 2

√
k − 1 cos θ for some 0 ≤ θ ≤ π. Using the trigonometric expression

(1) we get

Ps(x) = Ps
(
2 cos θ

√
k − 1) = (k−1)s/2−1 (k−1) sin((s+1)θ)− sin((s−1)θ)

sin θ
.

It is easily verified that sin rα ≤ r sinα for α ∈ [0, π) and r ≥ 1. Therefore,
‖Ps‖L∞[−2

√
k−1,2

√
k−1] ≤ (k − 1)s/2−1

(
(k − 1)(s + 1) + (s− 1)) .

Markov’s inequality implies that

‖P ′
s‖L∞[−2

√
k−1,2

√
k−1] ≤

s2

2
√

k − 1 · ‖Ps‖L∞[−2
√
k−1,2

√
k−1] ,

so that

‖h‖L∞ [−2
√
k−1,2

√
k−1] ≤ ‖Ps‖L∞[−2

√
k−1,2

√
k−1] + 2k‖P ′

s‖L∞[−2
√
k−1,2

√
k−1]

≤ (k − 1)s/2−1
(
(k−1)(s+1) + (s−1)) (1 + ks2

√
k − 1

)
≤ k(k − 1)s−1 = Ps(k) .

It is not hard to verify the last inequality for every k ≥ 3 and s ≥ 40. ✷

We need one more fact concerning Geronimus polynomials:

Lemma 3.3. For every integer s and ε ≤ k/20,

Ps(k − ε) ≥ k(k − 1)s−1 · e−150εs/k.

Proof. Let y1, . . . , ys be the roots of Ps. By the mean value theorem there
is some a ∈ (k − ε, k) such that

log
[

Ps(k)
Ps(k − ε)

]
= ε

P ′
s(a)

Ps(a)

= ε ·
s∑
i=1

1
a− yi

≤ εs

k − ε− 2√k − 1 ≤ 150εs
k

,

where we have used the facts that y1, . . . , yn ∈ [−2√k − 1, 2√k − 1],
ε ≤ k/20 and k ≥ 3. This yields the required result since Ps(k) =
k(k − 1)s−1. ✷



Vol. 12, 2002 GIRTH AND EUCLIDEAN DISTORTION 389

Corollary 3.4. Let s ≥ 40 be an even integer and 0 < ε ≤ k. Then

1− Ps(k − ε)
Ps(k)

≤ C(1− e−Cεs/k) ,

for some absolute constant C > 0.

Proof. When ε ≤ k/20 this follows from Lemma 3.3. When ε > k/20 the
right-hand side is bounded from below by an absolute constant. The left-
hand side is at most 2, since the minimum of Ps is attained in the interval
[−2√k − 1, 2√k − 1], and the bound obtained in the proof of Lemma 3.2
implies in particular that Ps(x) ≥ −Ps(k) for every x in this interval. ✷

3.3 Proof of Theorems 1.1 and 1.2. Let G be a k-regular graph with
girth g and fix an integer 1 < s < g/2. For every two vertices u, v ∈ V (G)
such that dG(u, v) = s there is a unique path of length s joining u and v. In
other words, there is a unique set of vertices {wu,v(i)}si=0 ⊂ V (G) such that
wu,v(0) = u, wu,v(s) = v and for every i ≥ 1, [wu,v(i − 1), wu,v(i)] ∈ E(G).
Each edge e ∈ E(G) appears in exactly s(k − 1)s−1 such paths. Hence, for
every metric space (X, dX ) and every mapping f : V (G)→ X∑
dG(u,v)=s

d2
X

(
f(u), f(v)

) ≤ ∑
dG(u,v)=s

( s∑
i=1

dX
(
f(wu,v(i − 1)), f(wu,v(i))

))2

≤
∑

dG(u,v)=s

s

s∑
i=1

d2
X

(
f(wu,v(i − 1)), f(wu,v(i))

)
= s2(k − 1)s−1

∑
[u,v]∈E(G)

d2
X

(
f(u), f(v)

)
.

It follows that the inequalities of Theorems 1.1 and 1.2 are trivially true for
bounded s, so that we may clearly assume that s ≥ 40. By a similar argu-
ment, we can also assume that s is even. In addition, in both statements
it is clearly enough to assume that f maps G into H = R.
We begin with the the proof of Theorem 1.2. LetG satisfy the conditions

of Theorem 1.2 and consider the following matrix:

Q = αI −A+ βA(s),

where 40 ≤ s < g/2 is an even integer, and

α = k − εPs(k)
Ps(k)− Ps(k − ε)

,

β =
ε

Ps(k)− Ps(k − ε)
.
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We claim that Q ∈ Bn. Now, Q is clearly symmetric. Also, since
A+1 = k+1, A(s)+1 = Ps(k)+1 so that Q+1 = 0. Other than the eigenvalue k,
the spectrum of A is in [−k, k − ε], so Q will be shown to be positive
semi-definite if for all x ∈ [−k, k − ε]

α − x+ βPs(x) ≥ 0 ,
which is precisely the statement of Lemma 3.2.
Now, for every f : V (G)→ R we get that

0 ≤ 〈Qf, f〉
= α

∑
u∈V (G)

f(u)2 −
∑

u,v∈V (G)

Auvf(u)f(v) + β
∑

u,v∈V (G)

A(s)
uv f(u)f(v)

= 1
2

∑
[u,v]∈E(G)

∣∣f(u)− f(v)
∣∣2 − β

2

∑
dG(u,v)=s

∣∣f(u)− f(v)
∣∣2,

where in the last equality we have used the fact that α − k + βPs(k) = 0.
Hence,∑
dG(u,v)=s

∣∣f(u)− f(v)
∣∣2 ≤ 1

β

∑
[u,v]∈E(G)

∣∣f(u)− f(v)
∣∣2

=
k(k−1)s−1

ε

[
1−Ps(k−ε)

Ps(k)

] ∑
[u,v]∈E(G)

∣∣f(u)−f(v)
∣∣2

≤ C(k − 1)s · 1− e−Cεs/k

ε

∑
[u,v]∈E(G)

∣∣f(u)− f(v)
∣∣2,

where we have used Corollary 3.4.
The proof of Theorem 1.1 runs along the same lines. We return to the

above construction and let ε → 0. This yields a matrix:

Q̃ =
[
k − Ps(k)

P ′
s(k)

]
I −A+ 1

P ′
s(k)

A(s),

which by continuity is in Bn as well. Arguing as above, we get the following
inequality:∑
dG(u,v)=s

∣∣f(u)− f(v)
∣∣2 ≤ P ′

s(k)
∑

[u,v]∈E(G)

∣∣f(u)− f(v)
∣∣2

=
s(k − 1)s+1 − 2(k − 1)s − s(k − 1)s−1 + 2

(k − 2)2
∑

[u,v]∈E(G)

∣∣f(u)− f(v)
∣∣2,

which implies the required result. ✷
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3.4 Proof of Theorem 1.3. We now deduce Theorem 1.3 from The-
orems 1.1 and 1.2. Let G be a k-regular graph (k ≥ 3) with girth g. Take
any embedding f : V (G)→ �2 such that for every u, v ∈ V (G)

1
D

≤ ‖f(u)− f(v)‖
dG(u, v)

≤ 1 .

Set s = [g/2] − 1. Since there are k(k − 1)s−1 vertices of distance s from a
fixed vertex we get that:∑

dG(u,v)=s

∥∥f(u)− f(v)
∥∥2 ≥ s2k(k − 1)s−1|V (G)|

D2
,

and ∑
[u,v]∈E(G)

∥∥f(u)− f(v)
∥∥2 ≤ k|V (G)| .

Theorem 1.1 now gives that
s2k(k − 1)s−1|V (G)|

D2
≤ Cs(k − 1)s|V (G)| ,

so that c2(G) ≥ c′√g. If in addition we assume that G has a spectral gap ε,
this reasoning gives

c2(G) ≥ c′g

√
ε/k

1− e−Cgε/k
≥ c′′g√

min
{
g, kε

} ,

which finishes the proof of Theorem 1.3.

4 The Relationship Between the Two Methods

The proof of the Markov type 2 property of Hilbert space in [B], sheds
some light on the connection between the two methods. In Proposition 3.1
we seek the matrix Q with maximal δ(Q, d) over all Q ∈ Bn. We will show
how to view Corollary 2.1 as a restriction of Proposition 3.1, in the sense
that only a subset of the matrices in Bn can be used for the lower bound.
LetB be the symmetric stochastic transition matrix defining the Markov

chain, and let γ ∈ (0, 1). Now define
R =

2γ − 1
γ

I −B +
(1− γ)2

γ

∑
l≥0

(γB)l.

The spectrum of B clearly determines that of R: If λ is an eigenvalue
of B, then 2γ−1

γ − λ + (1−γ)2
γ(1−γλ) is an eigenvalue of R. This expression is

nonnegative for λ ∈ [−1, 1], and 0 for λ = 1. This clearly means that
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R ∈ Bn. If x1, . . . , xn are vectors in Hilbert space then,∑
i,j

Ri,j‖xi − xj‖2 ≤ 0 ,

and so

(1− γ)
∑
ij

(∑
l

(γB)l
)
ij
‖xi − xj‖2 ≤ γ

∑
ij

Bij‖xi − xj‖2.

As Ball shows by taking γ = 1 − 1
m , this is equivalent to the fact that

Hilbert space has Markov type 2. To be more precise, this is the original
definition he gives to the metric property “having a Markov type 2”.
Thus the approach via Markov type can be viewed as a specialized ver-

sion of the semidefinite programming method. This method is incomplete
in that not every matrix in Bn is attained from the above transformation of
symmetric stochastic matrices. This method is still very useful, in that it
allows one to draw on geometric and probabilistic intuitions. In contrast,
the semi-definite approach greatly depends on successful clever guesses of
the matrix Q.
The Poincaré inequality method can also be viewed as a restriction of

the family Bn. Indeed, if G is a graph and B is any matrix such that
Buv = 0 whenever u and v are not neighbors in G, then for any matrix C
and α ∈ R, the fact that the matrix αI − B + C is in Bn is equivalent to
the Poincaré inequality:∑

u,v∈V (G)

Cuv
∣∣f(u)− f(v)

∣∣2 ≤
∑

[u,v]∈E(G)

Buv
∣∣f(u)− f(v)

∣∣2,
for every f : V (G) → R. Thus, all the existing lower bounds for c2(·) are
based on the study of the above subset of Bn, which leads to geometrically
intuitive, Poincaré inequality reasons for non-embeddability of graphs in
Hilbert space. Hence, in a sense, the full strength of Proposition 3.1 is yet
to be fully exploited.
The second part of Theorem 1.3 cannot be derived from Markov type

considerations. Indeed, let G be any graph. If {Zk}∞k=0 is a symmetric
Markov chain on G such that P (Zk+1 = u|Zk = u) = 0 for every u ∈ V (G)
then clearly E d2

G(ZT , Z0) ≤ diam(G)2E d2
G(Z1, Z0) and by the triangle in-

equality E d2
G(ZT , Z0) ≤ T 2

E d2
G(Z1, Z0). Hence, for every T ,

M2(G) ≤ min
{
diam(G)√

T
, T

}
,

which implies that M2(G) = O(diam(G)2/3), while our second proof of
Theorem 1.3 showed that there are graphs with c2(G) = Ω(diam(G)).
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An interesting problem that still remains open is the determination of
the worst possible behavior of c2(G) over all k-regular, k ≥ 3, graphs with
girth g. Our present methods seem to break at

√
g. On the other hand if

k-regular graphs, G, with girth g and c2(G) = O(
√

g) exist, they cannot be
expanders in view of the known lower bound for the Euclidean distortion of
expanders. This observation rules out most known constructions for graphs
with large girth. Although examples of k-regular graphs with large girth
which are not expanders are known, these specific examples seem highly
complicated and far from Euclidean.
Another problem worth mentioning is whether the lower bound for

c2(G) still holds without the regularity assumptions, i.e. if we only assume
that the graph has large girth and the degree of each vertex is greater than
2. Finally, it would be very interesting to find lower bounds for c1(G) as
a function of the girth of G. In particular, we do not know if c1(G) must
tend to infinity when the girth tends to infinity.
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