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How much can a permutation be simplified by means of cyclic rotations? For functions
f:8,— Z which give a measure of complexity to permutations we are interested in finding

F(n) = max min f(0),

where the max is over o € S, and the min is over & which are cyclically equivalent to o.
The measures of complexity considered are the number of inversions and the diameter of the
permutation. The effect of allowing a reflection as well as rotations is also considered.

1. Introduction

Let o=(a,...,a,)eS, be a permutation and let [o]=
{(a, - ..,au ay,...,a;_y), n=j=1} be the class of all cyclic permutations of .
Also for #=(b,, ..., b,) €S, denote by n® the permutation (b,,, ..., b,) €S,.
We also denote by (o) the set [o]U {z" | 7 € [0]}. For a real function f:S,— R,
we consider f defined by

f(o)=min{f(z) | 7 €[0]},
and f given by

f(o) =min{f(z) | 7€ (0)}.

Our interest in this article is in finding max{f(c) | o €S,} and max{f(o)| o€
S,}, for certain functions f.

Here we deal with two instances of this general problem:

(1) f(o) = number of inversions in o = |{(i, j) | i <j, o(i) > 0(j)};

) f(o)=max{|lo@®)—i||i=1,...,n}.

Our interest in those problems was initiated by studies on the design of
electrical circuits for parallel computations [1]. Of course, many other problems
suggest themselves that we hope to investigate in the future.
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2. Counting inversions

As stated in the introduction we investigate here the function
F(n) = max min I(0),

where I(o) is the number of inversions in o, the max is over & € S, and the min
over o € [7].

Theorem 2.1.

- - 2 -1
8 nn2_2<F(n)\n _3n

= +2
T > 3~ =033+ O().

0.304"n* + O(n) =

Proof. Let us first remark that F(n) = O(n?) is obvious. Since a permutation of
S, can have at most (3) inversions, F(n) < (3). Also for & = (n, n — ,1) €S,
it is easily verified that

min I(0) = —2 + O(n).

oe[n]

The upper bound

Leto=(ay,...,a,) and let 5, =(ay, ..., a,,ay,...,08;,-1),n=k=1 be the
permutations in [0]. Define variables x{°, 1 <i<j<n, 1<k =<n as follows:

x(-") — {1 ?fak+i > ak+j:
0 if agy; <ag.j

Whenever reference is made to a, with ¢¢[1, n] we mean a, where ¢’ =
t—1(modn)+ 1. This convention will be made throughout the article without
further notice. Also x;; stands for x{".

Note that

I(x)= Y xP.
I<i<j=<n

We want to find the average of I(7,) over n=k=1;soletus fix I1<i<j=<n

and let us calculate

k=1 n—j+i ifx;=1.
This is because for 1<i <j=<n there are n —j +i values of 1=<k =<n for which
i +k (modn)>j+ k (modn). Again let us remark that our residue classes mod n
arel,...,nnot0,...,n—1 as usual. So, we have

n

D xP=j—i+(n—2j+2)x,
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And therefore

n

él(rk)=k S o= 3 -+ S (n-2i+2i)x

=1 I<i<j<n I=i<j=n Isi<j<n

- (” ;’ 1) + 3 (n—2j+2i),

Isi<j=n
For 1 <r<s<i=<n we have
1=zx, +X4 — X, (1)

Because x,; = x,, = 1 implies x,, = 1.

Let us sum (1) over all triples 1<r<s<t=<n. For 1<i<j<n we count
x; (j —i—1) times in the negative and i —1+n —j times in the positive sign.
Altogether we get

(g)= Y 1= D x X, —X.= D (n—2j+2i)xij.

l=sr<s<tsn l=si<j=n
Therefore
S 1)< (n + 1) + (n) _ (Zn - Dnfn—1)
k=1 3 3 6

and so the average of I(t) over all 7 € [o] is at most (2n — 1)(n — 1). It follows
that for every o €S, there is a 7 € [o] for which I(t)<}(2n —1)(n —1)=3in*-
¢(3n — 1), proving the upper bound.

The lower bound

We want to find a permutation o = (ay, . . . , a,,) € S, for which I(z;) is large for
al ,=(ax, ..., an ay, - - -, ax—1) € [0]. Let us comment first that

I(Ts1) — () =n + 1 —2a,.

Because of moving from 7, t0 T,.,, a; — 1 inversions disappear and n — a, new
inversions are created. Let us assume, for simplicity that I(z;) <I(7,) for all
n=k>2. That means that foralln —1=k=1

i(u+1—2a,-)>0 (n—-1=k=1). )

To simplify our calculations we assume n to be- even, the modifications for
odd n are insignificant. We want to find o for which a; < 4; for i <;j will occur only
for i <3in <j. In other words the numbers in [1, in] will appear in reverse order
and so will the ones in [4n + 1, n]. Under this assumption we want to maximize
the number of inversions between numbers from these two intervals, while at the
same time maintaining (2) valid. This means we set

a;=3n—-i+1 foryy=i=1anda,,, =n,
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for some integer ¢;. Of course, we wish to minimize ¢, so as to maximize the
number of inversions. This must be done subject to the assumption that (2) must
hold, which it certainly does for ¢, =k =1. Let us evaluate the left hand side of
2)fork=t;+1

2 (m-2+1)=3 2j-1) =4
j=1 j=1

And therefore

Hn+1

2 n—2a,+1)=6—-(n—-1)>0.

We, therefore, choose ¢, = [Vn — 1] to meet our goals.
We continue by letting a;=3n—i+2 for t,+1=i=t,+2 and a,.2=n-1.
The condition (2) reads
42

> (n—2a;+1)=0.
j=1

We group the terms for ¢, =j =1 and those for #, + 1 =j=1t, + 2 and the (¢, + 1)st
and (#, + 2)nd term arriving at the inequality

> QRi-D=B=mn-1)+®m—-3)=2n—4,
j=1

and we choose accordingly 1, = [V2n —4].

In general, where t,=[Vm —7r*] we set a,,,=n—r+1(3n=r=1). This
defines in of the a; (n =i =1) the undefined @,’s are 4n, . . ., 1 in this order. This
construction of o implies that I(o) <I(z,) for every 1, €[0]. So we have to
calculate I(0): The only situation where i <j and a; < a; occurs for i < 3n <j, and
Hili<inanda,<n—-r+1}|=t forr=1,2,...,3in. Therefore

I(0) = ('2’) _ i ‘.

But _
in in
<> 1+Vm-71),
r=1 r=1
and .
n 2
2Vm—r7<f Vnx —x*dx +1 n——1—6—-+2n.
r=1
And hence
I(a)>( )--J—l:—n—z--n—S—ﬂ:nz--3
= 16 16 2"

establishing the lower bound. 0O
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3. Maximal distance

Foro=(ay,...,a,)€s,, let
D(o)=max{|a;—i|:i=1,...,n}
In this section we investigate the functions: |
G(n) = max min D(7)
o€S, tefo)
and
H(n) = max min D(7).
o€S, te(o)

We provide the exact value of G(n) and an approximate value of H(n), as
described below: Let

a(n)=min{k:k*+k—1=n}, Bn)=min{k:k*—k—-4=n},
and
y(n) =min{k: kK* + 3k =n}.

We prove that:
Gn)=n—an) [n=1], n-Bn)<Hm)sn-y(n) [n=8].

The rest of this section is organized as follows: First we present a general result
related to G(n) and H(n) (Proposition 3.1). Then we use this result to prove the
upper bounds on G(n) (subsection 3.1) and H(n) (subsection 3.2). We conclude
in proving the lower bounds on G(n) and H(n) (subsections 3.3 and 3.4).

In investigating the properties:-of D (o) it is convenient to deal with the value
k(o)=n—D(0). Let 0=(ay, ..., a,) and k<n be given. Then a; covers o if
la;—i|=n ~k, and o is covered if some a; covers it. As in the ‘previous section,
we denote the permutations in [o] by {7y, ..., 7,} and the permutations in (o)
by {ti,.-.,Ts T5,-.., Tk}, where 7,=(g;,...,a,ay,...,a8_1), TR=

]
(aj-1, @j—3, . .., @, @y, . .., a;). The proof of the following Proposition follows

directly from the definitions, and is omitted.

Proposition 3.1. |

@) If a,;=k—w+1 for 0O<w=<k, then a; covers the 2w-elements set
{Tivt> Tivzs oo o> Titws Trs Tty « + 5 Tiwa1)- (Recall that if t is not in [1, n), then
T, is identified with t,., where t' =t — 1 (mod n) + 1.)

) If a=n—k+w for O<ws<k, then a; covers the set
{T,‘, Ti-15 -+« Ti—w+b> 1"18+1: Tf+2: s ey 1'-18+w}'

(c) If k<a;<n —k, then a; covers ¢. [

3.1. Upper bound on G(n)

We now use Proposition 3.1 to obtain an upper bound on G(n). To simplify the
notations we denote min,.,; D(7) by G(0), (thus, G(n) = max,.s, G(0)). Let
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o=(a,...,a,) and k<n be given. We shall show that if G(c)=n —k then
k? + k — 1= n, which, by the definition of a(n), proves the upper bound.
Fori=1,...,n, let v(a;) = |{7 € [0]: a; covers 7}|. Then, by Proposition 3.1,

v(n)=v(l) =k,
vin-1D)=v2)=(k-1),

vik)=v(n—-k+1)=1,
v(j)=0 fork<j=n-—k.

Let FAR([o]) = {7 €[o]: 7 is covered}. Then if G(o0)=n -k, |FAR([o])|=
|[6]]=n. On the other hand, |[FAR([o])|<Xi,v(a)=2(1+2+---+k)=
k(k +1). This means that if G(o)=n —k, then k(k + 1) =n, which gives the
upper bound

G(n)<n—min{k: K>+ k=n}.
To improve this bound to
G(n)<n-—a(n) (recall that a(n) =min{k: k*>+k —1=n}),

we show that if G(o)=n — k then for some 7 in [0] there are i, and i,, i, #i,,
such that both a;; and a;, cover 7. Such a permutation 7 is said to be over covered.
Clearly, if some 7 in [0] is over covered then

[FAR([o])|< D v(a) —1=k*+ k-1,
i=1
which implies the upper bound on G(n). The next lemma proves that such an
over covered permutation must exist.

Lemma 3.1.1. If G(o)=n —k, then there is a permutation T € (o] which is over
covered.

Proof. Assume the contrary. Then each permutation in [o] is covered by a
unique a; (1<i=<n). Hence n =YL, v(a;) =k*+ k, which implies that k <in.
We say that a permutation 7 in [o] is of type (S) if the unique a; that covers it is
not larger than k, and of type (L) otherwise (that is: if that a; is larger than
n — k). There are exactly 1(k®>+ k) permutations of each type, and hence for
some jin {1, ..., n}, 7;is of type (L) and 7;,, if of type (S). Let a;,>n — k cover
7; and a; <k cover 7;,,. Note that since k <3in we must have that a; #a;, and
hence i #i'.

By Proposition 3.1(b) we have that i —v(a;)+1=<j=<i, and a; covers 7, for
j=<I=i. Since 7;,, is covered by a;., it cannot be covered by a;. Hence, i cannot
be greater than j, which implies that it must be equal to j. By similar reasons,
using Proposition 3.1(a), we get that i'=j. Thus we get that i=j=i', a
contradiction. The lemma follows. - O '
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3.2. ‘Upper bound on H(n)

Let H(0) = min,.(,y D(7). Like in the proof of the upper bound on G(n), we
shall show that if for some o= (a,, ..., a,) and k it holds that H(o)=n —k,
then k> +3k=n. Fori=1,...,n let w(a)=|{tr € (0): a; covers 7}| (= 2v(a;)).
Then, by Proposition 3.1.

w(n)=w(l) =2k,
win—-1)=w(2)=2(k - 1),

w(k)=w(n —k+1)=2,
w()=0 fork<j<n-k.

Let FAR({0)) = {7 € (0): T is covered} and OVER({0)) = {r € {(0): Tis over
covered}. Since each permutation in OVER({o)) is covered by at least two
distinct a;’s, we have that FAR({0)) < L7, w(a;) — |OVER({0))| =2k(k + 1) —
|OVER({(0))|. Also, if H(c)=n —k, then |[FAR({c))| =|(0o)|=2n. Thus we
have

Lemma 3.2.1. If H(o)=n —k, then 2k(k + 1)=2n + |OVER({0))|. O

By the above lemma, the upper bound of n — y(n) on H(n) follows from the
following lemma.

Lemma 3.2.2. If H(0) = n — k, where n = 2k, then |OVER({0))| = k.

Proof. Let o€S, be such that H(oc)=n —k. Consider the list of indices
1=<i;<i;<---<iy=<n for which w(a;)>0, and let w, denote the number
3w(a;). Consider now the following partition of (o) to the 2k sets S;,..., S
defined by:

Sii= {1:[, rIR: le [i], i]+1)} (i = 1, ..y 2k).

In the definition above, and throughout this lemma, [iy, i;) means [iy, n]U
[1, iy) if iy > 1, and [iy, n] if i, = 1. Also, for ¢ > 2k, i; means i;,, where t' =t — 2k.
We denote by ¢(S;) the number of distinct permutations in §; which are over
covered. The following claim is the main tool used in the proof of this lemma.
Though the claim is not surprising, its proof is rather tedious.

(773

L+

Claim 1. If for some j, c(S;) +¢(S;,,) =0, then c(S;,,) +c(S;,,)=2.

Proof of Claim 1. Let j satisfy the hypothesis of the claim, and denote i;, i;,,, i;,
and i;,; by i, i’, i" and i"” respectively. We prove the claim only for the case
a; <k, since the proof of the case a,>n —k +1 is similar. Let a,=k —w; +1,

where w;, =1w(a;). Then by Proposition 3.1, a; covers 1, for i <I/<i+w, and T8
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for i —w;<m <i. In particular, 7;,,, and 7} are covered by «4;, but 7,,,.,, and
7R, are not (since k <n). Let [ be such that a, covers t%,. We consider three
cases:

(1) a;=n — k + 1. Then, by Proposition 3.1 and the fact that 2k <n, we have
that / <i <l + w;, which implies that g, covers also ¥, in contradiction with the
assumption that T is not over covered (since 5 € S)).

(2) a; <k and I #i’. This means that i =] — w; <i' <l. We distinguish between
two subcases:

(2.1) a; <k. Then t¥ is over covered (by a; and @), which contradicts the

assumption that c¢(S;/) = 0. »

(2.2) a; =n — k + 1. In this case 77, is over covered (by 4, and a;), and hence
7%, =18 cannot be in S; (since ¢(S;)=0). This means that t¥,, is in
S~ and hence that {"=i'+1</[ Since a;=n—-k+1, a<k and
I -w<i'<i"<lI, none of a; and g, covers t,~. We shall use this last fact
to show that there is another permutatlon in $»US;~, beside t8,, =15,
which is over covered. This will prove the claim. We consider three
subcases, according to the value of m for which a,, covers ;.

(2.2.1) m=i". Then it must hold that ¢»->n —k +1, and hence TR, is over
covered (by a;- and a;), and clearly a;»,; € S;-U S;m.

Note that the above argument is valid when ever a»=n -k +1, and
hence we may assume now that a,<k.

(2.2.2) m=i. Then we have that i<i’'<i'+1=i"<i+w,, and hence 7; is
over covered (by a; and a;)—a contradiction to the assumption that
c(S;)=0.

(2.2.3) m¢ {i,i',i"}. Then either m<i<i"<m+w,, and a, <k, or m—
W, <i"<m and a,,=n-—k+1. In the first case 7;,, and 7, are over
covered (the first by a,, and g;, the second by a, and a;), which
contradicts the assumption. In the second case t-,, is over covered (by
a,, and a;-), and clearly 7., is in §;U S;-.

(3) ay<k and I=i'. Since ¢(S)=0,a; covers 75, but not z}. Thus,
i'=i+w;. Since w;#¥w; and 1<w, w,<k, we have that w;, can be either
strictly smaller or strictly larger than w;. We consider each of these two
possibilities here:

(3.1) w; <w,. Then t,.,, is over covered (by a; and a;). This means, by the

assumption that c(S;) =0, that i’ +1¢ S;,, hence i" =i’ + 1. We consider
two subcases, according to the value of a;-.

(3.1.1) a-<k. Then if wr=1 (i.e. ar=k), w;; must be larger than 1, hence
41 is over covered (by a; and a;.), and thus both 7~ and 7,-,, are over
covered, and the claim follows. If w.> 1 then 1% is over covered (by a;
and a;-), in contradiction with the assumption of the claim.

(3.1.2) a-=n—k + 1. Then ¥ is not covered by any of a;, a;., as, and hence
it must be covered by some g, where m ¢ {i,i’,i"}. f a,,Zn—k+1,
then m <i<i"<m +w,, and hence a,, covers also 7¥, a contradiction.
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Hence m — w,, <i”<m and a,, < k. This implies that a,, covers also 7%, ,,
which is covered also by a,. Hence both 7. and t%,, (which are in
S~ U S;~) are over covered.

(3.2) w,>w, (i.e., i+w,<i+w;.=i"). Then 7; is not covered by a;, neither
by a;.. The assumption that c(S;) = 0 implies that ;. is covered by some
a,,, where a,,=n —k +1 and m — w,, <i’' <m, which means that 7, is
over covered (by a;. and a,,). Since c¢(S;-) =0, this implies that i" =i’ + 1,
and that ¥ is not covered by a;., neither by a,,. We shall use this last fact
to show that there must be another permutation in S,.US;-, beside
T;41 = T, Which is over covered. We consider two cases, according to
the value of i":

(3.2.1) i"=m (hence a.=n—k +1). Then 77 must be covered by some a,
where p ¢ {i,i’,i"}. If a,=n —k +1, then p <i’ <p +w, and { is over
covered (by a; and a,): a contradiction. If a, <k then p —w, <i"<p,
and t¥,, is over covered (by a, and a,), and the claim holds.

(3.2.2) i"# m. Hence m — w,, <i"<m. If a, <k then 7., is over covered (by
a» and a,,). If a.=n — k + 1, then 7% is not covered by any of a;, a;- and
a-. Let p be such that a, covers tf. If a, <k then p —w, <i"<p and
TX,, is over covered (by a,- and a,), and the claim holds. If a,=
n—k+1 then p<i’<p +w,, and 77 is over covered (by a,, and a;.): a
contradiction. This completes the proof of the claim.

We need one more claim for the proof of the lemma:

Claim 2. Let By, . . ., B, be 2k boxes, each containing c; balls, and assume that
foreachi=1,...,2k, if c;+¢;.;=0, then ¢;,»+C;»3=2. Then Y*,c,=k.

Proof. By induction on the number ¢ of indices i such that ¢; +¢;,;=0. If =0,
then there are at least ki’s such that ¢;=1 and the claim holds. So assume that
for some i ¢; + c;, =0. By the hypothesis of the claim, c;,, + c¢;,3=2. Relocate
two balls from boxes B;,, and/or B;,; in B;,; and B;,;. This does not change the
sum Y%, c;, and reduce the number of indices i with the above property by at
least one, thus the claim follows by induction.

Proof of Lemma 3.2.2, Let c(S;)=c;. Then |OVER(({0))|=¥L¥%,c;, and by
Claim 1 the assumption of Claim 2 holds. Hence, by Claim 2, ¥2*,¢;=k. O
3.3. Lower bound on G(n)

First we show that if n = k®>+ k — 1 for some positive integer k, then there is a
permutation o in S, for which G(o) =n —k.
Let (fi, - - . , f) be the sequence defined by:

fi=1, fia=fi+k—i+1 (1<i<k-1).
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(.., fi=k(i—1)+3(3i—i®). In particular, f,=3(k*+k). Similarly, let
(g1 - - - » gx) be the sequence defined by:

g1=fk+2=%(k2+k)+2, gi+1=gi+k_i+1 (lsisk—Z), gk=2‘

(i.e., for 1<i<k,g=k(i—1)+%(3i—i®. In particular, g, ,=k*+1=n—
k+2.

Note that for 1<i<k and 1<js<k—1, f<g; and also that g, =2#f; it
follows that f; #g; forall i, jin {1,2,...,k}.

Let 0= (a, ..., a,) be any permutation in S, that satisfies the condition:

Forls<i<k, az=i and a,=n-—k+i. (*)

Then G (o) =n — k. This follows by the following facts, that are easily verified by
Proposition 3.1:

(1) For f;<j<fis1, 1;iscovered by a, (i=1, ...,k —1);

(2) t, +1 (= 1,,-4) is covered by a;, and 7,, is covered by a,,;

(3) Forg;<j=g;.1, tjiscovered by a,  (i=1,...,k—1);

(4) For j€[gk-1, n]U{1}, 7; is covered by a, (=a,). (Note that 7, is also

covered by a,, and is the unique permutation in [o] which is over covered.)

To prove that the lower bounds of n—a(n) on G(n) holds also for

n#k*+ k — 1 we make the following observations:

Lemma 3.3.1. If n#k*+k —1 for all positive integers k, then a(n —1)= a(n)
[similarly, if n #k*— k — 4, then B(n —1) = B(n)].

Proof. By the definition of a(n) [B(n)]. O

Lemma 3.3.2. For all positive integers n,G(n—1)=G(n)—1[Hn—-1)=
H(n)-1j.

Proof. Define a mapping y:S,.,— S, by:

”(0’)=“(b1: e bn+i) =0= (al, ey a,,),

where g; is defined as follows: let i, be such that b, =n+1. Then for i <i,
a;=b;, and for i, <i<n a;=b,,,. It is straight forwards to verify that this
mapping satisfies the following conditions:

(@) u(o'D=[u(0")][u({0"))=(u(s'))]. (For a subset T of S,., u(T)=

{u(v):t<T}.)

(b) D(u(c’))=D(0") - 1.

By (a) and (b) above, for all ¢’ €S,,; we have that G(u(o'))=G(o') -1
[H(u(0")) = H(o) — 1], which implies the lemma. O

Thus, the lower bound on G(n) for kK2+k—1=n>(k-1P+(k—-1)—1 is
proved inductively, where the base of the induction is n =k*+k —1 and the
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correctness for n — 1 follows from the correctness for n by the inequalities:

Gn—-1)=G(n)-1 (by Lemma 3.3.2)
=n—an)—1 (by the induction hypothesis)
=(n—-1)=a(n—1) (byLemma 3.3.1).

3.4. Lower bound on H(n)

Like in the previous subsection, we show first that if n = k*— k — 4 for some
positive integer k, then there is a permutation o in S, for which D(o)=n - k.
Let (fi, - . . , fx—1) be the sequence defined by:

i=l,  fin=f+k—-i (<i<k-2).

(i.e., ;=14 k(i — 1)+ 3(i — i?). In particular, f,_, = 3(k* — k).
Similarly, let (g4, . . . , gx—1) be the sequence defined by:

gl=fk_1“‘1=%(k2—k_2), \gi+1=gi+k_‘i (1$l$k—3), gk—l=2-

(i.e., for 1<i<k-1,g=3(k*>-3k+2ki—i*+i—2).) In particular, g,_,=
kK*—k—4=n.

It is not hard to verify that for 1=<i, j<k —1, f; #g;. Like in.the lower bound
for G(n), we claim here that for any permutation o €S, which satisfies the
condition below, H(o)=n — k:

Fori=1,...,k—1, a;=i and ag=n+1-i (**)

To-see this, observe that:

(1) For f;<j<f;s;, 1;is covered by a; (i =1, ..., k —2);

(2) Forg;_1<j=<g; 1;is covered by a, (i=2,...,k—2);

(3) 75, (= 1y) is covered by ay;

(4) For fi_;<j<f, tfiscovered by a; (i=2,..., k—1);

(5) For g;<j<gis1, 7) is covered by a, (i=1,..., k—2);

(6) f (= t¥) is covered by ag, (= a,).

The proof of the lower bound for H(n) for all n > 7 follows by Lemmas 3.3.1
and 3.3.2, along the same line of the proof of the lower bound on G(n). The
details are omitted.

We conjecture that H(n) is equal to n — B(n) (for n>7), though a simple
proof of that conjecture may not exist.
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