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How much can a permutation be simplified by means of cyclic rotations? For functions 
f :  S,.-o Z which give a measure of complexity to permutations we are interested in finding 

F(n) = max rain f (o ) ,  

where the max is over o e S,, and the min is over u which are cyclically equivalent to o. 
The measures of complexity considered are the number of inversions and the diameter of the 

permutation. The effect of allowing a reflection as well as rotations is also considered. 

1. Introduction 

Let o = (al, • . . ,  a,,) e S,, be a permutation and let [o] = 
{(aj ,  . . . , an, a l ,  • • • ,  a j -1 ) ,  n >~j >t 1} be the class of all cyclic permutations of o. 
Also for ~r = ( b l , . . . ,  b, ,)  • S,, denote by ~r R the permutation (bn, • • . ,  bl) • Sn. 
We also denote by (o )  the set [o]U {rR]z  • [o]}. For a real function f : S , , - - , R ,  

we consider ] defined by 

f (o )  = min ( f ( r )  I ~ • [o1}, 

and f given by 

f ( o )  = m i n { f ( z )  l r • (o ) ) .  

Our interest in this article is in finding m a x ( f ( o )  l o  • S,,) and m a x ( f ( o ) ] o  • 

S-), for certain functions f. 
Here we deal with two instances of this general problem: 
(1) f ( a )  - number of inversions in o - I ( ( i ,  j) l i <] ,  a(i) > a(j)}; 
(2) f ( o )  = m a x ( I o ( i ) -  il l i = 1 , . . . ,  n } .  
Our interest in those problems was initiated by studies on the design of 

electrical circuits for parallel computations [1]. Of course, many other problems 
suggest themselves that we hope to investigate in the future. 
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2. Counting inversions 

As stated in the introduction we investigate here the function 

F ( n ) = m a x n f i n l ( a ) ,  

where l ( o )  is the number  of inversions in (7, the max is over ~r e Sn and the min 
over a e [:r]. 

"l 'neorem 2 . 1 .  

8 - ~ 3n  n 2 3n - 1 
0.304-n 2 + O(n)  = ~ n 2 - - - ~  < F ( n )  <<- 

16 2 3 6 
- -  = 0.333+n 2 + O(n).  

Proof. Let us first remark that F ( n ) =  O(n 2) is obvious. Since a permutat ion of 

Sn can have at most (2) inversions, F ( n )  ~< (2). Also for :t (n, n - 1 , . . . ,  1) e Sn 
it is easily verified that  

n 2 
rain I ( a ) =  + O(n).  
,Te[#] -4- 

T h e  u p p e r  b o u n d  

L e t  tr = ( a l ,  . . . , an) and let rk = (ak,  . . . , a,,, aD . . . , ak-1), n I> k/> 1 be the 
permutations in [a]. Define variables r(. k) 1 ~< i < j  ~< n, 1 ~< k <~ n as follows: 

X(..k) ._ { 10 i f a k + i > a k + j  ' 

~] i f  a k  +i < a k  +j. 

Whenever  reference is made  to at w i t h  t ~ [1, n] we mean  at, where t ' =  

t -  1 (rood n ) +  1. This convention will be made throughout the article without 
further notice. Also x/j stands for r (.-~) ~ l j l  ° 

Note that 

zj • 
l ~i  <j~n 

We want to find the average of I(~'k) over n I> k >I 1; so let us fix 1 ~ i < j  ~ n 

and let us calculate 

• vC..k) ~J - i ff x~j = O, 
. m  

-'~ [ n  - j  + i if  xij 1. k=l  

This is because for 1 ~ i < j ~ n there are n - j + i values of 1 ~ k ~ n for which 
i + k (mod n)  > j + k (mod n). Again let us remark that our residue classes rood n 
are  1 , . . . ,  n n o t  O , . . . ,  n - i as  u s u a l .  S o ,  w e  h a v e  

n 

-,jr (-k) = j -  i + (n -- 2j + 2/)xij. 
k~l 
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And therefore 

E l ( ~ k ) =  E r(¢)-  E ( J - i ) +  E 
k = l  k = l  l ~ i < j < ~ n  l < - i < j ~ n  l ~ i < ] ~ n  

n + 1)  
= 3 + ~'~ (n - 2 ]+  2i)x#. 

l <<.i <]<~n 

For 1 <~r<s <i ~ n  we have 

(n - 2j + 2i)x# 

1 >~Xr~ +xst -x , , .  (1) 

Because x,~ = xst = 1 implies x~t = 1. 
Let us sum (1) over all triples l<-r<s<t<-n ,  For l<-i<j<~n we count 

x~j ( j -  i -  1) times in the negative and i - 1  + n - j  times in the positive sign. 
Altogether we get 

( 3 ) =  ~ l > ~ X r ~ + X s t - X n =  ~ (n-2j+2i)x#.  
l ~ r < s  < t ~ n  l ~ i  < ] ~ n  

Therefore 

k=l ~ l(rk) <" (n +3 1) + ( 3 )  = (2n --1)6 (n - 1) 

and so the average of l ( r )  over all r e [o] is a t 'mos t  16(2n - 1)(n - 1). It follows 
that for every o e Sn there is a • e [o] for which I ( r )  ~< ~2n - 1)(n • 1) = ~n 2 - 
~(3n - 1), proving the upper bound. 

The lower bound 

We want to find a permutation o = (al , . .  •, a,,) e S,, for which l(rk) is large for 
all rk = ( a k , . . . ,  a,,, a l , . . . ,  ak-O e [0]. Let us comment first that 

1(17k+1) " I ( ~ k )  = n -}- 1 - 2ak. 

Because of moving from zk to Zk+,, ak - -  1 inversions disappear and n - ak new 
inversions are created. Let us assume, for simplicity that I(r,)<~I(Zk) for all 
n > / k  > 2. That means that for all n - 1 I> k I> 1 

k 

~ (n + 1 - 2 a ] ) > ~ 0  ( n -  l~>k~> 1). (2) 
1=1 

To simplify our calculations we assume n to b e  even, the modifications for 
odd n are insignificant. We want to find a for which ai < a] for i < ] will occur only 
for i ~< ½n < j .  In other words the numbers in [I, ½n] will appear in reverse o rder  
and so will the ones in [½n + 1, n]. Under this assumption we want  to maximize 
the number of inversions between numbers from these two intervals, while at the 
same time maintaining (2) valid. This means we set 

ai -" ½n - i + 1 for t I > ~  i >~ 1 and aq+l - -  n ,  
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for some integer t 1. Of course, we wish to minimize t~ so as to maximize the 
number of inversions. This must be done subject to the assumption that (2) must 
hold, which it certainly does for t~ >I k >I 1. Let us evaluate the left hand side of 
(2) for k = t~ + 1 

t l  tl 

(n - 2aj + 1) = ~ (2j - 1) = ~. 
j = l  j = l  

And therefore 

t t + l  

(n  - 2aj + l ) = t211- (n  - 1 )  > O. 
/=1 

We, therefore, choose tl = [ V n -  1] to meet our goals. 
We continue by letting a~ = In - i + 2 for t 2 + 1 I> i I> t I T 2 and a t 2 + 2  - -  n - -  1. 

The condition (2) reads 
t2+2 

(n - 2a, + 1)i>0. 
j= l  

We group the terms for tl ~>j/> 1 and those for t2 + 1 ~>] ~> t I ÷ 2 and the (tl + 1)st 
and (t2 + 2)nd term arriving at the inequality 

t2 

( 2 j -  1) = t2~> (n - 1) + ( n - a )  = 2n - 4, 
j= l  

and we choose accordingly t2 = [ V ~  - 4]. 
In general, where tr = [~/rn -- r E] we set at ,+r= n - r + 1 ( i n  >>- r >I 1). This 

defines In of the ai (n >1 i >t 1) the undefined ai's  are I n , . . . ,  1 in this order. This 
construction of a implies that-I(o)<~ I (Vk)  for every Vk e [O]. SO we have to 
calculate l (a ) :  The only situation where i < j and ai < aj occurs for i ~< ½n < j, and 
[{i[ i  ~< In and ai < n  - r + 1}l = t, for r = 1, 2 , . . . ,  in. Therefore 

But 

n 

tr 
r = l  

~n ½n 

~ t,<~ ~'~ (1 + V ~ -  r2), 
r - -1  r~- I  

and 

~ ~< ~/nx - x 2 dx + ½n am2 
,=1 = 16 + ½n. 

And hence 

l ( a )  >~ ( 2 )  ~n2 8 - ~ t n 2 ~ 2 n  ' 
16 n 16 

establishing the lower bound. [:] 
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3. Maximal distance 

For o = ( a l , . . . ,  an) e S~, let 

D(o) = m a x { l a ,  - i I: i =  1 , . . . ,  n} 

In this section we investigate the functions: 

G ( n )  = m a x  rnin D ( r )  
o e S .  ~ e [ o  l 

a n d  
H ( n ) = m a x  min D(r) .  

o e ~ ,  r e ( o )  

We ,provide the exact value of G(n) and an approximate value of H(n), as 
described below: Let 

and 

tr(n) = rain{k: k 2 + k -  1 >I n}, 

y ( n )  = min{k: k 2 + ½k I> n }. 

We prove that: 

f l (n )  = re.in{k: k 2 - k - 4 >I n}, 

G ( n ) = n - o l ( n )  [n~>l], n - f l ( n ) < - H ( n ) < ~ n - y ( n )  [n~>8].: ' 

The rest of this section is organized as follows: First we present a general result 
related to G ( n )  and  H ( n )  (Proposition 3.1). Then we use this result to prove the 
upper bounds on G ( n )  (subsection 3.1) and H ( n )  (subsection 3.2). We  conclude 
in proving the lower bounds on G ( n )  and H ( n )  (subsections 3.3 and 3~4). 

In investigating the properties:of D ( o )  it is convenient to deal with the value 
k ( o )  = n - D ( o ) .  L e t  o = ( a l , . .  . , an) and k < n be given. Then ai covers  o if 
lai - il >I n - k, and o is covered  if some aj covers it. As ~n the'previous section, 
we denote the permutations in [o] by {r~, . . . ,  rn} and the permutations in ( o )  
by {1 :1 ,  . . l : n ,  r lR ,  . . R . ,  . , l r~},  where rj = (aj, . . . , an, a l ,  . . . , aj_l) ,  r~ = 

(aj_~, aj-2,  • • • ,  a l ,  an, • • • ,  aj). T h e  proof of the following Proposition follows 
directly from the definitions, and is omitted. 

Proposition 3.1. 
(a) I f  ai -" k - w + 1 f o r  0 < w <<- k,  then a i covers  the 2w-e lemen t s  set  

{ri+l, ri+2, • • •,  l:i+w, 1:/R, r/R-l, • • • , r/R-w+1}. (Recall  that i f  t is no t  in [1, n], then 

rt is identi f ied with rt,, where  t '  = t - 1 (mod n) + 1.) 
(b) I f  ai = n - k + w f o r  0 < w <~ k, then ai covers  the set  

r ÷l, • .  • ,  

(c) I f  k < ai <~ n - k ,  then a i cover s  dp. [] 

3.1. Upper  b o u n d  on  G ( n )  

We now use Proposition 3.1 to obtain an upper bound on G ( n ) .  To simplify the 
notations we denote min,~[,,] D(r)  by G(o),  (thus, G ( n ) =  maxo~s. G(o)).  Let 
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a = ( a l , . . . ,  a ,)  and k <~ n be given. We shall show that if G(o)>I n -  k then 
k 2 + k - 1/> n, which, by the definition of a (n), proves the upper bound. 

For  i = 1 , . . .  , n, let v(ai) = I{r • [a]: ai covers z}[. Then, by Proposition 3.1, 

v ( n ) = v ( 1 ) = k ,  

v (n  - 1) = v(2) = (k - 1), 

v(k )  = v ( n -  k + 1)=  1, 

v( j)  = 0 f o r k < j < - n - k .  

Let F A R ( [ o ] ) =  {v • [ a ] :  v is covered}. Then if G ( a ) ~ n - k ,  IFAR([a])[ = 
[[a][ = n. On the other hand, IFAR([o])l ~< ET_-~ v(a,) = 2(1 + 2 + . . .  + k) = 
k ( k  + 1). This means that if G(a)>~ n -  k, then k ( k  + 1)I> n, which gives the 
upper bound 

G(n) <<- n - min{k: k 2 + k 1> n}. 

To improve this bound to 

G(n)<~n - tr(n) (recall that c t (n)=  min{k: k 2 + k -  1 ~>n}), 

we show that if G(o)>I n - k  then for some r in [a] there are i~ and i2, i~ ~ i2, 
such that both ai~ and ai2 cover 1:. Such a permutation v is said to be over covered. 
Clearly, if some v in [a] is over covered then 

n 

[FAR([o])I ~< ~', v ( a i ) -  1 = k 2 -I- k -  1, 
i = 1  

which implies the upper bound on G(n) .  The next lemma proves that such an 
over covered permutation must exist. 

Lemma 3:1.1. f f  G ( a )  >I n - k, then there is a permutat ion v e [a] which is o v e r  

covered. 

Proof. Assume the contrary. Then each permutation in [o] is covered by a 
unique ai (1 ~< i ~< n). Hence n = ~7--1 v(ai) = k 2 + k, which implies that k ~< ½n. 
We say that a permutation r in [a] is of type (S) if the unique ai that covers it is 
not larger than k, and of type (L) otherwise (that is: if that ai is larger than 
n -  k). There are exactly ½(k2+ k)  permutations of each type, and hence for 
some j in { 1 , . . . ,  n}, ~j is of type (L) and rj+l if of type (S). Let ai > n - k cover 
• j and ar  ~< k cover ~j+l. Note that since k ~< ½n we must have that a~ ¢ a r ,  and 
hence i ¢ i'. 

By Proposition 3.1(b) we have that i -  v (a i )+ 1 <~j<~i, and at covers ~t for 
j <~ l ~< i. Since ~j+l is covered by ar, it cannot be covered by ai. Hence, i cannot 
be greater than j, which implies that it must be equal to j. By similar reasons, 
using Proposition 3.1(a), we get that i ' = j .  Thus we get that i = j = i ' ,  a 
contradiction. The lemma follows. • [] 
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3.2. Upper bound on H(n) 

Let H(o)  = min,~<o) D(z).  Like in the proof of the upper bound on G(n), we 
shall show that if for some tl = ( a ~ , . . . ,  a , )  and k it holds that H(o)  >t n - k ,  

then k 2 + ½k I> n. For i = 1, . . . .  , n let w(ai) = I{z ~ ( o ) :  a i covers 1:}[ (= 2v(ai)). 
Then, by Propositiod 3.1-. 

w(n ) = w(1) = 2k, 

w(n - 1)=  w(2) = 2(k - 1), 

w(k) = w(n - k + 1) = 2, 

w(j) = 0 f o r k < j < - n - k .  

Let F A R ( ( t l ) )  = {~ e ( 0 ) :  • is covered} and O V E R ( ( o ) )  = {~ • ( 0 ) :  z is over 
covered}. Since each permutation in O V E R ( ( e ) )  is covered by at least two 
distinct ai's, we have that F A R ( ( o ) )  ~ < ~7=~ w(a~)- IOVEa((o))l = 2k(k + 1)- 
IOVER(<a))I. Also, if H ( o ) > ~ n - k ,  then I V A R ( ( o ) ) l = l ( o ) l = 2 n .  Thus we 
have 

[,emma 3.2.1. z f  H ( t i )  >I n - k ,  then  2 k ( k  + 1) ~> 2n + lOVER(( o))1. [] 

By the above lemma, the upper bound of n - ~,(n) on H(n) follows from the 
following lemma. 

Lemma 3.2.2. If H(tl) >1 n - k, where n >t 2k, then IOVER((o))I ~> k. 

Proof. Let e eSn be such that H(e)>>-n-k.  Consider the list of indices 
1 <~ il < i2 <"  • • < i2k ~< n for which w(a~j) > 0, and let wit denote the number 
½w(aij). Consider now the following partition of (o )  to the 2k sets S i l , . . . ,  S~  
defined by: 

S~={zt,  r~: l e [ij, ij+x)} ( j = l , . . . , 2 k ) .  

In the definition above, and throughout this lemma, [i2k, il) means [i2k, n] O 
[1, il) if il > 1, and [i2k, n] if il = 1. Also, for t > 2k, ii means it ,  where t '  = t - 2k. 
We denote by c(S~j) the number of distinct permutations in S~; which are over 
covered. The following claim is the main tool used in the proof of this lemma. 
Though the claim is not surprising, its proof is rather tedious. 

Claim 1. If for some j, c(S~j) + c(S~j+,) = 0, then c(S~+2 ) + c(Si]+3 ) ~ 2. 

Proof  of Claim 1. Let j satisfy the hypothesis of the claim, and denote ij, ij+l, ij+2 
and ij+3 by i, i ' ,  i" and i" respectively. We prove the claim only for the case 
ai <~ k, since the proof of the case ai > n - k + 1 is similar. Let ai = k - wj + 1, 
where w~ = ½w(ai). Then by Proposition 3.1, ai covers tt for i < l <~ i + w~ and 
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for i - w i  < m ~< i. In particular, zi+~ and r/R are covered by a ,  but rt+~+l and 
~'~i+1 are not (since k < n). Let l be such that at covers r~+l- We consider three 
c a s e s :  

(1) at >t n -- k + 1. Then, by Proposition 3.1 and the fact that 2k ~< n, we have 
that l < i < l + wt, which implies that al covers also ~:/R, in contradiction with the 
assumption that r~ is not over covered (since r~ e Si). 

(2) ai ~< k and l =~ i'. This means that i = l - ~ < i '  < I. We distinguish between 

two subcases: 
(2.1) at, ~< k. Then r~ is over covered (by ai, and at), which contradicts the 

assumption that c ( S t , ) =  O. 

(2.2) a r I> n -- k + 1. In this case ~+1 is over covered (by at and ar) ,  and hence 
r~+l = ~/- cannot be in Sr (since c ( S r ) = O ) .  This means that r~+l is in 
St,  and hence that i" = i '  + 1 <<- I. Since ai, t> n - k + 1, al ~ k and 
1 - We < i '  < i" <<- l, none of a r and at covers rr- We shall use this last fact 
to show that there is another permutation in Sr  O Si-,  beside r~+l = r~, 

( 
which is over covered. This will prove the claim. We consider three 
subcases, according to the value of m for which am covers zr. 

(2.2.1) m = i". Then it must hold that a r  1> n -  k + 1, and hence r~+l is over 

covered (by ai .  and at),  and dearly at.+1 E S i. ~.~ Si,.. 

Note that the above argument is valid when ever ai. t> n - k + 1, and 
hence we may assume now that ar  ~< k. 

(2.2.2) m = i. Then we have that i < i '  < i '  + 1 = i" <~ i + wt,, and hence zt, is 
over covered (by a~ and a r )  a contradiction to the assumption that 

c(Sr)=O. 
(2.2.3) m ~ {i, i ' ,  i"}. Then either m < i < i" <~ m + Wm and am ~ k,  or m - 

Wm < i" <~ m and am ~> n - k + 1. In the first case r~+x and ri, are over 
covered (the first by a m and at, t h e  second by a m and a t ) ,  which 
contradicts the assumption. In the second case %.+~ is over covered (by 

a m and a t ' ) ,  and dearly 17t.+l is in S r  t.J Sr,. 
(3) a t < - k  and l = i ' .  Since c(St)=O, ar  covers ~+1 but not r/R. Thus, 

i '  = i + Wr. S ince  w~ #: Wr and  1 <~ w ,  Wr <~ k ,  we have that Wr can be either 
strictly smaller or strictly larger than w~. We consider each of these two 
possibilities here: 

(3.1) w r  < wt. Then %,+1 is over covered (by a~ and at) .  This means, by the 
assumption that c ( S r )  = O, that i ' + 1 ~ S t ,  hence i" = i' + 1. We consider 
two subcases, 'according to the value of at .  

(3.1.1) a r ~  < k. Then if w r =  1 (i.e. ar  = k), Wr must be larger than 1, hence 
rr+~ is over covered (by ar  and a t ) ,  and thus both ~r and %-+1 are over 
covered, and the claim follows. If wi.  > 1 then ~.  is over covered (by ar  
and a t ) ,  in contradiction with the assumption of the claim. 

(3.1.2) a r  >~ n - k + 1. Then ~ is not covered by any of at, ar,  a t ,  and hence 
it must be covered by some am where m ~ {i, i', i"}. If am >I n " k  + 1, 
then m < i < i" < m + Win, and hence am covers also ~ ,  a contradiction. 
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Hence m - Wm< i" < m and am ~< k. This implies that a,,, covers also lr~+~, 
which is covered also by at .  Hence both l:r and ~+~ (which are in 
S r  O Si-) are over covered. 

(3.2) wr > w~ (i.e., i + w~ < i + wv = i'). Then %, is not covered by ai, neither 
by ar. The  assumption that c(S i )=  0 implies that zi, is covered by some 
am, where am t> n --: k + 1 and m - Wm < i' < m, which means that Zr+l is 
over covered (by ar and am). Since c(Sr )  = 0, this implies that i" = i' + 1, 

and that z~ is not covered by ar, neither by am. We shall use this last fact 
to show that there must be another permutation in S r O  S t ,  beside 
l:r+~ = l:r, which is over covered. We consider two cases, according to 
the value of i": 

(3.2.1) i "=  m (hence ai. >i n -  k + 1). Then ~ must be covered by some at, 
where p ¢~ {i, i', i"}. If a t, I> n - k + 1, then p < i '  < p  + wp and ~ is over 
covered (by ar and at,): a contradiction. If at, ~< k then p - wt, < i" < p ,  
and ~/..+1 is over covered (by at, and at) ,  and the claim holds. 

(3.2.2) i" =# m. Hence m - w,,, < i" < m. If a r  ~< k then lrr+ 1 is over covered (by 
ar  and am). If a r  ~> n - k + 1, then z~ is not covered by any of a~, av and 
a~.. Let p be such that at, covers ~/.. If ap <<- k then p - wt, < i" < p  and 
1:~+~ is over covered (by a r  and at,), and the claim holds. If at, ~> 
n - k + 1 then p < i' < p  + Wm and 1:~ is over covered (by am and ar): a 
contradiction. This completes the proof of the claim. 

We need one more claim for the proof of the lemma: 

Claim 2. Le t  B ~ , . . . ,  Bzk be 2k boxes, each containing c~ balls, and assume that 

for each i = 1 , . . . ,  2k, if ci + Ci+l = O, then c~+2 + ci+3 >I 2. Then E ~ I  ci >- k. 

Proof. By induction on the number t of indices i such that ci + ci+l = 0. If t = 0, 
then there are at least k i's such that ci ~> 1 and the claim holds. So assume that 
for some i ci + ci+l = 0. By the hypothesis of the claim, c~+2 + ci+3 >/2. Relocate 
two balls from boxes Bi+2 and/or  Bi+3 in Bi+l and B~+3. This does not change the 
sum ~ c~, and reduce the number of indices i with the above property by at 
least one, thus the claim follows by induction. 

Proof of Le==a 3.2.2. Let c(Si~)=--ci. Then IOVER(<o>)I= X lci, and by 
Y,=, ci I> k. [] Claim 1 the assumption of Claim 2 holds. Hence, by Claim 2, t,k 

3.3. L o w e r  b o u n d  on G(n )  

First we show that if n = k 2 + k - 1 for some positive integer k, then there is a 
permutation o in Sn for which G ( a )  = n - k. 

Let  ( f x , . . . ,  fk) be the sequence defined by: 

~ = 1 ,  f ~ + ~ = f ~ + k - i + l  ( l ~ < i ~ k -  1). 
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(i.e., f~ = k( i  - 1) + ½(3i - i2)). In particular, 
(gl, • • • ,  gk) be the sequence defined by: 

(i.e., 
k + 2 .  

f k  = ½( k2 + k). Similarly, l e t  

g t = f k + 2 = ½ ( k 2 + k ) + 2 ,  g i + l = g i + k - i + l  ( 1~< i<~k-2 ) ,  g k = 2 .  

for 1 <~ i < k, gi = k( i  - 1) + ½(3i - i 2 ) .  In particular, gk-1 = k 2  + 1 - -  n - 

Note that for 1 ~< i ~< k and 1 ~< j ~< k - 1, f~ < gj, and also that gk = 2 :# f~; it 
fOllOWS that fj :/: gj for all i, j in {1, 2 , . . . ,  k}. 

Let o = (al, • • . ,  an) be any permutation in Sn that satisfies the condition: 

For l~< i~<k ,  a ~ = i  and a s , = n - k + i .  ( , )  

Then G ( o )  = n - k. This follows by the following facts, that are easily verified by 
Proposition 3.1: 

(1) Forj~ < j  ~<f~+~, rj is covered by a~(i = 1 , . . . ,  k - 1); 
(2) 
(3) 
(4) 

T o  

n ~ k  2 

% + 1 (=  rs,_l ) is covered by % and rs, is covered by as,; 
For gi < ]  <<-g~+~, ~/ is covered by a8,+1 (i = 1 , . . . ,  k - 1); 
For j e [ g k _ l , n ] t J { 1 } ,  ~j is covered by as , (=a2) .  (Note that z2 is also 
covered by a2, and is the unique permutation in [a] which is over covered.) 
prove that the lower bounds of n -  tr(n) on G(n)  holds also for 
+ k - 1 we make the following observations: 

l[~nmaa 3.3.1. f f  n 4: k 2 + k - 1 for  all positive integers k, then tr(n - 1) = tr(n) 
[similarly, i f  n ~ k 2 -  k - 4 ,  then f l(n - 1) = fl(n)]. 

Proof. By the definition of tr(n) [fl(n)]. [] 

Lemma 3.3.2. For all positive integers n, G(n - 1) I> G(n)  - 1 [H(n - 1) I> 
H(n)- 1]. 

Proof. Define a mapping # :Sn+I-->S,, by: 

[J (O ' )  = [ ~ ( b l , . . .  , b n + i )  = or = ( a l ,  . . . , a n ) ,  

where ai is defined as follows: let i0 be such that bio = n + 1. 
a~ = b~, and for i o < i  < n  a~ = b~+l. It is straight forwards to 
mapping satisfies the following conditions: 

(a)  = [ U ( a ' ) ]  = 

{#0:):  r c T) . )  
(b) D ( # ( o ' ) ) > I  D ( o ' ) -  1. 
By (a) and (b) above, for all o ' e  S.÷I we have 

[H(# (e ' ) )  ~> H ( o )  - 1], which implies the lemma. [] 

(For a subset T of 

that 

Then for i < io 
verify that this 

S~+,, # (T)  = 

c ( a ' )  - 1 

Thus, the lower bound on G(n)  for k 2 + k - 1 ~> n > (k - 1) 2 + ( k "  1) - 1 is 
proved inductively, where the base of the induction is n = k 2 +  k -  1 and the 
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correctness for n - 1 follows from the correctness for n by the inequalities: 

G ( n  - 1) I> G ( n )  - 1 (by Lemma 3.3.2) 

= n - ~r(n) - 1 (by the induction hypothesis) 

= (n - 1) ~- cr(n - 1) (by Lemma 3.3.1). 

3.4. L o w e r  bound  on H ( n )  

Like in the previous subsection, we show first that if n = k 2 -  k -  4 for some 
positive integer k, then there is a permutat ion o in Sn for which D ( o )  = n - k. 

Let ( f ~ , . . . ,  fk-1)  be the  sequence defined by: 

~ = 1 ,  f i + l - f i + k - i  (1<~ i ~ < k -  2). 

(i.e.,)~ = 1 + k ( i  - 1) + ½(i - i2)). In particular, f k -1  = ½(k 2 -  k). 
Similarly, let (gl, • • • ,  g k - x )  be the sequence defined by: 

g ~ = f k _ l - l = ½ ( k 2 - k - 2 ) ,  g , + ~ = g j + k - i  (1 ~ < i ~ < k - 3 ) ,  gk_~=2 .  

(i.e., for 1 ~< i < k - 1, gi = ½(k 2 - 3k  + 2ki - i 2 + i - 2).) In particular, gk-2 = 
k 2 - k  - 4 = n .  

It is not hard  to verify that for 1 ~< i, j < k - 1, f~ ~ gj. Like i n  the lower bound 
for G(n) ,  we claim here that for any permutation o e $,, which satisfies the 
condition below, H ( a )  = n - k: 

F o r i = l , . . . , k - 1 ,  a~= i and ag,= n + l - i. (**) 

To-see this, observe that: 
(1) For  f~ < j  ~<fi+l, rj is covered by a~ (i = 1 , . .  , k - 2); 
(2) For  gi_l < j  ~<gi, T i is covered by as ,  ( i  = 2 ,  . . . , k - 2); 

(3) vll (=  ~1) is covered by as,; 
(4) For/'~_~ <J <~, ~ is covered by a~ (i = 2 , . . . ,  k - 1); 
(5) For  g~ < j  ~<gi+:, r~i is covered by as, (i = 1 , . . . ,  k - 2); 
(6) ~ (= v~) is covered by a~ (= a0. 
The proof  of the lower bound for H ( n )  for all n > 7 follows by Lemmas 3.3.1 

and 3.3.2, along the same line of the proof of the lower bound on G(n) .  The  

details are omitted.  
We conjecture that H ( n )  is equal to n -  f l (n)  (for n > 7), though a simple 

proof of that  conjecture may not exist. 
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