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New LP-Based Upper Bounds in the
Rate-Vs.-Distance Problem for

Binary Linear Codes
Elyassaf Loyfer and Nati Linial

Abstract— We develop a new family of linear programs, that
yield upper bounds on the rate of binary linear codes of a
given distance. Our bounds apply only to linear codes. Delsarte’s
LP is the weakest member of this family and our LP yields
increasingly tighter upper bounds on the rate as its control
parameter increases. Numerical experiments show significant
improvement compared to Delsarte. These convincing numerical
results, and the large variety of tools available for asymptotic
analysis, give us hope that our work will lead to new improved
asymptotic upper bounds on the possible rate of linear codes.
A slightly prior work by Coregliano, Jeronimo and Jones offers
a closely related family of linear programs which converges to
the true bound. Here we provide a new proof of convergence for
the same LPs.

Index Terms— Error correction codes, linear codes, binary
codes, linear programming.

I. INTRODUCTION

IN THIS paper, we investigate the rate vs. distance prob-
lem. This fundamental question in coding theory seeks to

estimate the largest possible size A(n, d) of a length-n code
of distance d. Our ultimate goal, however, is to make progress
in the asymptotic version of the problem, which is to find
R(δ) := lim supn→∞

1
n log2A(n, �δn�).

The best lower bound that we have on R(δ) is due to
Gilbert [1] (for general codes) and Varshamov [2] (in the linear
case) and is attained by random codes. The best upper bounds
that we have are due to McEliece, Rodemich, Ramsey and
Welch (MRRW) [3]. Based on Delsarte’s linear program [4],
these bounds are often called the first and second linear pro-
gramming bounds. There is substantial empirical evidence [5]
indicating that the MRRW bounds may be asymptotically all
that Delsarte’s LP yields.

We propose a new family of linear programs, which greatly
strengthen Delsarte’s LP. We stress that these new LPs apply
only to linear codes. They come with a control parameter,
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an integer r. For r = 1 our LP coincides with Delsarte’s, and
as r increases the LP yields tighter upper bounds on the code’s
rate, at the cost of higher complexity.

Our numerical experiments (Fig. 1) show that even with
r = 2 our LP is far stronger than Delsarte’s, surpassing it in
almost all instances that we were able to solve. The improved
upper bound on the code’s size is up to 2.5 times smaller than
what Delsarte gives. Moreover, in all such instances where
Delsarte’s upper bound is known not to be tight, we improve
it. Nevertheless, our results do not improve the best known
upper bounds.

Our construction is based on the elementary fact that a linear
code is closed under addition. Combined with Delsarte’s LP
this simple fact has considerable consequences. To actually
derive them we use (i) The language of Boolean Fourier
analysis (ii) Symmetry that is inherent in the problem. In ana-
lyzing Delsarte’s LP, symmetrization reduces the problem size
from exponential to polynomial in n, and brings Krawtchouk
polynomials to the fore. Also here does symmetrization yield
a dramatic reduction in size and reveals the role of multi-
variate Krawtchouk polynomials. There is a large body of
work on these high-dimensional counterparts of univariate
Krawtchouks, e.g., [8] and [9].

Although we are still unable to reach our main goal and
derive better asymptotic bounds, there is good reason for hope.
Over forty years since it was proved, the first MRRW bound
is still the best upper bound that we have for a large range
of parameters. Over the years this bound has been reproved
using various tools and techniques. These include, properties
of Krawtchouk polynomials [3], analysis of Boolean functions
(e.g., [10], [11], [12], [13]), and spectral [14] as well as
functional [15] analysis. We believe that it is a viable and
promising direction to extend proofs of the first MRRW bound
to our multivariate LP family. We are hopeful that this will
lead to stronger bounds on the rate of linear codes. We focus
here on binary codes, however our methods can be extended
to q-ary codes as well.

A. Related Work
A prior work by Coregliano et al. [6] employs closely

related ideas to produce a family of linear programs, which
upper bound the size of linear codes. In comparison, our
LP is stricter due to several conceptual new ideas that we
introduce here. Numerical comparisons between our LP and
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Fig. 1. (Lower is better). Numerical results comparing the bounds obtained by optimization problems, and the currently best known upper bounds, as reported
in [7]. Each line is the ratio between the optimal value of the corresponding LP and the best known upper bound on ALin(n, d), scaled by log2(·). The
x-axis in each plot varies over n. Experimental setup, as well as more detailed results, are given in Appendix B. For the bounds stated in terms of the codes’
dimension, see Fig. 4.

that of [6] appear in Fig. 1 and Appendix B. We indicate the
differences throughout the text where appropriate, in particular
in Sections III-B and III-C.

In [6], they suggest two semi-definite programs (SDPs)
which are equivalent to the LP family. One SDP is then used
to prove that their program converges to the true bound as
the control parameter grows. Here we suggest an alternative
proof, which bypasses the use of SDPs.

It was Schrijver [16] who suggested to find an SDP that
strengthens Delsarte’s LP. His SDP improved the best upper
bound for general codes in several finite instances, but there is
still no known method to improve the asymptotic bounds using
this SDP. Our LP yields tighter bounds than those of [16] on all
of the instances that we were able to solve (see Appendix B).
Our comparison with the results of Schrijver’s work should be
taken with a grain of salt due to the fact that his SDP does
not account for linearity.

B. Organization of This Paper

The rest of the work is organized as follows. Section II pro-
vides preliminaries and notation. In Section III we develop our
new LP family and discuss some of its properties. In particular,
we prove its strength, examine its components, and suggest
some variations that may prove useful in the asymptotic
analysis. In Section III-D we provide an alternative proof for

the convergence theorem of [6]. In Section IV we derive the
symmetrized LP.

The derivation of our LPs motivates the definition of a
new linear operator which we call partial Fourier transform.
In Section V we explore some of its characteristics which
are relevant to our LP. The main result of this section is an
interesting equivalence between two properties of the code’s
indicator function.

Section VI connects our construction to the literature
on multivariate Krawtchouk polynomials. These polynomials
appear naturally when we symmetrize the LP. In addition,
we develop the partial multivariate Krawtchouks, which are
derived from the symmetrization of partial Fourier transform.

Appendix B shows results from numerical experiments on
a wide range of parameters.

II. NOTATION AND PRELIMINARIES

A. General

We denote by N the set of nonnegative integers.
For a positive integer r, [r] := {1, 2, . . . , r}. Vectors
are distinguished from scalars by boldface letters, e.g.
x = (x1, x2, . . . , xn) ∈ Rn.

We consider two linear programs equivalent if their respec-
tive optimal values are equal. Likewise, relations between LPs,
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e.g. “=,” “≤,” refer to optimal values. We denote by val(·) the
optimal value of an LP.

B. The Boolean Hypercube

The n-dimensional Boolean hypercube, or simply the cube
is, as usual, the linear space Fn

2 or the set {0, 1}n. An ele-
ment, or a vector, in the cube is denoted in bold, e.g.
x = (x1, . . . , xn) ∈ {0, 1}n. Addition x + y ∈ {0, 1}n is
bitwise “xor,” or element-wise sum modulo 2. Inner product
between vectors in the cube is done over F2: �x,y� =∑n

i=1 xiyi mod 2.
Let f, g : {0, 1}n → R be two real functions on the cube.

Their inner product is defined as

�f, g� = 2−n
∑

x∈{0,1}n

f(x)g(x)

and their convolution

(f ∗ g)(x) = 2−n
∑

y∈{0,1}n

f(y)g(x + y)

The tensor product of f and g is a function on {0, 1}2n:

(f ⊗ g)(x,y) = f(x)g(y).

The Hamming weight of x, denoted |x|, is the number of
non-zero bits, |x| = |{1 ≤ i ≤ n : xi �= 0}|. For i = 0, . . . , n,
the i-th level-set is the set of all Boolean vectors of weight i.
The indicator of the i-th level-set is called Li:

Li(x) =

{
1 |x| = i

0 o/w,
x ∈ {0, 1}n

We denote Kronecker’s delta function by δx(y).
The Fourier character corresponding to x ∈ {0, 1}n,

denoted χx, is defined by

χx(y) = (−1)�x,y�, y ∈ {0, 1}n.

The set of characters {χx}x∈{0,1}n is an orthonormal basis for
the space of real functions on the cube. The Fourier transform
of a function f : {0, 1}n → R is its projection over the charac-
ters, f̂(x) = �f, χx� = 2−n

∑
y χx(y)f(y). In Fourier space,

the inner product is not normalized: �f̂ , ĝ�F =
∑

x f̂(x)ĝ(x).
We recall Parseval’s identity: �f, g� = �f̂ , ĝ�; and the

convolution theorem: (f̂ ∗ g)(x) = f̂(x)ĝ(x).
The partial Fourier transform, denoted FS that we introduce

here plays an important role in our work, see Section III for
details.

A comprehensive survey of harmonic analysis of Boolean
functions can be found in [17].

C. Codes

A binary code of length n is a subset C ⊂ {0, 1}n. Its
distance is the smallest Hamming distance between pairs of
words, dist(C) = minx,y∈C |x+y|. The largest cardinality of
a code of length n and distance d is denoted by A(n, d). The
rate of C is defined as

R(C) = n−1 log2(|C|)

The rate-vs.-distance problem is to find, for every n, d ∈ N,
the quantity

R(n, d) := max
C:dist(C)≥d

log2 |C|/n

The asymptotic version of the problem is to find R(δ) :=
lim supn→∞R(n, δn), for every δ ∈ (0, 1/2).

A linear code is a linear subspace. In the binary case, C ⊂
{0, 1}n is linear if and only if x,y ∈ C ⇒ x + y ∈ C, for
every x,y ∈ {0, 1}n. Consequently, in a linear code dist(C) =
min0 �=x∈C |x|. We denote by ALin(n, d) the maximal size of
a binary linear code of length n and minimal distance d.

III. NEW LINEAR PROGRAMS

In this section we present a new family of linear programs,
starting from Delsarte’s LP. Later in this Section we discuss
possible modifications to the LPs.

Let C ⊂ {0, 1}n be a code, not necessarily linear, with
minimal distance d. Let 1C be its indicator function, namely
1C(x) = 1 if x ∈ C, and 0 otherwise. Define the function

fC =
2n

|C|1C ∗ 1C

As we explain shortly, Fourier analysis of fC yields Delsarte’s
LP for binary codes. Our new LP family is likewise obtained
by considering the tensor product of copies of fC .

Indeed, it is easily verified that fC(0) = 1, and fC(x) =
0 whenever 1 ≤ |x| ≤ d− 1. In addition, fC ≥ 0 as a sum of
indicator functions. Also, f̂C ≥ 0 because, by the convolution
theorem, it is a squared function: f̂C = 2n

|C| 1̂
2
C . Lastly, summing

fC over the entire cube yields the cardinality of C. This yields
the following LP, whose optimal value is an upper bound on
A(n, d).

Definition 1: Delsartecube(n, d) is the following linear
program:

maximize
f :{0,1}n→R

∑
x∈{0,1}n

f(x) (obj)

subject to:

f(0) = 1, (d1)

f ≥ 0, f̂ ≥ 0, (d2)

f(x) = 0 if 1 ≤ |x| ≤ d− 1 (d3)

Now let us assume further that C is linear. In this case,
1C(x)1C(y) = 1C(x)1C(x + y), and consequently,

fC =
1
|C|1C ∗ 1C = 1C .

This implies a new set of constraints that hold for linear codes
and can be added to the above LP:

f(x)f(y) = f(x)f(x + y)

However, these constraints are not linear in f , nor even convex.
Therefore, we consider instead tensor products of fC . Let

r ≥ 1 be an integer and define

fCr = fC ⊗ · · · ⊗ fC : {0, 1}rn → R.
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The function fCr is defined on the rn-dimensional cube.
We will view its argument as either a concatenation of r
vectors in {0, 1}n, or an r × n matrix obtained by stacking
the r vectors. For example, we write

fCr (X) = fCr(x1, . . . ,xr)

where x1, . . . ,xr ∈ {0, 1}n are the rows of the matrix
X ∈ {0, 1}r×n.

As suggested above, our LP family is derived from the linear
properties of fCr . Some of these properties apply even for non-
linear C and are inherited from the properties of the original
fC . The other type is properties that depend on the linearity
of C. We turn to describe both types.

We begin with the first type. It is clear that fCr(0) = 1,
and fCr(x1, . . . ,xr) = 0 if any of the vectors x1, . . . ,xr has
weight between 1 and d− 1. The non-negativity of fC and f̂C
imply the same for fCr . But there is more: products of fC and
f̂C are also non-negative, e.g. fC(x1)f̂C(x2) ≥ 0 for every
x1,x2 ∈ {0, 1}n.

This motivates the definition of a new linear operator, which
we name partial Fourier transform.

Definition 2: Let S ⊂ [r] and x1, . . . ,xr ∈ {0, 1}n. The
partial Fourier character ΨS

(x1,...,xr) is defined by

ΨS
(x1,...,xr) := ψ(1)

x1
⊗ ψ(2)

x2
⊗ · · · ⊗ ψ(r)

xr

where, given x ∈ {0, 1}n,

ψ(i)
x :=

{
χx i ∈ S

δx o/w

χx is a Fourier character in {0, 1}n and δx is Kronecker’s
delta.

The partial Fourier transform is the linear projection of
a function g : {0, 1}rn → R on the partial characters,

FS(g)(x1, . . . ,xr) = 2(r−|S|)n�g,ΨS
(x1,...,xr)�

= 2−|S|n ∑
g(y1, . . . ,yr)×

×
∏
i∈S

χxi
(yi)

∏
i∈[r]\S

δxi
(yi)

the sum running over all y1, . . . ,yr ∈ {0, 1}n.
Observe that F∅(g) = g, F[r](g) = ĝ, and F{i,j}(g) =
F{i}(F{j}(g)), for 1 ≤ i, j ≤ r, i �= j.

Using the new notation, we have FS(fCr ) ≥ 0 for every
S ⊂ [r].

The last inherited property of fCr has to do with the
cardinality of C. Summing fCr over the entire rn-dimensional
cube yields |C|r. Alternatively, one can obtain the value of |C|
by summing one component over {0, 1}n, and fixing the other
components at 0:∑
x∈{0,1}n

fCr(x, 0, . . . , 0) =
∑

x∈{0,1}n

fC(x) (fC(0))r−1 = |C|

We turn to discuss the properties which depend on the
linearity of the code C. If C is a linear code and x1, . . . ,xr ∈
C, then C contains their linear span. Hence

fCr(X) =
r∏

i=1

1C(xi) =
∏

x∈rowspan(X)

1C(x)

which implies that fCr is invariant under the action of
GL(r, 2), the general linear group over F2.

fCr(X) = fCr(TX) ∀T ∈ GL(r, 2), X ∈ {0, 1}r×n (1)

One more interesting property involves the dual code,

C⊥ := {x ∈ {0, 1}n : �x,y�F2 = 0 ∀y ∈ C}.
If C is linear, then the Fourier transform of its indicator 1̂C
is the indicator of the dual code, up to normalization (see
e.g., [17], Proposition 3.11):

1̂C =
1

|C⊥|1C⊥

This fact can be utilized through the partial Fourier transform
as follows. Let x,y ∈ {0, 1}n such that �x,y�F2 �= 0, then
either x /∈ C⊥ or y /∈ C. Consequently, if i ∈ S and j /∈ S
for some S ⊆ [r], and �xi,xj�F2 �= 0, then

FS(fCr )(x1, . . . , xr)=

�
��

k∈S

1

|C⊥|1C⊥(xk)

�
�
�
� �

k∈[r]\S

1C(xk)

�
�=0

(2)

Surprisingly perhaps, this adds no new information: properties
(1) and (2) are equivalent, as we show in Section V.

This concludes our discussion on the linear properties of
the tensor product fCr . We are now ready to define the new
LP family.

Definition 3: DelsarteLin(r, n, d):

maximize
f :{0,1}rn→R

�
x∈{0,1}n

f(x, 0, . . . , 0) (Obj)

subject to:

f(0) = 1 (C1)

FS(f) ≥ 0 ∀S ⊂ [r] (C2)

f(x1, . . . , xr)=0 if 1≤|x1|≤d−1 (C3)

f(X)=f(TX) ∀T ∈GL(r, 2), X∈{0, 1}r×n

(C4)

Here, FS(f) is the partial Fourier transform defined above.
Also, GL(r, 2) is the general linear group over F2. Note also
the parallels between conditions (d1), (d2), (d3) resp. (C1),
(C2), (C3)

In comparison, the LP family of [6] does not include the
partial Fourier constraints, and differs in the objective function.
It can be stated as follows.

maximize
f :{0,1}rn→R

∑
X∈{0,1}r×n

f(X)

subject to:

f(0) = 1

f ≥ 0, f̂ ≥ 0
f(X) = 0 if ∃x ∈ rowspan(X)

s.t. 1 ≤ |x| ≤ d− 1

Theorem 1: Let r, n, d be positive integers such that
d ≤ n/2.

1) ALin(n, d) ≤ val DelsarteLin(r, n, d)
2) val DelsarteLin(r + 1, n, d) ≤ val DelsarteLin(r, n, d)
3) val DelsarteLin(1, n, d) = val Delsartecube(n, d)
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We make a few comments before we turn to the proof.
Already for r = 2, and in most instances, DelsarteLin is
significantly stronger than Delsarte’s. For more on this, see
Figure 1 and Section B. We also note that DelsarteLin without
(C4) yields exactly the bounds as Delsarte’s LP.

Proof:

1) By the preceding discussion, for every binary linear code
C of length n and minimal distance d, fCr is a feasible
solution with value |C|.

2) Let f : {0, 1}(r+1)n → R be a feasible solution to
DelsarteLin(r + 1, n, d). We construct a feasible solu-
tion to DelsarteLin(r, n, d) with value at least val(f).
Let

g : {0, 1}rn → R, g(x1, . . . ,xr) = f(x1, . . . ,xr,0)

It is easy to verify that g is feasible for
DelsarteLin(r, n, d), and it is clear that val(g) =
val(f).

3) Obvious, DelsarteLin(1, n, d) and Delsartecube(n, d)
are identical.

�
In the rest of this section, we examine the strength and

consequences of some components of DelsarteLin. We also
discuss two modifications that may be helpful in the search
for asymptotic results.

A. On the Significance of (C4)

As mentioned above, (C4) is equivalent to a constraint that
uses the dual code:

FS(f)(x1, . . . ,xr) = 0 if �xi,xj�F2 = 1
for some i ∈ S, j /∈ S (C5)

We prove the equivalence below, in Lemma 1. As (C4) and
(C5) are the only constraints that rely on the code’s linearity,
without them the LP is equivalent to Delsarte’s LP, for every r.

An obvious consequence of (C4) is that (C3) is equivalent
to

f(X) = 0 if 1 ≤ |uᵀX | ≤ d− 1 for some u ∈ {0, 1}r

(C3�)

{uᵀX}u∈{0,1}r is the row span of X . Similarly, (C4) renders
the objective (Obj) equivalent to

maximize (2r − 1)−1
∑

0�=u∈{0,1}r

∑
x∈{0,1}n

f(u1 · x, . . . , ur · x)

(Obj��)

To numerically test the significance of (C4), we removed
it but kept its immediate consequences. Namely, we replaced
(Obj) and (C3) with (Obj��) and (C3�). A sample from our
numerical experiments is shown in Figure 2. It confirms that
this change does weaken the LP, though not significantly.
However, we only experimented with r = 2, and it is possible
that for larger values of r the difference becomes more
substantial.

Lastly, (C4) implies other symmetries for FS(f). While
these do not strengthen the LP, they provide an exponential

Fig. 2. Numerical experiments on the significance of (C4). The first column
is Delsarte’s LP. The second column is DelsarteLin(2, n, d). The third
column is a modification of DelsarteLin(2, n, d), where (C3) is replaced by
(C3′); the objective function is replaced by (Obj′′); and (C4) is removed.

Fig. 3. Comparison between (C2), (C2′) and Delsarte. Each column shows
the optimal value a of different LP. The LPs from left to right: Delsarte’s
LP; Our LP with r = 2; Our modified LP with (C2′) instead of (C2), with
r = 2; and again the modified LP, with r = 3. This exhausts the results that
we have for r = 3.

in r reduction in the number of constraints. For proof, see
Lemma 1.

FS(f)(X) = FS(f)(T1T2X), (C6)

for every T1, T2 ∈ GL(r, 2), such that T1ei = ei ∀i ∈ S and
T2ei = ei ∀i ∈ [r] \ S.

FS(f)(x1, . . . ,xr) = Fπ−1(S)(f)(xπ(1), . . . ,xπ(r)), (C7)

for every π ∈ Sr – permutation on r elements.

B. On the Significance of (C2)

A weaker, simpler LP is obtained from DelsarteLin(r, n, d)
by replacing (C2) with

f ≥ 0, f̂ ≥ 0 (C2�)

This modification restores the feasible region of the LP devel-
oped by [6]. The modified LP is still stronger than Delsarte’s
LP, and it becomes stronger with growing r, as we prove in
Theorem 2. Its simplicity might make it more suitable for
asymptotic analysis.

We observed empirically that this modification greatly
weakens the LP. A small sample is given here in Figure 3,
and more can be found in Section B and in Figure 1.

Theorem 2: Let r, n, d be positive integers such that d ≤
n/2. For every binary linear code C with length n and distance
d,

|C| ≤ val DL(C2′)(r + 1, n, d) ≤ val DL(C2′)(r, n, d)
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where DL(C2′)(r, n, d) is the variant of DelsarteLin(r, n, d)
in which (C2) is replaced by (C2�).

Proof: The first inequality follows from Theorem 1, by
noting that every feasible solution to DelsarteLin(r, n, d) is a
feasible solution to the modified version.

For the second inequality, let f : {0, 1}(r+1)n → R be a
feasible solution to DL(C2′)(r + 1, n, d). Define

g : {0, 1}rn → R, g(x1, . . . ,xr) = f(x1, . . . ,xr,0)

It is obvious that g(0) = 1; g ≥ 0; g(x1, . . . ,xr) = 0 if
1 ≤ |x1| ≤ d − 1; and that g(X) = g(TX) for every T ∈
GL(r, 2). To prove that g is feasible, it remains to show that
ĝ ≥ 0. Observe that

ĝ(x1, . . . ,xr) = F{1,...,r}(f)(x1, . . . ,xr,0)

= 2nF{r+1}(f̂)(x1, . . . ,xr,0)

=
∑

y∈{0,1}n

χ0(y)f̂(x1, . . . ,xr,y)

=
∑

y∈{0,1}n

f̂(x1, . . . ,xr,y)

which is non-negative since f̂ ≥ 0. The value of f equals the
value of g, which is at most val DL(C2′)(r, n, d).

�

C. On the Objective Function

As discussed above, an alternative objective function can be
used, which bounds

(
ALin(n, d)

)r
instead of ALin(n, d):

maximize
∑

x1,...,xr∈{0,1}n

f(x1, . . . ,xr) (Obj�)

This is the objective function used in [6].
Our numerical calculations reveal rather minor differences

between the two objectives, with no consistent advantage to
one over the other. See detailed results in Section B.

We state:
Conjecture 1: Let r, n, d be positive integers such that

d ≤ n/2. Then(
val DL(Obj′)(r + 1, n, d)

)1/(r+1) ≤ (
val DL(Obj′)(r, n, d)

)1/r

Here, DL(Obj′)(r, n, d) is obtained from DelsarteLin(r, n, d)
by replacing the objective function with (Obj�).

Due to the non-linear relation between the two objective
functions we are presently only able to prove the following.
A similar Theorem can likewise be proved for the variant
where (C2�) replaces (C2).

Theorem 3: Let r, n, d be positive integers such that
d ≤ n/2. Then(

val DL(Obj′)(r + 1, n, d)
)1/(r+1) ≤

max

{(
val DL(Obj′)(r, n, d)

)1/r
,

val DelsarteLin(r + 1, n, d)

Proof: Let f : {0, 1}(r+1)n → R be a feasible solution
to DL(Obj′ )(r + 1, n, d). Then f is also a feasible solution to
DelsarteLin(r + 1, n, d). Let

v1 =
(∑

f(x1, . . . ,xr+1)
)1/(r+1)

v2 =
∑

f(x,0, . . . ,0)

where the sums are over x1, . . . ,xr+1 ∈ {0, 1}n and over
x ∈ {0, 1}n, respectively.

If v1 ≤ v2 then we are done, because v2 is not greater than
the optimum of DelsarteLin(r + 1, n, d).

Otherwise, v1 > v2. Define g : {0, 1}rn → R as

g(x1, . . . ,xr) =
1
v2

∑
y∈{0,1}n

f(x1, . . . ,xr,y)

It is not hard to verify that g is a feasible solution to
DL(Obj′)(r, n, d). Now consider its value:(∑

g(x1, . . . ,xr)
)1/r

=
(
vr+1
1

v2

)1/r

≥ v1

and the value of g is at most the optimal value of
DL(Obj′)(r, n, d).

�

D. Approximate Completeness

Coregliano et al. [6] prove that for r large enough, the
LP family with the objective function (Obj�) converges to
ALin(n, d)r. For binary linear codes, it can be stated as follows:

Theorem 4 (Approximate Completeness): Let ε ∈ (0, 1)
and r ≥ 2n2/ log2(1 + ε). Then(

val DL(Obj′)(r, n, d)
)1/r ≤ (1 + ε)ALin(n, d)

The proof in [6] is based on an SDP formulation which
is equivalent to the LP family. The idea of the proof is
to upper-bound the variables, and then count the non-zero
variables. Our proof follows the same idea, without using
an SDP. The following proposition provides upper bounds on
the variables, which is followed by a count of the non-zero
variables.

Proposition 1: Let f : {0, 1}n → R such that f(0) = 1 and
f̂ ≥ 0. Then f ≤ 1.

Proof: Let 0 �= x ∈ {0, 1}n. Since f̂ ≥ 0, we have

0 ≤
∑

y:�y,x�F2=1

f̂(y) =
∑

y:�y,x�F2=1

∑
z∈{0,1}n

χy(z)f(z)

For every y in the sum, there holds χy(x) = −1 and χy(0) =
1. Hence,

0 ≤ 2n−1f(0) − 2n−1f(x) +
∑

z �=0,x

f(z)
∑

y:�y,x�F2=1

χy(z)

We complete the proof by showing that the last term vanishes.
So, let [x, z] be the 2 × n matrix whose rows are x and z.
The action of multiplying [x, z] by y ∈ {0, 1}n divides the
n-dimensional cube into cosets in F2

2. If x �= z and both are
non-zero, then each coset has cardinality 2n−2. The inner sum
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is over the cosets (1, 0) and (1, 1). If y is in the first coset,
then χz(y) = 1, and if it is in the second then χz(y) = −1.
In total, the sum vanishes. �

Proof of Theorem 4: Let f be a solution to
DL(Obj′)(r, n, d). By Proposition 1, f ≤ 1.

Let k0 be the largest possible dimension of a binary linear
code with length n and distance d, namely 2k0 = ALin(n, d).
Then f vanishes of every r×n binary matrix of F2-rank larger
than k0. Then, the value of the LP corresponding to f is at
most

∑k0
k=0 γn,r,k, where γn,r,k is the number of such matrices

of rank exactly k.
We next derive an upper bound on γn,r,k. There are exactly∏k
i=1(2

n − 2i) ≤ 2nk ordered bases of k-dimensional sub-
spaces of Fn

2 . There are r(r− 1) · · · (r− k+1) ≤ rk possible
ways to place the chosen ordered base in an r×n matrix, and
then 2k options to choose each of the remaining rows without
increasing the rank. Hence, γk ≤ 2nkrk2k(r−k), and

val DL(Obj′)(r, n, d) ≤
k0∑

k=0

2nkrk2kr

≤ (k0 + 1)2k0(n+r+log2(r))

≤ 2n2+n log2(r)+log2(n+1)ALin(n, d)r

≤ (1 + ε)rALin(n, d)r

in the last inequality we use the assumption that r ≥
2n2/ log2(1 + ε). �

IV. SYMMETRIZED LINEAR PROGRAMS

Due to the inherent symmetries of the LPs from section III
they can be symmetrized without affecting the objective func-
tion. The advantage is that the symmetrized LP is significantly
smaller than the original form. This is what we consider in this
section.

Let Sn be the symmetric group on n elements. It acts on
{0, 1}r×n by column permutations:

σ ·X = [ξρ(1), . . . , ξρ(n)]

where ξ1, . . . , ξn are the columns of X ∈ {0, 1}r×n, and
σ ∈ Sn. It also acts on functions f : {0, 1}r×n → R via
(σ ◦ f)(X) = f(σ ·X).

We say that a solution f to DelsarteLin(r, n, d) is sym-
metric if it is constant on Sn-orbits, i.e., if f = σ ◦ f for
every σ ∈ Sn. Symmetric solutions can clearly be described
more concisely, and as we observe below, there exist optimal
symmetric solutions.

Generally speaking, suppose that the group G acts on the
variables of a linear program P . We say that f , a feasible
solution of P is G-invariant if g◦f is feasible and val(g◦f) =
val(f), for every g ∈ G. If every feasible solution is invariant,
we say that P is G-invariant. An invariant solution f need not
be symmetric, but averaging can yield a symmetric solution
via

f := |G|−1
∑
g∈G

g ◦ f

By linearity and convexity, f is feasible and has the same
value as f . Consequently, a G-invariant LP has a symmetric
optimal solution.

Let us verify that DelsarteLin(r, n, d) is Sn-invariant. Let
f be a feasible solution and σ ∈ Sn.

(C1) f(σ · 0) = f(0) = 1.
(C2) By Proposition 4 from Section V below, if FS(f) ≥

0 then also FS(σ ◦ f) ≥ 0.
(C3) Row weights are invariant under column permutations.
(C4) Permuting of the columns of X is equivalent to mul-

tiplication from the right by a permutation matrix P .
Since matrix multiplication is associative,

(σ ◦ f)(TX) = f(T (XP )) = f(XP ) = (σ ◦ f)(X)

for every T ∈ GL(r, 2).
(Obj) (also (Obj�)) Permutation only affects the order of

summation, but not the total sum.

Hence, σ ◦ f is a feasible solution with the same value as f .
Therefore, there is no loss in restricting to symmetric

solutions of DelsarteLin, i.e., to solutions f that are constant
on the orbits {0, 1}r×n/Sn. Such solutions can be expressed
as a linear combination of orbit indicators:

f(X) =
∑

Orb∈{0,1}r×n/Sn

ϕOrb · 1Orb(X)

where 1Orb : {0, 1}r×n → {0, 1} is the indicator function of
the set Orb ∈ {0, 1}r×n/Sn, and (ϕOrb) are real numbers.
To exploit this symmetry we reformulate the LP in terms of
(ϕOrb).

The following definition will be useful in depicting the set
of orbits.

Definition 4: Let ξ1, . . . , ξn ∈ {0, 1}r be the columns of
X ∈ {0, 1}r×n. The column enumerator of X counts how
many times each vector in {0, 1}r appears as a column in X :

ΓX ∈ N2r

, ΓX(u) = |{1 ≤ i ≤ n : ξi = u}|
Observe that when r = 1, Γx(1) = |x| and Γx(0) = n− |x|.

The column enumerator of a matrix clearly determines its
orbit, i.e., Sn · X = Sn · Y ⇐⇒ ΓX = ΓY . The set of
orbits {0, 1}r×n/Sn is therefore isomorphic to the set of all
possible column enumerators, which we denote by Ir,n,

Ir,n := {α = (α0, . . . , α2r−1) : αi ∈ N,
2r−1∑
i=0

αi = n} (3)

Equivalently, it is the set of ordered partitions of n into 2r

parts. In the sequel, we will introduce a different equivalent
way of looking at Ir,n.

The level-set indicator function of α ∈ Ir,n is defined via

Lα : {0, 1}r×n → {0, 1}, Lα(X) =

{
1 ΓX = α

0 o/w

This allows us to express any symmetric solution to
DelsarteLin(r, n, d) as follows:

f =
∑

α∈Ir,n

ϕαLα

We need to introduce some more notation. Let �u : {0, 1}r →
R be the indicator of u. Namely, �u(v) = 1 if v = u and
0 otherwise, for v ∈ {0, 1}r. Note the distinction between
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indicators in R{0,1}r

, and those in {0, 1}r, which we denote
by ei, for i = 1, . . . , r. We write, for example,

α = (n− k)�0 + k�ei ∈ Ir,n

Here, 0, ei ∈ {0, 1}r, and k is an integer between 0 and n.
Every α ∈ Ir,n is also considered as a real function on

{0, 1}r. Namely, αu is synonymous with αi, where u ∈
{0, 1}r is the binary representation of i ∈ N. As a Boolean
function, we apply Fourier transform to α: α̂u = �χu,α�, for
every u ∈ {0, 1}r.

Let us now rewrite DelsarteLin(r, n, d) in terms of
(ϕα)α∈Ir,n .

(C1) The orbit of 0 ∈ {0, 1}r×n contains only the element
0, so f(0) = 1 implies ϕn�0 = 1.

(C2) By linearity of (partial) Fourier transform,

FS(f)(X) =
∑

α∈Ir,n

ϕα · FS(Lα)(X)

for every S ⊂ [r] and X ∈ {0, 1}r×n.
In Section V below, we show that FS(Lα)(X) depends
only on the column enumerator of X .
When S = [r], namely for L̂α(X), it turns out that
it is a multivariate polynomial in ΓX . In Section VI
we denote L̂α(X) := Kα(ΓX), and show that
{Kα}α∈Ir,n is a set of polynomials over R2r

orthog-
onal w.r.t. the multinomial distribution. These polyno-
mials are called multivariate Krawtchouks.
For S �= [r], we denote FS(Lα)(X) := KS

α(ΓX).
We call the set {KS

α}α∈Ir,n partial Krawtchouks.
These are orthogonal functions w.r.t. an appropriate
measure, though not polynomials. In Section VI we
describe these functions as products of multivariate
Krawtchouks.
Constraint (C2) implies∑

α∈Ir,n

ϕαK
S
α ≥ 0

for every S ⊂ [r].
(C3) The following proposition expresses the weights of the

row space of X in terms of its column enumerator.
Proposition 2: For every X = (xi,j) ∈ {0, 1}r×n and
u ∈ {0, 1}r,

|uᵀX | =
1
2
(
n− 2rΓ̂X(u)

)
where Γ̂X(u) is the Fourier transform of ΓX at u.

Proof: By definition, uᵀX ∈ {0, 1}n and |uᵀX | =∑n
j=1(u

ᵀX)j , where (uᵀX)j is the j-th bit and the
sum is over the integers. Concretely, for j = 1, . . . , n:

(uᵀX)j =
∑

i:ui=1

xi,j mod 2

=
1
2

(
1 − (−1)

�
i:ui=1 xi,j

)
=

1
2

(
1 − (−1)�u,ξj�

)

where ξj = (xi,j)r
i=1 is the j-th column of X . Thus

|uᵀX | =
1
2

n∑
j=1

(
1 − (−1)�u,ξj�

)
But ξj appears ΓX(ξj) times in X , so grouping the
summands by column, we have

|uᵀX| =
1

2

�
v∈{0,1}r

ΓX(v)(1 − (−1)〈u,v〉) =
1

2

�
n − χᵀ

u ΓX

�

�
Thus, we require that ϕα = 0 whenever 1 ≤ 1

2

(
n −

2rα̂u

) ≤ d− 1 for some u ∈ {0, 1}r.
(C4) When X ∈ {0, 1}r×n gets multiplied on the left by T ∈

GL(r, 2), its column enumerator, ΓX gets modified.
Here we need to define the action of T on Ir,n, in a
way that is consistent with this modification. Indeed,
define

(T · α)u = αT−1u

This ensures T · ΓX = ΓTX .
(Obj) The vector (x, 0, . . . , 0) ∈ {0, 1}rn corresponds to the

matrix e1x
ᵀ ∈ {0, 1}r×n. Say |x| = k. Then, its

column enumerator is Γe1xᵀ = (n− k)�0 + k�e1 . The
orbit of e1x

ᵀ has cardinality
(
n
k

)
. Hence, the objective

function becomes

maximize
n∑

k=0

(
n

k

)
ϕ(n−k)�0+k�e1

(Obj�) Summing over the entire set Ir,n with multiplicites,

maximize
∑

α∈Ir,n

(
n

α

)
ϕα

where
(

n
α

)
is the multinomial coefficient.

Let us now define the symmetrized version of DelsarteLin.
Definition 5: DelsarteLin/Sn

(r, n, d):

maximize
ϕ:Ir,n→R

n�
k=0

�n

k

�
ϕ(n−k)ε0+kεe1

(Obj/Sn
)

subject to:

ϕnε0 = 1 (C1/Sn
)

�
α∈Ir,n

ϕαKS
α(β) ≥ 0 ∀S ⊂ [r], β ∈ Ir,n (C2/Sn

)

ϕα = 0 if 1 ≤ 1

2
(n − 2

r
α̂e1 ) ≤ d − 1

(C3/Sn
)

ϕα = ϕT ·α ∀T ∈ GL(r, 2) (C4/Sn
)

We also mention two important variations, (C2�) and (Obj�):

maximize
∑

α∈Ir,n

ϕα (Obj�/Sn
)

ϕ ≥ 0;
∑

α∈Ir,n

ϕαKα(β) ≥ 0 ∀β ∈ Ir,n (C2�/Sn
)

By the comments from the beginning of this section,
we have the following equivalence.
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Proposition 3: For every positive integers r, n, d, such that
d ≤ n/2,

val DelsarteLin/Sn
(r, n, d) = val DelsarteLin(r, n, d)

Note that DelsarteLin/Sn
(1, n, d) is identical to Del-

sarte’s LP. Observe that I1,n is isomorphic to the set
{0, 1, . . . , n}. Rewrite the LP with a new set of variables,
ak :=

(
n
k

)
ϕ(n−k)�0+k�1 , for k = 0, 1, . . . , n. Using the

Krawtchouk symmetry identity,
(
n
j

)
Ki(j) =

(
n
i

)
Kj(i), trans-

form the Krawtchouk constraint (C2/Sn
) as follows:

n∑
j=0

(
n

j

)−1

ajKj(i) =
(
n

i

)−1 n∑
j=0

ajKi(j)

The result is Delsarte’s LP:
Definition 6: Delsarte(n, d):

maximize
a0,...,an∈R

n∑
i=0

ai (obj/Sn
)

subject to:

a0 = 1 (d1/Sn
)

ai ≥ 0;
n∑

j=0

ajKi(j) ≥ 0, 0 ≤ i ≤ n (d2/Sn
)

ai = 0 if 1 ≤ i ≤ d− 1 (d3/Sn
)

V. ON PARTIAL FOURIER TRANSFORM

In this section we explore interactions between the groups
Sn and GL(r, 2) and the partial Fourier transform. The former,
Sn acts on {0, 1}r×n by permuting columns. The latter,
GL(r, 2) acts on {0, 1}r×n by matrix multiplication from the
left. The group of order-r permutation matrices is a subgroup
of GL(r, 2) which acts on {0, 1}r×n by permuting rows.

The main result of this section is Lemma 1. It shows that
the constraints implied by the dual code are equivalent to those
that follow the symmetry w.r.t. the general linear group (see
Section III-A). The easy propositions of this section are useful
also for computational purposes.

We recall our dual view of {0, 1}rn, once as a concatenation
of r vectors x1, . . . ,xr ∈ {0, 1}n, and once as a matrix X ∈
{0, 1}r×n whose rows are the above vectors. If the group G
acts on {0, 1}r×n, and g ∈ G, we denote (f◦g)(X) = f(g·X)
for any X ∈ {0, 1}r×n and f : {0, 1}rn → R.

The proofs for some of the following propositions appear
in the appendix.

Proposition 4: Let σ ∈ Sn, X ∈ {0, 1}r×n, S ⊂ [r], and
f : {0, 1}r×n → R. Then,

FS(f ◦ σ) = FS(f) ◦ σ
Proposition 5: Let π ∈ Sr act on the set {0, 1}r×n by

row permutation. Let X ∈ {0, 1}r×n, S ⊂ [r], and f :
{0, 1}r×n → R. Then,

FS(f ◦ π) = Fπ−1(S)(f) ◦ π
Proposition 6: Let T ∈ GL(r, 2) be the elementary matrix

of row addition, mapping ei �→ ei + ej , for some i, j ∈ [r],
i �= j, and ek �→ ek for k �= i, where ek ∈ {0, 1}r is the

k-th standard basis vector. Let X ∈ {0, 1}r×n, S ⊂ [r], and
f : {0, 1}r×n → R. Then,

• if i, j ∈ S:
FS(f ◦ T ) = FS(f) ◦ T ᵀ

• if i, j /∈ S:
FS(f ◦ T ) = FS(f) ◦ T

• if i ∈ S, j /∈ S:

FS(f ◦ T )(X) = χxi
(xj)FS(f)(X)

Note that do not consider the case i /∈ S, j ∈ S, since the
expression does not simplify in that case.

Lemma 1: Let f : {0, 1}r×n → R. The following are
equivalent:

1) For every T ∈ GL(r, 2),

f = f ◦ T.
2) For every S ⊂ [r],

FS(f)(x1, . . . ,xr) = 0,

if �xi,xj� = 1 mod 2 for some i ∈ S and j ∈ [r] \ S.
3) For every S ⊂ [r],

FS(f) = FS(f) ◦ (T1T2)

if T1, T2 ∈ GL(r, 2), and T1ei = ei for every i ∈ S,
T2ei = ei for every i ∈ [r] \ S.

Proof:
• (1) ⇒ (2): Let S � [r], S �= ∅. Let x1, . . . ,xr ∈ {0, 1}n

and i ∈ S, j ∈ [r] \ S s.t. �xi,xj� = 1 mod 2. Let
T ∈ GL(r, 2) be the mapping xi �→ xi+xj and xk �→ xk

for k �= i. By assumption and by proposition 6,

FS(f) = FS(f ◦ T ) = χxi(xj)FS(f) = −FS(f)

Hence FS(f) = 0.
• (2) ⇒ (3): It is enough to show that FS(f) is invariant

under the mapping xi �→ xi + xj , where i �= j and i, j
are either both in S or both in [r] \ S. The rest follows
by composition of such operators.
If |S| ≤ 1 the claim holds trivially. Otherwise, let i �=
j, i, j ∈ S, and let x1, . . . ,xr ∈ {0, 1}n. Observe that
FS(f) = F{i}FS\{i}(f). Hence

FS(f)(x1, . . . ,xr)

= 2−n
∑

y∈{0,1}r

χxi
(y)FS\{i}(f)(. . . ,xi−1,y,xi+1, . . . )

by assumption, FS\{i}(f)(. . . ,xi−1,y,xi+1, . . . ) = 0 if
�y,xj� = 1, hence χxj

(y) = 1 for every non-zero
element of the sum. So

FS(f)(x1, . . . ,xr)

= 2−n
∑

y∈{0,1}r

χxi
(y)χxj

(y)×

×FS\{i}(f)(. . . ,xi−1,y,xi+1, . . . )
= FS(f)(. . . ,xi−1,xi + xj ,xi+1, . . . )

To see that the same applies if i, j ∈ [r] \S, observe that
FS(f) = 2nF{i}FS∪{i}(f) and repeat the same steps.

• (3) ⇒ (1): Take S = ∅.
�
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VI. ON MULTIVARIATE KRAWTCHOUK POLYNOMIALS

The multivariate Krawtchouk polynomials are orthogo-
nal polynomials on the multinomial distribution. Univariate
Krawtchouk polynomials are the Fourier transform of the level
sets in the Boolean cube, and as we show in this section,
these polynomials are the Fourier transform of the level-set
indicators {Lα}.

We borrow the terminology of [8]. The multinomial dis-
tribution m(α,p) arises in the stochastic process where n
identical balls are independently dropped into d bins, where
the probability of falling into the i-th bin is pi. The probability
that αi balls end up in bin i is

m(α,p) =
(

n

α0, . . . , αd−1

) d−1∏
i=0

pαi

i =
(
n

α

)
pα

Here p = (p0, . . . , pd−1), all αi are nonnegative integers and
their sum is n. We use the shorthand m(α) when p is uniform.

Orthogonal systems of univariate polynomials are con-
structed by applying a Gram-Schmidt process to the poly-
nomials 1, x, x2, . . . e.g., [18]. The result depends only on
a measure that we fix on the underlying set. However,
as mentioned e.g., in [19], in the process of defining an
orthogonal multivariate family of polynomials, there is another
choice to make, and this choice affects the resulting family.
Namely, we need to choose the order in which we go over
the monomials of a given degree. In [8], this freedom is
mitigated by choosing a basis of orthogonal functions on
{0, 1, . . . , d − 1}. Every such basis leads to a unique set of
orthogonal polynomials, as follows. Let h = {hl}d−1

l=0 be a
complete set of orthogonal functions w.r.t. p, with h0 ≡ 1.
Namely,

d−1∑
i=0

hl(i)hk(i)pi = δlkak, 0 ≤ k, l ≤ d

The Krawtchouks are defined in terms of a generating function.
Fix α and h as above. For every choice of nonnegative reals
ξ0, . . . , ξd−1 whose sum is n, we define

Q(ξ) = Qα(ξ,h) = coef�d−1
i=1 w

αi
i

d−1∏
j=0

{
1 +

d−1∑
l=1

wlh
l(j)

}ξj

where w = (w0 . . . , wd−1) are formal variables. The total
degree of Qα is

∑d−1
i=1 αi. Note that α0, w0 do not appear

in the definition. An equivalent definition that does include
α0, w0 is:

Qα(ξ,h) = coef
wα

d−1∏
j=0

{ d−1∑
l=0

wlh
l(j)

}ξj

(4)

It is easy to see the equivalence by expanding each factor with
the multinomial expansion. We will be using all of this with
d = 2r, uniform p ≡ 2−r and with the orthonormal functions
that are the characters of {0, 1}r: h = {χu}u∈{0,1}r .

Recall the definition of level-set indicators, {Lα}:

Lα(X) = 1[ΓX=α], X ∈ {0, 1}r×n

We also defined Ir,n the set of all ordered partitions of [n]
into 2r parts.

Ir,n = {ΓX : X ∈ {0, 1}r×n}
Also, Ir,n is the support of the multinomial distribution with
n balls, 2r bins, where p is uniform.

Let X ∈ {0, 1}r×n be a random matrix that results by sam-
pling n columns independently and uniformly from {0, 1}r.
The probability that Lα(X) = 1 is m(α) = 2−rn

(
n
α

)
. It is

clear that Lα(X) depends only on ΓX , and by proposition 4
this is true for L̂α(X) as well. Define

Kα(ΓX) = 2rnL̂α(X), X ∈ {0, 1}r×n

It is easy to see that {Kα} are orthogonal with respect to
m(α), using Parseval’s identity:∑

γ

m(γ)Kα(γ)Kβ(γ)

=
∑
γ

2−rn
∑

X:ΓX=γ

22rnL̂α(X)L̂β(X)

=
∑

X∈{0,1}r×n

Lα(X)Lβ(X)

=
(
n

α

)
δα,β

where α,β,γ ∈ Ir,n. The extra 2−rn is there because inner
product is normalized in the non-Fourier space.

The following proposition shows that {Kα} are
Krawtchouk polynomials.

Proposition 7: Kα is the Krawtchouk polynomial Qα(·,h)
with d = 2r, h are the Fourier characters {χu}u∈{0,1}r , and
p ≡ 2−r is the uniform distribution.

Proof: Let X ∈ {0, 1}r×n and ΓX = β = (βu)u∈{0,1}r .
We show that Kα(β) coincides with the definition of
Qα(β, {χu}u∈{0,1}r) in (4).

By definition,

Kα(β) = L̂α(X) = 2−rn
∑

Y ∈{0,1}r×n

(−1)�X,Y �Lα(Y )

The inner product between X and Y can be expressed column-
wise,

�X,Y � =
n∑

j=1

�(Xᵀ)j , (Y ᵀ)j� =
∑

u,v∈{0,1}r

�u,v�Γ[X,Y ](u,v)

where [X,Y ] ∈ {0, 1}2r×n is the stacking of X on top
of Y , and Γ[X,Y ](u,v) is the number of times the column
[u,v] ∈ {0, 1}2r appears in the matrix [X,Y ]. We consider
Γ[X,Y ](u,v) as a matrix indexed by {0, 1}r×{0, 1}r. Its u-th
row sums to βu and its v-th column sums to ΓY (v). Hence,

L̂α(X) = 2−rn
∑
A

∑
Y ∈{0,1}r×n:

Γ[X,Y ]=A

∏
u,v∈{0,1}r

(−1)�u,v�Au,vLα(Y )

where the outer sum is over all matrices A ∈ N2r×2r

with
A · 1 = β.

If ΓY = α then 1ᵀ · A = α. In particular, A uniquely
determines Lα(Y ),
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so the product does not depend on Y . The sum over Y
evaluates to the size of the set {Y ∈ {0, 1}r×n : Γ[X,Y ] =
A}, which we now compute. For every u ∈ {0, 1}r, [X,Y ]
contains ΓX(u) = βu columns whose prefix is u. For every
v ∈ {0, 1}r, the column [u,v] appears Au,v times in [X,Y ].
Since the position of the u’s is fixed, it is left to position the
v’s with respect to each u. Hence

|{Y ∈ {0, 1}r×n : Γ[X,Y ] = A}| =
∏

u∈{0,1}r

(
βu

Au

)
where Au is the row of A that is indexed by u.

Let w = (wv)v∈{0,1}r be formal variables. If A is such that
1ᵀA = α then∏

u,v

w
Au,v
v =

∏
v

w
�

u Au,v
v =

∏
v

wαv
v

hence L̂α(X) equals

coef
wα

2−rn
∑
A

∏
u∈{0,1}r

(
βu

Au

) ∏
v∈{0,1}r

(
(−1)�u,v�wv

)Au,v

The sum over A can be expanded to nested sums over its
rows, ∑

A

=
∑
A0

∑
A1

· · ·
∑

A2r−1

where Au ∈ N2r

, Au · 1 = βu. Every factor in the product
depends on a single row of A, so the product and the sum can
be transposed.

Then, by the multinomial theorem:

L̂α(X) = coef
wα

2−rn
∏

u∈{0,1}r

{ ∑
v∈{0,1}r

(−1)�u,v�wv

}βu

= 2−rnQα(β, {χv}v∈{0,1}r)

�
We turn to deal with the partial Fourier transform of the

level-set indicators. Let S � {1, . . . , r} be non-empty. Denote
by X �, X �� be the sub-matrix of X ∈ {0, 1}r×n with row
set S and [r] \ S, respectively. Similarly, u�,u�� are obtained
from u ∈ {0, 1}r by restricting to S, [r] \ S, respectively.
For α ∈ Ir,n define the rearrangement of α into a matrix
αS = (αS

u′′,u′)u′′∈{0,1}r−|S|,u′∈{0,1}|S| by

αS
u′′,u′ = αu u ∈ {0, 1}r

For X ∈ {0, 1}r×n we define KS
α as follows:

KS
α(ΓX) := 2|S|nFS(Lα)(X)

The next proposition says that KS
α is a sparse product of lower-

order Krawtchouks.
Proposition 8: For every β ∈ Ir,n there holds

KS
α(β) =

{∏
KαS

v
(βS

v ) if αS
v · 1 = βS

v · 1 ∀v

0 otherwise.

where the product is over all v ∈ {0, 1}r−|S|. Here αS
v is the

row of αS at index v, and αS
v · 1 =

∑
u′∈{0,1}|S| αS

v,u′ .

Proof: Let X ∈ {0, 1}r×n such that ΓX = β. By defini-
tion,

KS
α(β) = FS(Lα)(X)

= 2−|S|n ∑
Y ∈{0,1}r×n

(−1)�X
′,Y ′�δX′′(Y ��)Lα(Y )

We express δX′′(Y ��)Lα(Y ) in terms of Y �, αS and βS .
Let Y ∈ {0, 1}r×n such that ΓY = α and Y �� = X ��. The

number of times u�� ∈ {0, 1}r−|S| occurs in Y �� is αS
u′′ · 1 =∑

u′ αS
u′′,u′ . But this is equal βS

u′′ · 1 because Y �� = X ��.
Let Y �|Y ′′=u′′ be the subset of columns from Y � for which

the corresponding column in Y �� is u��. Then ΓY ′|Y ′′=u′′ =
αS

u′′ .

Lα(Y )δX′′(Y ��)

=
∏

u′′∈{0,1}r−|S|

1[αS
u′′ ·1=βS

u′′ ·1]LαS
u′′ (Y

�|Y ′′=u′′)

The sum over Y can be broken into nested sums over
{Y �|Y ′′=u′′}u′′∈{0,1}r−|S| ,∑

Y ∈{0,1}r×n

=
∑
Y ′
0

∑
Y ′
1

· · ·
∑

Y ′
2r−|S|−1

where Y �
u′′ ∈ {0, 1}|S|×n are mutually independent. Each

factor in the product depends on a single Y �
u′′ so the order

of summations and products can be reversed,

FS(Lα)(X) = 2−|S|n ∏
u′′∈{0,1}r−|S|

[
1[αS

u′′ ·1=βS
u′′ ·1]×

×
∑

Y ′
u′′∈{0,1}|S|×n

(−1)�X
′|X′′=u′′ ,Y ′

u′′�LαS
u′′ (Y

�|Y ′′=u′′)
]

Observe that the inner sum is simply

L̂αS
u′′ (X

�|X′′=u′′) = KS
αS

u′′
(βS

u′′).

�
In the last part of this section we consider KS

α under the
action of the general linear group GL(r, 2).

Fix S ⊂ [r] and α ∈ Ir,n. It is easy to verify that

KS
T ·α(ΓX) = FS(Lα ◦ T )(X)

for every X ∈ {0, 1}r×n and T ∈ GL(r, 2). Propositions 9
and 10 below are immediate consequences of 5 and 6.

Proposition 9: Let T ∈ GL(r, 2) be a permutation matrix,
Tei = eπ(i) for some π ∈ Sr. Then

KS
T ·α = Kπ−1(S)

α ◦ T

Proposition 10: Let T ∈ GL(r, 2) be the mapping ei �→
ei + ej for some i, j ∈ [r], and ek �→ ek for every k �= i.

• if i, j ∈ S:
KS

T ·α = KS
α ◦ T ᵀ

• if i, j /∈ S:
KS

T ·α = KS
α ◦ T

• if i ∈ S, j /∈ S:

KS
T ·α(β) = (−1)

�
u∈{0,1}r βuuiujKS

α(β)
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Fig. 4. (Lower is better). Similar to Figure 1, stated in terms of the code’s dimension. Each point represents �log2(LP (n, d))� − bestKnown(n, d), where
LP is one of: Delsarte(n, d), DelsarteLin(2, n, d), and KrawtchoukLin(n, d, 2), and bestKnown(n, d) is the best known upper bound on log2(ALin(n, d)).

APPENDIX A
PROOFS FOR SECTION V

Proof of Proposition 4: For x,y ∈ {0, 1}n,

χx(σ · y) = (−1)
�n

i=1 xiyσ(i)

= (−1)
�n

i=1 xσ−1(i)yi

= χρ−1·x(y)

and

δx(σ · y) =
n∏

i=1

δxi(yρ(i)) =
n∏

i=1

δx
σ−1(i)

(yi) = δρ−1·x(y)

Hence, for X,Y ∈ {0, 1}r×n,

χS
X(σ · Y ) = χS

ρ−1·X(Y )

Finally, letting Y � = σ · Y ,

FS(f ◦ σ)(X) =
∑

Y ∈{0,1}r×n

χX(Y )f(σ · Y )

=
∑

Y ′∈{0,1}r×n

χX(σ−1 · Y �)f(Y �)

=
∑

Y ′∈{0,1}r×n

χρ·X(Y �)f(Y �)

= FS(f)(σ ·X)

�

Proof of Proposition 5:

FS(f ◦ π)(x1, . . . ,xr)

= 2−rn
∑

y1,...,yr

χS
x1,...,xr

(y1, . . . ,yr)f(yπ(1), . . . ,yπ(r))

= 2−rn
∑

y1,...,yr

χS
x1,...,xr

(yπ−1(1), . . . ,yπ−1(r))×

× f(y1, . . . ,yr)

= 2−rn
∑

y1,...,yr

∏
i∈S

χxi
(yπ−1(i))×

×
∏

i∈[r]\S

δxi(yπ−1(i))f(y1, . . . ,yr)

= 2−rn
∑

y1,...,yr

∏
j∈π−1(S)

χxπ(j)(yj)×

×
∏

j∈[r]\π−1(S)

δxπ(j)(yj)f(y1, . . . ,yr)

= Fπ−1(S)(f)(xπ(1), . . . ,xπ(r))

�
Proof of Proposition 6: Consider f as a function of r

vectors, x1, . . . ,xr ∈ {0, 1}n. Then T maps xi �→ xi + xj ,
and xk �→ xk for k �= i.

For k = 1, . . . , r, and x ∈ {0, 1}n, define a set of
functions {ψ(k)

x }k∈[r], where ψ
(k)
x = χx if k ∈ S and
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ψ
(k)
x = δx otherwise.

FS(f ◦ T )(x1, . . . ,xr)

= 2−rn
∑

y1,...,yr

r∏
k=1

ψ(k)
yk

(yk)f(y1, . . . ,yi + yj︸ ︷︷ ︸
index i

, . . . ,yr)

replacing the sum over yi by a sum over yi + yj , we get

=2−rn
∑

y1,...,yr

ψ(i)
xi

(yi + yj)ψ
(j)
yj

(yj)×

×
∏

k∈[r]\{i,j}
ψ(k)

yk
(yk)f(y1, . . . ,yi, . . . ,yr) (5)

We now examine the expression ψ(i)
xi (yi + yj)ψ

(j)
yj

(yj) in the
different cases of the proposition.

• i, j ∈ S:

ψ(i)
xi

(yi + yj)ψ
(j)
xj

(yj) = χxi(yi + yj)χxj (yj)

= χxi
(yi)χxi+xj (yj)

= ψ(i)
xi

(yi)ψ
(j)
xi+xj

(yj)

which is the same as applying the mapping xj �→ xi+xj ,
or equivalently T ᵀ, to x1, . . . ,xr.

• i, j /∈ S:

ψ(i)
xi

(yi + yj)ψ
(j)
xj

(yj) = δxi
(yi + yj)δxj

(yj)

= δxi
(yi + xj)δxj

(yj)
= δxi+xj (yi)δxj

(yj)

= ψ
(i)
xi+xj

(yi)ψ
(j)
xj

(yj)

which equivalent to applying T to x1, . . . ,xr.
• i ∈ S, j /∈ S:

ψ(i)
xi

(yi + yj)ψ
(j)
xj

(yj) = χxi
(yi + yj)δxj

(yj)

= χxi(xj)χxi(yi)δxj (yj)

= χxi
(xj)ψ(i)

xi
(yi)ψ

(j)
xj

(yj)

observe that χxi
(xj) is constant with respect to the sum

in (5).
• i /∈ S, j ∈ S:

ψ(i)
xi

(yi + yj)ψ
(j)
xj

(yj) = δxi
(yi + yj)χxj

(yj)

Here there is no obvious way to rewrite the functions so
as to separate yi and yj .

�

APPENDIX B
NUMERICAL RESULTS

We have experimented with several variants of
DelsarteLin/Sn

(2, n, d) with n ranging between 10 and
40 and d ≤ n/2 is even. In those variants of the LP - we
replace (C2) with (C2�), and (Obj) with (Obj�). The table
below only shows the results for n ≥ 20.

The number of variables is |Ir,n| =
(
n+2r−1

2r−1

)
and, if we

consider r as a constant, there are On(|Ir,n|) constraints.
In practice, symmetrization w.r.t. GL(r, 2) reduces the problem
size (variables × constraints) by a factor of 2Ω(r), which is

significant. Since we have not yet developed the necessary
theoretical tools for such symmetrization, it was carried out
algorithmically. We intend to develop such theory so as to
solve instances of DelsarteLin/Sn

(r, n, d) with larger values
of r.

The number of variables is further reduced using the well-
known fact, that if d is even then an even code attains A(n, d).
Namely, we set ϕα = 0 if (n − χᵀ

uα)/2 is odd, for some
u ∈ {0, 1}r.

The Krawtchouk polynomials were computed with a recur-
rence formula, e.g. (16) in [8]. The partial Krawtchouks
KS

α were computed using proposition 8. We used two exact
solvers: SoPlex [20], [21], [22] and QSoptEx [23], with up to
128GB of RAM and at most 3 days of runtime. Some instances
were solved by one solver and not the other. Missing entries
were solved by neither.

The best in each row is marked with boldface. Entries are
marked with a “∗” if �log2(entry)� equals the best known
upper bound, as reported in [7].
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