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Yes, graphs are everywhere, but why?

One major reason for the phenomenal success of
graphs in real life applications is this:
In numerous real-life situations we need to
understand a large complex system whose
elementary constituents are pairwise interactions.

I Interacting elementary particles in physics.

I Proteins in some biological system.

I Partners in an economic transaction.

I Humans in some social context.
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But what can we do about multi-way
interactions?

I Proteins come, more often than not, in
complexes that involve several proteins at once.

I Human social networks tend to include several
individuals.

I Economics transactions often involve several
parties at once.

I Most relevant to us here: Distributed systems
are many-sided by their very nature.
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Hypergraphs, anyone?

There is a combinatorial theory of hypergraphs. A
hypergraph (V ,F ) consists of a set of vertices V
and a collection F of subsets of V . The sets that
belong to F are called hyperedges.

If every hyperedge contains exactly two vertices we
are back to graphs.
These are the good news. The bad news are that
the theory of hypergraphs is not nearly as well
developed as graph theory.
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Never despair -
Simplicial complexes to the rescue

We only need to make a small modification to the
notion of hypergraph to arrive at simplicial
complexes. This way we make contact with a rich
body of powerful mathematics in topology and
geometry that can help us.

What’s more - many fascinating new connections
and perspectives suggest themselves.
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Definition
Let V be a finite set of vertices. A collection of
subsets X ⊆ 2V is called a simplicial complex if it
satisfies the following condition:

A ∈ X and B ⊆ A⇒ B ∈ X .

A member A ∈ X is called a simplex or a face of
dimension |A| − 1.
The dimension of X is the largest dimension of a
face in X .
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Up up and away

I A one-dimensional simplicial complex = A
graph.

I A zero-dimensional face = A vertex.
I A one-dimensional face = an edge.

I Higher dimensional complexes offer a wonderful
mix of combinatorics with geometric (mostly
topological) ideas.

I The challenge - to develop a combinatorial
perspective of higher dimensional complexes.
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Simplicial complexes as geometric objects

Assign to A ∈ X with |A| = k + 1 a k-dim. simplex

k = 3

k = 0

k = 1

k = 2
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Putting simplices together properly

The intersection of every two simplices in X is a
common face.
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How NOT to do it

Not every collection of simplices in Rd is a simplicial
complex
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Geometric equivalence

Combinatorially different complexes may correspond
to the same geometric object (e.g. via subdivision)
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Geometric equivalence

So
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Geometric equivalence

and
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Geometric equivalence

are two different combinatorial descriptions of the
same geometric object
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Track record - SC’s in theoretical
computer science

I Work on the evasiveness conjecture (See
below).

I Impossibility theorems in distributed
asynchronous computation (Starting with
[Borowsky, Gafni ’93] [Herlihy, Shavit ’93] and
[Saks, Zaharoglou ’93]).
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.... and in combinatorics

I Characterization of graph connectivity
(Lovász’s proof of A. Frank’s conjecture 1977).

I Lower bounds on chromatic numbers: Kneser’s
graphs and hypergraphs. (Starting with
[Lovász ’78]).

I In the study of matching in hypergraphs
(Starting with [Aharoni Haxell ’00]).
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The evasiveness game

Fix a down-monotone graph property P (e.g., being
disconnected, being planar, being k-colorable,
containing a large independent set...).

We want to determine if a (presently unknown)
n-vertex graph G = (V ,E ) has property P .
This is done through a two-person game as follows:
At each round Alice points at two vertices x , y ∈ V
and Bob answers whether they are adjacent in G ,
i.e. whether or not xy ∈ E .
The game ends when Alice knows with certainty
whether G has property P .
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The evasiveness conjecture

Conjecture
For every monotone graph property P , Bob has a
strategy that forces Alice to query all

(
n
2

)
pairs of

vertices in V .

Or: All monotone graph properties are evasive.

But how is this related to simplicial complexes,
topology etc.?

Nati Linial Simplicial complexes -Much more than a trick for distributed computing lower bounds



The evasiveness conjecture

Conjecture
For every monotone graph property P , Bob has a
strategy that forces Alice to query all

(
n
2

)
pairs of

vertices in V .

Or: All monotone graph properties are

evasive.

But how is this related to simplicial complexes,
topology etc.?

Nati Linial Simplicial complexes -Much more than a trick for distributed computing lower bounds



The evasiveness conjecture

Conjecture
For every monotone graph property P , Bob has a
strategy that forces Alice to query all

(
n
2

)
pairs of

vertices in V .

Or: All monotone graph properties are evasive.

But how is this related to simplicial complexes,
topology etc.?

Nati Linial Simplicial complexes -Much more than a trick for distributed computing lower bounds



The evasiveness conjecture

Conjecture
For every monotone graph property P , Bob has a
strategy that forces Alice to query all

(
n
2

)
pairs of

vertices in V .

Or: All monotone graph properties are evasive.

But how is this related to simplicial complexes,
topology etc.?

Nati Linial Simplicial complexes -Much more than a trick for distributed computing lower bounds



The work of Kahn Saks and Sturtevant ’83

We will be considering graphs with vertex set
V = [n] = {1, . . . , n} for some fixed integer n.
Note: For fixed number of vertices n, a graph is the
same thing as a set of edges.
In other words, for us an n-vertex graph is just a
subset of W =

(
[n]
2

)
.

Careful: W is the set of vertices of the complex we
consider.
The collection of all n-vertex graphs that have
property P is a simplicial complex = a down-closed
family of subsets of W . (Since P is monotone).
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A view of the game from the perspective
of simplicial complexes

I Set of all n-vertex graphs with property P

⇔ A
simplicial complex X on vertex set W =

(
[n]
2

)
.

I Does unknown graph G have property P ? ⇔
Is an unknown set A ⊆ W a member of X ?

I Does a particular edge e belong to graph G ?
⇔ Does a particular x ∈ W belong to A ?
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To wrap up - A new game in town

I The game is played with a mutually known
simplicial complex X on vertex set W .

I Alice’s goal: to determine whether (an initially
unknown) A ⊆ W belongs to X .

I At each step: Alice points at some x ∈ W and
Bob responds whether or not x is in A.

I The simplicial complex X is said to be evasive
if Bob has a strategy that forces Alice to query
all elements in W .
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A nice feature of this frame of thought is this:
Whether Bob responds that x ∈ A or x 6∈ A, we
now proceed to a new game with a new simplicial
complex X ′ or X ′′ on vertex set W \ {x}.

For a non-evasive X , the query Is x ∈ W ? is a
good step for Alice iff both X ′ and X ′′ are
non-evasive.
This allows for an inductive approach.

and indeed
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Non-evasiveness implies collapsibility

The first (simple) observation of [KSS ’83] is

Lemma
Every non-evasive complex is collapsible.

Collapsibility is a simple combinatorial property of
simplicial complexes which can be thought of as a
higher-dimensional analogue of being a forest.

We will later return to this notion.
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Kahn Saks and Sturtevant

The additional ingredient is that P is a graph
property. Namely, it does not depend on vertex
labeling. This implies that the simplicial complex of
all graphs with property P is highly symmetric.
Using some facts from group theory they conclude:

Theorem (KSS ’83)
The evasiveness conjecture holds for all n-vertex
graphs if n is prime.
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What next?

We want to develop a combinatorial theory of
high-dimensional simplicial complexes in light of the
main achievements of graph theory. Specifically, we
want to develop

I A model of random simplical complexes (main
issue for the rest of this talk).

I Study extremal problems on simplicial
complexes.

I In even bigger terms: Develop High
dimensional combinatorics.
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Exporting the probabilistic method to
topology?

We want to develop a theory of random simplicial
complexes, in light of to random graph theory.
Specifically we seek a higher-dimensional analogue
to G (n, p).
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Recollections of G (n, p)

This is the grandfather of all models of random
graphs. Investigated systematically by Erdős and
Rényi in the 60’s, a mainstay of modern
combinatorics and still an important source of ideas
and inspiration.

Start with n vertices. For each of the
(
n
2

)
possible

edges e = xy , choose independently and with
probability p to include e in the random graph that
you generate.
Closely related model: the evolution of random
graphs starts with n vertices and no edges. At each
step add a random edge to the evolving graph.
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What we talk about when we talk about
random simplicial complexes

For the purpose of illustration let us mostly consider:

I two-dimensional complexes.

I with a full one-dimensional skeleton. Namely,

I We start with a complete graph Kn and add
each triple (=2-dimensional simplex=face)
independently with probability p.

We denote by X (n, p) this probability space of
two-dimensional complexes.
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Back to the classics

What properties of these random complexes should
we investigate?

Let us return to the Erdős-Rényi papers. In
particular, to the fact that

Theorem (ER ’60)
The threshold for graph connectivity in G (n, p) is

p =
ln n

n
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A few more words on this theorem

In other words:

I If p < (1− ε) ln nn , then a random graph in
G (n, p) is almost surely disconnected.

I If p > (1 + ε) ln nn , then a random graph in
G (n, p) is almost surely connected.
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One part of this theorem is really easy

If p < (1− ε) ln nn , then a random graph in G (n, p) is
not only almost surely disconnected.

In fact, in this range of p, the graph almost surely
has some isolated vertices. This is an easy
consequence of the coupon-collector principle from
probability theory.

Nati Linial Simplicial complexes -Much more than a trick for distributed computing lower bounds



One part of this theorem is really easy

If p < (1− ε) ln nn , then a random graph in G (n, p) is
not only almost surely disconnected.

In fact, in this range of p, the graph almost surely
has some isolated vertices.

This is an easy
consequence of the coupon-collector principle from
probability theory.

Nati Linial Simplicial complexes -Much more than a trick for distributed computing lower bounds



One part of this theorem is really easy

If p < (1− ε) ln nn , then a random graph in G (n, p) is
not only almost surely disconnected.

In fact, in this range of p, the graph almost surely
has some isolated vertices. This is an easy
consequence of the coupon-collector principle from
probability theory.

Nati Linial Simplicial complexes -Much more than a trick for distributed computing lower bounds



When is a simplicial complex connected?

Unlike the situation in graphs, this question has
many meaningful answers when it comes to
d-dimensional simplicial complexes.

I The vanishing of the (d − 1)-st homology =
the matrix ∂d has a nontrivial left kernel. (This
is the higher dimensional analog of a graph’s
incidence matrix - more below).

I Being simply connected (vanishing of the
fundamental group).
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A little linear algebra can be very helpful

I It is easy and useful to state that ”G = (V ,E )
is connected” in the language of linear algebra.

I Consider M the incidence V × E matrix of G
as a matrix over F2. Clearly, 1M = 0, since
every column of M contains exactly two 1’s.

I Likewise, if S is the vertex set of a connected
component of G , then 1SM = 0.

I It is not hard to see that G is connected iff the
only nonzero vector x that satisfies xM = 0 is
x = 1.
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In other words

A graph G = (V ,E ) is disconnected iff the V × E
inclusion matrix has a nontrivial left kernel.

The Erdős-Rényi result can be restated as follows:

I Start from the n ×
(
n
2

)
inclusion matrix.

I Select a random subset of the columns: include
each column independently, with probability p.

I The critical probability for the resulting matrix
having a nontrivial left kernel is p = ln n

n .
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... and how to view the easy part of the
ER theorem from this perspective

If p < (1− ε) ln nn , then the resulting matrix almost
surely has an all-zeros row.

This is the row corresponding to an isolated vertex
in the resulting graph.
A matrix with a row of zeros clearly has a
non-trivial left kernel.
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The simplest case: The first F2-homology
in two dimensions

I Let A1 be the n ×
(
[n]
2

)
inclusion matrix of

singletons vs. pairs.

I Let A2 be the
(
[n]
2

)
×
(
[n]
3

)
inclusion matrix of

pairs vs. triples.

I The transformations associated with A1 resp.
A2 are called the boundary operator (of the
appropriate dimension) and are denoted ∂
(perhaps with an indication of the dimension).

It is an easy exercise to verify that A1A2 = 0 (the
general form is ∂∂ = 0, a key fact in topology).
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A natural question suggests itself - Baby
homology theory

Let X and Y be two matrices over some field with

XY = 0.

Clearly, the right kernel of X contains the column
space of Y . The question to ask is:
Is this a proper inclusion or an equality?
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This is quantified by considering the quotient space

right kernel(X )/column space(Y ).

Likewise, we consider

left kernel(Y )/row space(X ).

In our situation where X and Y are inclusion
matrices of k vs. (k + 1)-dimensional faces of a
simplicial complex, these quotient spaces are the
relevant homology and cohomology groups.
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How do we move up in dimension?

Several things are clear: We now start from the(
n
2

)
×

(
n
3

)
inclusion matrix and select a random

subset of the columns where every column is
selected independently and with probability p.

We ask for the critical p for which the resulting
matrix has a non-trivial left kernel.

And what is the trivial kernel?

That should be clear now: The row space of the
n ×

(
n
2

)
matrix.
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matrix has a non-trivial left kernel.
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A little terminology

The process of selecting the columns yields a
random two-dimensional complex with a full
one-dimensional skeleton. We call this model of
random complexes X2(n, p). (So, e.g. X1(n, p) is
nothing but good old G (n, p)).
We have asked for the critical p where there a
non-trivial left kernel exists.
In topological language: What is the critical p at
which the first homology with F2 coefficients of a
random X ∈ X2(n, p) vanishes?
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...and the answer is...

Theorem (L. + Meshulam ’06)
The threshold for the vanishing of the first
homology of X2(n, p) with F2 coefficients is

p =
2 ln n

n
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Again, one part is easy

For the very same reason, when p < (1− ε)2 ln nn

the
resulting matrix contains an all zeros row and
consequently it has a nontrivial left kernel.

Such a row corresponds to an edge that is not
contained in any of the randomly chosen
2-dimensional faces.
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More generally

Likewise define Xd(n, p), the random d-dimensional
simplicial complexes with a full (d − 1)-st
dimensional skeleton.

The following result is due to
Meshulam and Wallach.

Theorem
In d dimensions the critical probability for the
vanishing of the (d − 1)-st homology with an
arbitrary finite group of coefficients is

d ln n

n
.
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The vanishing of the fundamental group

Theorem (Babson, Hoffman, Kahle ’11)
The threshold for the vanishing of the fundamental
group in X (n, p) is near

p = n−1/2.
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Comment: When the field is not F2

We have to select an (arbitrary but fixed)
orientation to the triples and pairs. The entries of
the inclusion matrix are ±1 depending on whether
the orientation of the edge and the 2-face
containing it are consistent or not.

The d-dimensional case is similar (with an
appropriate adaptation).
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And what about the right kernel?

Again let’s start with the graphical case. The right
kernel of the V × E inclusion matrix of a graph
G = (V ,E ) is G ’s cycle space.

If A is the incidence matrix of the graph and if
Ax = 0, then x is the indicator vector of a set of
edges that picks an even number of 1’s in every row.

Nati Linial Simplicial complexes -Much more than a trick for distributed computing lower bounds



And what about the right kernel?

Again let’s start with the graphical case. The right
kernel of the V × E inclusion matrix of a graph
G = (V ,E ) is G ’s cycle space.

If A is the incidence matrix of the graph and if
Ax = 0, then x is the indicator vector of a set of
edges that picks an even number of 1’s in every row.

Nati Linial Simplicial complexes -Much more than a trick for distributed computing lower bounds



And what about the right kernel?

Again let’s start with the graphical case. The right
kernel of the V × E inclusion matrix of a graph
G = (V ,E ) is G ’s cycle space.

If A is the incidence matrix of the graph and if
Ax = 0, then x is the indicator vector of a set of
edges that picks an even number of 1’s in every row.

Nati Linial Simplicial complexes -Much more than a trick for distributed computing lower bounds



And what about the right kernel?

In words, x is an indicator vector of an Eulerian
subgraph of G . One in which all vertices have an
even degree.

Such subgraphs form a linear subspace. This
subspace is generated by the simple cycles in G .

To sum up, A has a nonzero right kernel iff G
contains cycles.
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And what about the right kernel?

So the relevant 1-dimensional theorem is:

Theorem (Erdős-Rényi)
The critical probability for almost sure existence of
a cycle in G (n, p) is

p =
1

n
.

= the critical p for G ∼ G (n, p) to be a forest.
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The best show in town - Watch it unfold

The Erdős-Rényi papers on G (n, p) is a monumental
piece of science which had taught us many
important and unexpected things. However, the
most dramatic chapter in this fascinating story is the
phase transition in the evolution of random graphs.

Start with n isolated vertices and sequentially add a
new random edge, one at a time. Observe the
connected components of the evolving graph.
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Prelude - The early stages

At the very beginning we see only isolated edges (a
matching).

As we proceed, more complex connected
components start to appear, but they are all small
and simple.

I small = cardinality O(log n).

I simple = a tree.

I Possibly a constant number of exceptions
which are a small tree plus one edge = unicylic
graphs.
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Crescendo - The phase transition

Around step n
2 and over a very short period of time

A GIANT COMPONENT EMERGES.

GIANT= cardinality Ω(n), i.e., a constant fraction
of the whole vertex set.

Note: Time n
2 corresponds to p = 1

n .
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In the wake of the revolution

Around step n
2 many other parameters are

undergoing an abrupt change.

In particular, for p < 1−ε
n , the probability that the

evolving graph contains a cycle is bounded away
from both zero and one.

However, for p > 1+ε
n , the graph almost surely

contains a cycle.
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Let’s talk business again

Having a cycle means a nonzero right kernel to the
graph’s adjacency matrix.

This is a property that we can investigate in higher
dimensions as well, so we are back in business.

But before we turn to do that
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You’re calling this a phase transition????
A view of phase transition in G (n, p)
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THIS is a phase transition - Phase
transition in random 2-dim complexes
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Let’s take a second look at this

We discussed the critical time (n2) or probability

(p = 1
n) at which the evolving/random graph almost

surely contains a cycle.

But, as we know, a graph is acyclic iff it is a forest.

I Is the high-dimensional story the same?

I What are high-dimensional trees and forests?

As usual, in higher dimensions the plot is thicker......
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A well known theorem - and a twist

Theorem
For an n-vertex graph G with n − 1 edges TFAE

I G is connected.

I G is acyclic.

I G is collapsible.

OK, OK, you mean that G is a tree, but what is this
collapsible thing??? Never heard this term before.
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This is not such a great mystery

An elementary collapse is a step where you remove
a vertex of degree one and the single edge that
contains it.

A graph G is collapsible if by repeated application
of elementary collapses you can eliminate all of the
edges in G .
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Collapsing - a linear algebra perspective

Let M be a matrix. In an elementary collapse we
erase row i and column j of M provided that Mij is
the only nonzero entry in the i -th row.

M is called collapsible if it is possible to eliminate
all its columns by a series of elementary collapses.

For an incidence matrix of a graph, this coincides
with the graph-theoretic definition: Remove a
vertex of degree 1 and the edge incident with it.
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Some questions to answer before we can
go high-dimensional

Q1 : In dimension 1 (graphs) we speak of n vertices
and n − 1 edges.

What is the d-dimensional
counterpart of n − 1?

A1 :
(
n−1
d

)
. See below.
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Q2 : What is the analog of collapsible?

A2 : We just saw the answer, using linear algebra.

Q3 : What is the analog of connected?

A3 : Trivial left kernel.

Q4 : What is the analog of acyclic?

A4 : No right kernel.
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High-dimensional analogues of
trees/forests

The n ×
(
n
2

)
inclusion matrix has rank n − 1 as we

saw. A column basis is a set of n − 1 columns that
is a basis for the column space.

But a set of columns in this matrix is just a graph.
Q : Which graphs are bases?
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High-dimensional trees and forests

A: Spanning trees of Kn.

But doesn’t the answer depend on the underlying
field?

No.
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High-dimensional trees and forests

We just saw that a set of n − 1 columns in the
n ×

(
n
2

)
inclusion matrix is a tree iff the

corresponding set of columns forms a collapsible
matrix.

This is a combinatorial condition and so it holds
over any base field.
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Some questions

1. Is it also the case in general dimension that
being a column basis does not depend on the
underlying field?

2. In particular, is it still equivalent to
collapsibility? (It’s easy to see that in every
dimension collapsibility is a sufficient
condition).
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A little surprise
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Figure: A triangulation of the projective plane
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A little surprise

The example we just saw is a column basis for Q,
but not for F2.

Open Problem
Consider a random column basis for the

(
n
2

)
×

(
n
3

)
inclusion matrix have over some fixed field (most
interestingly over F2 or over Q).

How likely is such a basis to be collapsible?

As we’ll see, there is strong evidence (but still no
proof) that the answer should be o(1).
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The high-dim threshold for collapsibility

Theorem (Aronshtam, N. L., Luczak,

Meshulam)
For a random complex X in X2(n, p)

pnon/collapsibility =
2.47...

n
.

For a random complex X in Xd(n, p)

pnon/collapsibility = (1 + od(1))
log d

n
.
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The high-dim threshold for acyclicity is
still only partly resolved

Theorem (L. Aronshtam, N. L., T. Luczak,

R. Meshulam)
For a random complex X in X2(n, p)

pnon/vanishing of H2
≤ 2.74...

n
.

For a random complex X in Xd(n, p)

pnon/vanishing of Hd
≤ (1− od(1))

d

n
.
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That’s all folks
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