Downloaded 02/28/21 to 132.64.29.224. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

SIAM J. DISCRETE MATH. (© 2002 Society for Industrial and Applied Mathematics
Vol. 15, No. 1, pp. 73-85

NEIGHBORHOOD PRESERVING HASHING AND APPROXIMATE
QUERIES*

DANNY DOLEV'!, YUVAL HARARIf, NATHAN LINIAL', NOAM NISANT, AND
MICHAL PARNASH

Abstract. Let D C X" be a dictionary. We look for efficient data structures and algorithms to
solve the following approzimate query problem: Given a query u € X" list all words v € D that are
close to v in Hamming distance.

The problem reduces to the following combinatorial problem: Hash the vertices of the n-
dimensional hypercube into buckets so that (1) the c-neighborhood of each vertex is mapped into
at most k buckets and (2) no bucket is too large.

Lower and upper bounds are given for the tradeoff between k and the size of the largest bucket.
These results are used to derive bounds for the approximate query problem.

Key words. approximate query, hashing, isoperimetric inequality, error correcting code
AMS subject classifications. 68P20, 68P05, 68P10, 05B40, 05D99

PII. S089548019731809X

1. Introduction. Consider a text with words that all belong to a given dic-
tionary D. Due to limited reliability, the words may contain errors. Our task is to
provide for every word from the text a list of alternative similar words from the dictio-
nary, while minimizing the search time and storage space. When the size of D is small
enough, it may be feasible to search all of it for each such query (as done, for example,
by algorithms for the problem of string matching with k-differences; see [LV1], [LV2]).
However, when D is large, a more efficient approach is needed. This problem, called
the approzrimate query problem, can arise in many different fields. The most obvious
examples come from the design of efficient spellers and speech-recognizers. Variations
of the problem arise in fields such as the analysis of DNA sequences and proteins in
chemistry and biology.

Hashing is a powerful tool in handling many similar problems. However, as we
shall see, the hash functions we require also need to preserve locality. The requirements
of hashing and of preserving locality seem to contradict one another. Informally, the
objective of hashing is to “scatter” the given data, while preserving locality means
doing the opposite. Both hashing and locality preservation are used quite widely in
theory and in practice, but the tradeoffs between these two requirements are not well
understood. The combinatorial problems raised in this paper concern the extent to
which hashing and preservation of locality can be satisfied together.

In the scenario under consideration, the dictionary D may change over time, and
we desire a data structure that requires only minimal modifications upon changes
in D. For concreteness, let D C {0,1}"™. Our approach is to look for a mapping
h :{0,1}" — {1,...,B}, where B is the number of entries (buckets) in the hash
table. Given a query u € {0,1}", we would like to retrieve all words in D that

*Received by the editors March 7, 1997; accepted for publication (in revised form) November 15,

2001; published electronically January 4, 2002.
http://www.siam.org/journals/sidma/15-1/31809.html
TInstitute of Computer Science, The Hebrew University, Jerusalem, Israel (dolev@cs.huji.ac.il,
nati@cs.huji.ac.il, noam@cs.huji.ac.il). The work of the first author was supported in part by the
Yeshaya Horowitz Association. The work of the third author was supported in part by a grant from
the Israeli Academy of Sciences.
fThe Academic College of Tel-Aviv-Yaffo, 4 Antokolsky st., Tel-Aviv, Israel (michalp@mta.ac.il).

73

Downloaded 02/28/21 to 132.64.29.224. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

74 D. DOLEV, Y. HARARI, N. LINIAL, N. NISAN, AND M. PARNAS

are in the c-neighborhood of u (i.e., words of Hamming distance at most ¢ from u).
Thus, in order to minimize the search time, A should map each c-neighborhood into
a small number, k, of buckets. This requirement reflects our desire for h to preserve
locality. At the same time, we expect h to exhibit good hashing properties, in that
each bucket should contain relatively few words. This requirement reduces the amount
of redundant search among words not in the c-neighborhood of u. We provide both
upper and lower bounds on the tradeoff between k, ¢, and the size of the largest
bucket. These tradeoffs are used in section 2 to derive bounds on the complexity of
the approximate query problem.

A framework for questions of this type was developed in [DHP], where the prob-
lem is called the approzimate query retrieval problem (see also [H] and [P]). A similar
problem called the partial-match retrieval problem is studied in [R]. Numerous inter-
esting applications of such problems can be found in [SK].

We can now state formally our problem and results. The (¢, k)-coloring problem
is defined as follows:

Color the vertices of the n-dimensional cube Cy, so that the c-neighborhood of each
vertex is colored with at most k colors and such that the largest color class is as small
as possible.

We call such a coloring a (c, k)-coloring and say that each c-neighborhood is k-
colored. Our first results are lower bounds on the size of the largest color class. These
bounds rely on isoperimetric inequalities for the cube C), and are described in section
3. Specifically we prove the following theorems.

THEOREM 1.1. In any (1,k)-coloring of Cy, there exists a color that appears at
least Z::O () times, where t = Z—ﬁ —

THEOREM 1.2. In any (¢, k)-coloring of Cy,, there exists a color that appears at

: . _ metF1
least Y-, () times, where t = e

Some of the applications require coloring only some small subset of the cube. The
following lower bound addresses this issue and can be found in section 4. Denote by
B, » the Hamming ball of radius r in C,.

THEOREM 1.3. In any (1, k)-coloring of B, ,, there exists a color that appears at
least (”fk) times.

The upper bounds for the (c, k)-problem are described in section 5. Although we
do not have a full answer, we show various colorings of the cube that match, or nearly
match, our lower bounds. Some of these colorings are derived using error correcting
codes (see [PW] or [MS] for relevant information on error correcting codes). Examples
of the upper bounds obtained are described in Table 1.1.

We conclude by introducing a more general problem called the (¢, k, s)-covering
problem, which allows each word to be hashed to s entries in the hash table instead
of to a single entry, using s hash functions instead of only one. Section 6 contains a
combinatorial formalization of this problem, as well as possible directions for further
research.

2. The approximate query problem. Let D C 3" be a dictionary of words
of length n over some alphabet 3. We concentrate on the case where ¥ = {0,1}, as
our combinatorial results directly translate to this case. The extensions to a larger
alphabet size are straightforward. Our results apply to algorithms of the following
type (see also [DHP]).

The data structure. The algorithm stores the dictionary D in a hash table
using a hash function hp : ¥ — {1... B}, where B is the number of entries in the

Downloaded 02/28/21 to 132.64.29.224. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

NEIGHBORHOOD PRESERVING HASHING 75

TABLE 1.1
Upper bounds for the (1, k)-coloring problem.

’ n ‘ k Largest color Remarks
any n 2
any n—d+1 2d d is a constant
2N -1 | (n+1)/2 n+1 uses Hamming codes
4" —1 14+n/3 O(n?) uses nearly perfect codes
see remarks Z::é (?), when an (n, t)-quasi-
t = O(n/Vk) perfect code exists
any any Ziig (7;), d<t, usesa
t = O(n/k/(d+1)) general (n,t,d)-code
any 2 2 (an)

hash table. Each entry (bucket) in the hash table contains all the words in D that
were hashed to it.

Answering queries. Define the c-neighborhood of w € X" with respect to X"
to be

Ne(u) ={vjv € ", d(u,v) < ¢},

where d(u,v) is the Hamming distance of v and v. The c-neighborhood of u € ¥"
with respect to D is

Nc(u,D) = N.(u) N D.

The algorithm is given queries u € £ and should determine N.(u,D). The
algorithm answers a query u by probing those buckets in the hash table that contain
N.(u, D). Let S, be the sequence of buckets searched by the algorithm as an answer
to query u. The sequence S, is called the search sequence of wu.

Complexity measures. The total time to answer a query u depends on the
length |S,| of the search sequence of u and the total number of words found in the
buckets searched by S,,. We thus have two complexity measures:

1. The length Kp = max, |Sy| of the longest search sequence used by the al-
gorithm. Small search sequences are advantageous, since each access to a
different bucket may result in a costly disk access.

2. The size Mp of the largest bucket created by the algorithm, i.e., the maximum
number of words in D that were mapped by hp to the same bucket. A
small Mp reduces the number of irrelevant words read by the algorithm when
answering a query u.

We first show that there exist dictionaries D, for which Mp grows exponentially in
n/Kp, for any hash function hp.

COROLLARY 2.1. There exists a dictionary D such that for every hash function
hp, Mp > 2Q(n/Kp)

Proof. Let D = ¥™. Then any hash function hp for which the length of the
search sequences is bounded by Kp is a K p-coloring of the cube C,,. The claim then
follows from Theorems 1.1 and 1.2, using the Stirling approximation for the binomial
coefficients. d

Downloaded 02/28/21 to 132.64.29.224. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

76 D. DOLEV, Y. HARARI, N. LINIAL, N. NISAN, AND M. PARNAS

Note that if ¢ is a constant, then the c-neighborhood of any query is polynomial
in size (even for the large dictionary D described in the proof). Yet if Kp is small,
then there will be a bucket which contains many words that are irrelevant to a query
whose search sequence includes this bucket. For example, if D = {0,1}", then the
1-neighborhood of each query contains n + 1 words. However, if Kp is a constant,
then Corollary 2.1 states that there exists a bucket that contains 2" words.

The proof of Corollary 2.1 holds only for big dictionaries. Are there any good hash
functions for small dictionaries? Notice that for a small enough random dictionary D,
the size of the c-neighborhood of any query u with respect to D is |N.(u, D)| = O(1)
with high probability. Thus it is possible to map each word of D to a separate bucket,
and there exists a short search sequence for each query (although computing this
search sequence may not be easy). We exhibit, however, small dictionaries with no
good hash function h. That is, either the search sequence is long or there exists a
large bucket.

COROLLARY 2.2. There exists a dictionary D of size |D| = O(n") such that for
every hash function hp, Mp = Q(|D|/K7}).

Proof. Let D be a dictionary that includes all the words in some Hamming ball
of radius r. The claim follows from Theorem 1.3. O

It is possible to define a number of natural complexity measures in terms of Kp
and Mp. In [DHP] one such possible time complexity measure is defined

Timea(hp,u) = |Sy| + Z | B,
1€Sy

where A is an algorithm that uses a hash function hp, u € X™ is a query, and B; is
the 7th bucket in the hash table. The efficiency of A in terms of its time complexity
can then be measured as

TIME(hp,u)

Tp = max ——~ 2
A D IN.(w, D) + 1

Algorithm A is time optimal if T4 = O(1); that is, the algorithm gives an answer
in time linear in the answer size.

An algorithm for which the hash function A is fixed for any dictionary D, and
the search sequence of a query u depends only on h and u, will be called D-oblivious.
Such algorithms are of course preferred since they are easier to design, and can handle
a dynamically changing dictionary D, without having to change the data structure
with every change in D. For such algorithms we give tight lower bounds on the time
complexity defined above. Denote by N, the size of a c-neighborhood with respect
to £". Thus for the Hamming distance N, = "7 (7)(|Z| — 1)*. Note that usually
|N.(u,D)| < N.. Let A be a D-oblivious algorithm that is space optimal (i.e., uses
space |D|). Then [DHP] show that T4 = Q(+/N.). We improve their result and show
the following corollary.

COROLLARY 2.3. Let A be an optimal space D-oblivious algorithm. Then Ty =
Q(N./4°).

Proof. Since algorithm A is D-oblivious, it uses some fixed hash function h for
all dictionaries D. If K4 > N./4¢ then there exists a query uw for which |S,| >
N./4¢. Let D be any dictionary for which the c¢-neighborhood of u is empty; that is,
|N.(u, D)| = 0. The claim follows.

If K4 < N./4¢, then h is an (N,./4¢)-coloring of the cube. Thus by Theorem 1.1
and Theorem 1.2, there exists a color set of size Q(IN2/4¢). Let D be a dictionary

Downloaded 02/28/21 to 132.64.29.224. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

NEIGHBORHOOD PRESERVING HASHING 77

that includes most of the words in this color set. The claim follows for any query u
whose search sequence includes this set. 0

This bound is tight up to a factor of 4¢. Consider, for example, the D-oblivious
algorithm that maps each word to a separate bucket. The search sequence of a query u
will include the buckets of all its possible c-neighbors in ¥". Thus |S,| = |Ne(u)| = N,
and the time complexity is N. + |N.(u, D)| = O(N,).

3. Lower bounds on the size of the largest color set in any (c,k)-
coloring of C,,. This section will provide lower bounds on the size of the largest
color set in any (¢, k)-coloring of the n-dimensional cube C,,. If k = 1, it is clear that
the whole cube should be colored using one color. For the remainder of this and the
next section assume therefore that £ > 2. We now prove Theorems 1.1 and 1.2.

Recall that we assume that ¥ = {0,1}. Similar results can be obtained for
a general alphabet Y, using an extension of the isoperimetric inequality for larger
alphabets. The details are omitted.

3.1. Proof of Theorem 1.1. Assume by contradiction that all color sets are
smaller than the size stated in the theorem. The isoperimetric inequality provides a
lower bound on the number of neighbors of a set of vertices in C,,, as a function of
the cardinality of the set. Thus every color set S has at least (|S| neighbors (where
3 is a decreasing function of |S|). The number of neighbors of all color sets can thus
be bounded from below. On the other hand, the fact that the 1-neighborhood of
each vertex is k-colored can be used to bound the number of neighbors of all color
sets from above. An appropriate choice of parameters leads to a contradiction. We
proceed with the detailed proof.

Denote by I'g the 1-neighborhood of a subset S C C,,, not including the vertices
in S. That is,

Is ={v¢&S|Fue S, du,v)=1}.

LEMMA 3.1 (isoperimetric inequality). Let S be a subset of C,, of size |S| =
SI7 () +m, where 0 < m < (7). Then sl > (7) —m+m- (,7)/(").

Proof. See [B, pp. 122-129]. 0

Using this inequality, we can derive a lower bound on the ratio [I's|/|S] as a
function of |5].

LEMMA 3.2. Let S be any set of size |S| < Y., (7;) Then % > (ril)/z;o (TZ)

Proof. Let S be any set with size |S| = Z::_Ol (") + m, where 0 <m < (7).

By Lemma 3.1, the claim holds for m = (:f), and so it suffices to show that the
function

(7)) —m+m-(3)/()
Yiso () +m

is decreasing over 0 < m < (7). The inequality f(m) > f(m + 1) reduces to showing

that
n — /n n "\ /n
. < . .
(31) £ () =()-20)
=0 i=0
This inequality follows by comparing the ith term on the left with the (¢ + 1) term
on the right. 1]

f(m) =

Downloaded 02/28/21 to 132.64.29.224. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

78 D. DOLEV, Y. HARARI, N. LINIAL, N. NISAN, AND M. PARNAS

LEMMA 3.3.
® (oznn—i-l) = ﬁ((:ﬂ), where 0 <a< 1.
° > (7;) < (ann) 11__262, where 0 < a < 1/2.

Proof. The first part can be verified easily using the definition of the binomial
coeflicients. For the second part note that

()< (2)- (st - () 5

This completes the proof. O

As specified above, the size of each neighbor set is at least as large as the size of
the set itself multiplied by some number G, which depends on the size of the set. The
following lemma shows the relationship between § and the size of the set.

LEMMA 3.4. Let S be any subset of C,,, where |S| < Z?ﬁ'o (T;), and 0 < a < 1/2.
Then [Tg| > B+ |S| for 5= ;-:12%

Proof. By Lemma 3.2 it is enough to prove the claim for sets S with size |S| =
> (). By the isoperimetric inequality,

n
T'g| > .
Cs| (om + 1)
Thus we have to show that

(ann—l- 1) ” 0414:7127; ' i’i (?)

=0
By Lemma 3.3 and the fact that § = ;_:12/“” we get
n n l-a n l-—a o (1
(om—|—1> B (an> 1n+a =5 <om) 1-2a >5;<1)

as claimed. O

Proof of Theorem 1.1. The theorem is obviously true if k = 1 (the cube must be
colored with one color) or k = n + 1 (each vertex is colored with a different color).
Therefore assume that 1 < k < n+1, and let a = k%rl — % Note that by our
assumption on k, 0 < o < 1/2.

Let S; be the color sets and assume by contradiction that all sets are smaller than
%57 (7). We will bound Y, [I's, | from above and below and derive a contradiction.

Consider a vertex v colored j (i.e., v € S;). The 1-neighborhood of v is k-colored,
and therefore v can be a neighbor of at most k£ — 1 color sets (since it belongs to the
color set S;). Therefore each one of the 2™ vertices belongs to at most k — 1 of the

neighborhoods I'g,. Thus
S0 | < (k- 12"

On the other hand, we can bound the number of neighbors from below as follows.
If we set 8 =k — 1 in Lemma 3.4, then, by our choice of «, each color set S; satisfies
IT's,| > (k —1)|S;|. Hence,

Z |F37

which is a contradiction. Therefore there exists at least one color set with size at least

ooty (%), where an = 45 — 1.

>3 (k- DISi = (k- 12",

Downloaded 02/28/21 to 132.64.29.224. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

NEIGHBORHOOD PRESERVING HASHING 79

3.2. Proof of Theorem 1.2. The same proof method will provide a lower bound
for the more general (¢, k)-coloring problem. We use the isoperimetric inequality for
larger neighborhoods. Let I'¢ denote the c-neighborhood of a subset S C C),, not
including the vertices in S. That is,

¢ ={v¢S|Fue S, du,v) <c}

LEMMA 3.5 (isoperimetric inequality). Let S be a subset of C,, of size |S| =
>ty (7). Then 0G| > 35 (a:+i)'

Proof. See [B, pp. 122-129].

The following lemma is central to the proof of Theorem 1.2.

LEMMA 3.6. Let S be any subset of C,, where |S] < 30" (1), and 0 < v < 1/2.

Then |[I'G| > B-|S| for 8 = (al_;f/an)c

Proof. Again let S be a set of size |S| = > ;" (7). (The proof that for any
smaller set .S, the ratio % can only grow is similar to that of Lemma 3.2.) Using

the isoperimetric inequality we have to show that

> (o) > o) 2 ()

By applying Lemma 3.3 it is enough to show that

XC: n . 1-2a\° 1-a n
~\an+i) ~ \a+tc/n 1—2a \an/’

Let a = an. Thus, we have to prove that

XC: n . n — 2a C. n—a (n
~\a+i) ~ \a+tc n—2a \a/’

Assume first that n > 2a + ¢. In this case we will prove the stronger inequality
n S (n— 2a\° n—a n
a+c) ~ \a+tec n—2a \a/’

n\ n—a n—a—1 n—-a—(c—1) (n
at+ec) a+ec a+te-—1 a+1 a)’

Since n > 2a + ¢, then for every 0 < j <c¢—1

Notice that

n—a—J n—a
- > .
at+c—) a+c

n n—a\® [n
> . .
<a+c>‘(a+c> <a)
We thus have to show that

n—a C> n—2a\° n—a
a+c) “\a+c n—2a

Therefore

Downloaded 02/28/21 to 132.64.29.224. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

80 D. DOLEV, Y. HARARI, N. LINIAL, N. NISAN, AND M. PARNAS

This is obviously true for @ < n/2, and therefore the claim follows for n > 2a + c.
Assume now that n < 2a + ¢ and recall that a < n/2. Thus (7) < (ail), and so

Since n < 2a + ¢, then n — 2a < c and n — a < a + ¢. Thus,

n—2a\“ n—a (n c \“" /n n
- . < - < .
a+c n—2a \a/) \a+c a) — \a
This completes the proof in this case. 0
Proof of Theorem 1.2. Let S; be the color sets, and assume by contradiction that
all sets are smaller than 2" ("), for a = \C/ﬁﬁ - \C/;fvf;; Again, we can assume
that 0 < o < 1/2, for otherwise the theorem is trivial.
As in Theorem 1.1, the c-neighborhood of any vertex v is k-colored, and therefore

v is a neighbor of at most £ — 1 color sets. Thus

SOIrg | < (k- 1)2n

However, by Lemma 3.6 and the choice of «, each color set S; satisfies [I's,| >
(k —1)|S;| (simply set 8 = k — 1 in Lemma 3.6). Again a contradiction is derived,
and therefore the theorem is proved.

4. Lower bounds on the size of the largest color set in any (c,k)-
coloring of B,, . . Denote by L, the rth layer of C,,, that is, the set of all vectors
in C), with exactly r coordinates which are 1. Let B, , = U;_yL, be the Hamming
ball of radius r in C,,. We now prove Theorem 1.3. A similar result can be proved for
the general (¢, k)-coloring. The details are omitted.

When proving Theorem 1.3, we will prove in fact a stronger claim: there exists a
large color set in the rth layer of B,, .. The proof is similar to that of Theorem 1.1;
however, it uses the concept of shadows instead of the isoperimetric inequality. The
lower shadow of a set S C L, is defined as

(S)={veL,1|3uels, du,v)=1}.

LEMMA 4.1 (Kruskal-Katona). Let # S C L, be a set of size |S| = (T) for
some real number x > r. Then |0(S)| > (Tfl).

Proof. See [B, pp. 23-39]. d

COROLLARY 4.2. Let S C L, be any set of size |S| < (?) for some real number
x >r. Then |0(S)| > |S]|-r/(x —r+1).

Proof. Assume that the size of S is |S| = (V) for y < 2. Then, by Lemma 4.1,

r r

Y
> = — e
|a(5)|_<r_1> Sl > 18

where the equality follows from the definition of the binomial coefficients, and the last
inequality is true since y < x.]

Proof of Theorem 1.3. Consider any (1, k)-coloring of B,, ,., and let S; be the color
sets in the rth layer of B, ,. Assume by contradiction that all sets are smaller than

("ik) We will estimate), |0(S;)| and derive a contradiction.

Downloaded 02/28/21 to 132.64.29.224. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

NEIGHBORHOOD PRESERVING HASHING 81

Consider a vertex v € L,_;. The 1-neighborhood of v is k-colored, and therefore
v can be a neighbor of at most k color sets in the rth layer. Thus v can belong to at
most k shadows of sets S;. The number of vertices in the (r — 1) layer is (") and
thus

SIS < k- (")

On the other hand, by Corollary 4.2, |0(S;)| > |S:| - v/(n/k —r + 1). Also
> 18il = (7). Hence

2> 3 IS Sy = E=——

This is a contradiction for » > 1.

5. Upper bounds for the (1, k)-coloring problem. How tight is the lower
bound given in Theorem 1.17 Although we do not have a full answer to this question,
we show colorings of the cube for certain values of k£ for which the bound is tight or
almost tight. We start with a few simple cases for specific values of k. In the next
subsection we develop a general strategy to color the cube, which is based on error
correcting codes.

k = 1,n + 1. The two extreme cases, k = 1 (where the cube is colored with
one color) and k = n + 1 (where each vertex is colored with a different color), are
obviously completely solved. Let us turn to more interesting colorings.

k = 2. In this case, we color layer j with color |j/2], j > 0. It is easy to verify
that the 1-neighborhood of each vertex is colored with at most k = 2 colors. What
is the largest color set? The color that appears the most times is the color of layers
|n/2] and |n/2] —1. Thus for k = 2 there is a coloring of the cube in which each color
appears at most (Ln72J) + ([n/gj—l) times. The lower bound proved in Theorem 1.1

for k =21is 25161)/3 (?) There is a gap between the upper and lower bounds, and
we conjecture that the upper bound is the best possible in this case.

k = n. Here we can show a coloring in which each color appears at most twice.
This is of course tight, since every 1l-neighborhood should contain at most k = n
colors, and the size of a 1-neighborhood is n + 1. Thus there should be at least one
color that appears twice. The coloring that achieves this bound is as follows.

Color every two vectors that agree on the first n — 1 coordinates and differ only
in the last coordinate with the same color. This coloring uses 2"~ ! different colors,
and every color appears exactly twice. It remains to show that each 1-neighborhood
is n-colored. However, this is clear since the neighbor of a vector x, which differs from
it only in the last coordinate, is colored the same as x.

k = n —d+ 1, where d is a constant. We can color the cube in a similar way
such that each color appears 2¢ times. Simply color every set of vectors that agree on
all n — d first coordinates with the same color. Each vector has exactly d neighbors
colored as itself. Thus every 1-neighborhood is (n — d + 1)-colored.

This method of coloring is efficient as long as d is constant. However, when
k < n/2, a different coloring is needed in order to try and match the lower bound.
For this we use error correcting codes.

5.1. Error correcting codes. Let C be a binary error correcting code of length
n, with minimum distance 2¢ + 1 between code words. Denote by N;(u) the sphere

Downloaded 02/28/21 to 132.64.29.224. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

82 D. DOLEV, Y. HARARI, N. LINIAL, N. NISAN, AND M. PARNAS

of radius t around a code word u, i.e., all vectors of distance at most ¢ from u. Such
a code is called an (n,t)-code (see [PW] or [MS] for a comprehensive description of
error correcting codes). Given any (n,t)-code we define the induced coloring of C,, as
follows:

Color each code word with a different color. Vectors not in the code are colored
with the color of the nearest code word, breaking ties arbitrarily.

Notice that each sphere N;(u) around a code word wu is colored with the color
of the code word u. Thus each color appears at least :!_, (?) times, and the 1-
neighborhoods of vectors at distance less than ¢ from some code word are 1-colored.
The question is what happens with vectors at distance greater than ¢ from any code
word. We first look at some special codes that provide better upper bounds.

5.1.1. Perfect codes. An (n,t)-perfect code is a code for which the spheres of
radius ¢t around the code words partition C,,. Thus every vector is at distance at most
t from some code word. Perfect codes exist only for very restricted values of n and
t. However, since the same proof method will be used subsequently to color the cube
using a general code, assume for the moment that we have a perfect code for any n
and t.

Begin with the induced coloring of some (n, t)-perfect code. Since this is a perfect
code, each color appears exactly 22:0 (7;) times. It remains to bound the number of
colors in the 1-neighborhood of each vector.

The 1-neighborhood of any vector = at distance less than ¢ from some code word
is 1-colored. Therefore consider only vectors = at distance exactly ¢ from some code
word u (i.e., z is on the boundary of the sphere N¢(u)). The vector z is colored the
same as u, and it has exactly ¢ neighbors in N;(u) that are colored with the same
color as it is.

In how many colors are the remaining n — ¢ neighbors of x (those not in Ny (u))
colored? We claim that they are colored in at most (n —¢)/(t + 1) colors. To see
this, note that each one of these neighbors belongs to some sphere N¢(v) around a
code word v, where v is at distance ¢t + 1 from x. Furthermore, there are exactly ¢t +1
neighbors of x in any such sphere. Thus the neighbors of = that are not in N¢(u) can
be divided into equivalence classes of size t + 1, according to the spheres around code
words to which they belong.

Therefore the n — ¢ neighbors of x that are not in Ny(u) are colored in (n—t)/(t+1)
colors. If we add to this the color of z and the ¢ neighbors that are in Ny(u), we get
atotalof k=(n—1t)/(t+1)+1=(n+1)/(t+ 1) colors in the 1-neighborhood of z.
We have thus proved the following:

Any (n,t)-perfect code induces a (1, k)-coloring of Cy,, in which each color appears
St_o(7) times, where t = L — 1.

As we can see, this result almost matches the lower bound stated in Theorem 1.1.
Unfortunately, perfect error correcting codes are rather rare. The Hamming code is
perfect for t =1 (ie., k = ”T“), and n of the form n = 2" — 1, for some r. The Golay
code is perfect for n =23 and ¢t = 3.

COROLLARY 5.1.

1. For anyn = 2" — 1, there exists a (1, %H)—coloring of Cy, in which each color
appears n + 1 times.
2. There exists a (1,6)-coloring of Cas in which each color appears 24 times.

However, for larger values of ¢ the situation is much worse. In fact it was proven
that no other nontrivial perfect codes exist (see [V]). The resort is to examine larger
classes of codes.

Downloaded 02/28/21 to 132.64.29.224. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

NEIGHBORHOOD PRESERVING HASHING 83

5.1.2. Quasi-perfect codes. An (n,t)-quasi-perfect code is a code for which the
spheres of radius ¢ around code words are disjoint, and every vector is at distance at
most ¢t 4+ 1 from some code word. A subclass of quasi-perfect codes are nearly perfect
codes. These codes were defined by Goethals and Snover, and their exact definition
can be found in [GS].

Goethals and Snover [GS] list a few nearly perfect codes. For t = 1 there exists
a nearly perfect code for any n = 2" — 2. For ¢t = 2 there exists a nearly perfect code
for any n = 4" — 1. Lindstrom proved that no other nearly perfect codes exist [L].
The following lemma is from [GS].

LEMMA 5.2 (see [GS]). For any (n,t)-nearly perfect code,

1. any vector at distance greater than t from any code word is at distance t + 1
from ezactly [n/(t+1)| code words;

2. any vector at distance t from some code word is at distance t+ 1 from exactly
[(n—1)/(t+ 1)]| other code words.

COROLLARY 5.3. For any n = 4" — 1, there exists a (1,1 + %)-coloring of Cy, in
which each color appears O(n®) times.

Proof. Take an (n, t)-nearly perfect code, where ¢t = 2 and n = 4" —1, and consider
the induced coloring. Since this is a nearly perfect code, each word is at distance at
most ¢ + 1 from some code word. Thus each color appears at most /17 (") = O(n?)
times.

We now have to show how many colors appear in each 1-neighborhood. The
interesting cases are those of vectors at distance ¢ and t+1 from some code word. Let
x be a vector at distance ¢t + 1 from some code word. Notice that each code word u
that is at distance ¢ 4+ 1 from x forces t + 1 of the neighbors of x to be colored in the
same color as u. By Lemma 5.2 there are [n/(t+1)| code words at distance ¢+ 1 from
x. Since n =4" — 1 and t + 1 = 3, it is easy to verify that ¢ + 1 divides n. Therefore
the neighborhood of z is colored with k =1+ n/(t + 1) colors. (We add the color of
x.) The proof for vectors at distance ¢ from some code word is similar. 0

Similar results can be obtained for any quasi-perfect code. It is not known yet
whether quasi-perfect codes exist for large values of . Therefore we state the general
theorem for any (n, t)-quasi-perfect code with the hope that more codes will be found.

As before, take any (n,t)-quasi-perfect code and look at the induced coloring.
Each vector is at distance at most ¢ + 1 from some code word, and so each color
appears at most Ezié (7;) times. We have only to bound the number of colors in each
1-neighborhood. Again, the interesting cases are those of vectors at distance ¢t or t+1
from some code word.

LEMMA 5.4. The 1-neighborhood of each wector is colored with at most k =
O(n?/t?) colors.

Proof. Let x be some vector. Denote by Z; the number of code words at distance
t 4+ ¢ from x, where ¢ = 1,2. The number of colors in the 1-neighborhood of z does
not exceed 1+ Z; + Zs, since the neighbors of x receive their colors from code words
at distance t + 1 and ¢ + 2 from x, and we have to add the color of x itself.

There are (?) vectors at distance ¢ from x. Call them the i-neighbors of z. Let v
be some code word at distance ¢ + ¢ from x. Then, exactly (Hi'i) of the ¢-neighbors of
x belong to N;(v). Since the spheres of radius ¢ around code words are disjoint, there
are at most (7;) / (t'l") code words at distance ¢+ from z. Thus the number of colors
in the I-neighborhood of z is at most & < 1+ (7)/("1") + (3)/(*1?) = O(n?/t?) as
stated. |

THEOREM 5.5. Any (n,t)-quasi-perfect code induces a (1,k)-coloring of C,, in

Downloaded 02/28/21 to 132.64.29.224. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

84 D. DOLEV, Y. HARARI, N. LINIAL, N. NISAN, AND M. PARNAS

which each color appears at most Zfié (T;) times, where t = O(n/Vk).

5.1.3. General codes. The method of proof used for quasi-perfect codes can
be generalized for any code. An (n,t,d)-code is a code in which the spheres of radius
t around code words are disjoint, and the spheres of radius ¢ + d around code words
cover the whole cube. Thus for perfect codes d = 0, and for quasi-perfect codes, d = 1.

It is again possible to look at the induced coloring of such a code and bound the
number of colors in each 1-neighborhood by k = O((n/t)4*1). Then a similar theorem
can be proved.

THEOREM 5.6. Any (n,t,d)-code induces a (1,k)-coloring of C,,, in which each
color appears at most X114 (") times, where t = O (n/kl/(d+1)).

Similar techniques can be used to show upper bounds for the (¢, k)-coloring prob-
lem. The details are omitted.

6. Generalizations and further research. We have proved lower and upper
bounds on the (¢, k)-coloring problem, in which each word was hashed exactly once
to the hash table. It may be useful to allow each word to be hashed to s entries in
the hash table, using s hash functions. More formally, a (c, k, s)-covering of X" is a
collection of subsets S; that cover X" such that

e cach word u € X" is contained in at most s of the subsets S;;
e for any u € X", there exist k subsets S,,,, ..., Sy, such that N.(u) C UF_,S,,.
The (¢, k, s)-covering problem is to minimize the size of the largest subset S;.

The solution we showed for the (¢, k)-coloring problem may give insight into the
solution of the general (¢, k, s)-covering problem. The lower bound for the (¢, k)-
coloring problem was proved using the isoperimetric inequality. This inequality is
tight for sets that are spheres and only for them (see [B]). On the other hand, the
upper bound shows that a perfect code that covers the cube with disjoint spheres
induces a (1, k)-coloring that almost matches the lower bound. These observations
make it plausible that in an optimal (1, k)-coloring, all color sets have the structure
of spheres. We also showed a tradeoff between k and the size of the color sets (or the
radius ¢ of the spheres) (see Theorems 1.1 and 1.2).

All this suggests that in order to find a (¢, k, s)-covering, it may be wise to try and
cover X" with spheres (possibly overlapping). By changing the radius of the spheres,
it may be possible to find a general tradeoff between s, k, and the size of the largest
subset.

For example, suppose we want to find a (1,1, s)-covering of C,,. It is possible to
simply cover the whole cube with one subset. In this case s = 1, but there is one large
subset. Or we can cover the cube by defining a different subset for the 1-neighborhood
of each vector. In this case the size of each subset is optimal, but s is large. Instead,
we can try to combine these two methods as follows.

Let C be an (n, t)-perfect code. Define a subset S, = Ny41(u) for each u € C. The
coverings described above are extreme cases of this covering, with ¢ = n and ¢ = 0.
The size of each subset is Zfié (), and it is possible to show that s = (n+1)/(t+1).
Thus by choosing ¢, it is possible to get the desired tradeoff between the size of each
subset and s. (A similar method was used by [DHP] to design algorithms for the
retrieval of neighbors from dictionaries. See also [H] and [P].) This method can be
generalized to cover the cube using a general (n, t, d)-code, where the efficiency of the
cover depends on d.

Several interesting open questions remain. The extensions of the upper bounds for
the (¢, k)-coloring problem and the (c, k, s)-covering problems use a general (n,t,d)-
code, and their efficiency depends on d. Thus an important open question is to try

Downloaded 02/28/21 to 132.64.29.224. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

NEIGHBORHOOD PRESERVING HASHING 85

and determine an upper bound on d that would guarantee the existence of an (n, t, d)-
code for any given n and ¢t. An upper bound of d = t is easy to show, but no better
asymptotically general bound is known. This question is of independent interest to
the study of error correcting codes, and some bounds were given for special types of
codes (see [CKMS], [VS)).

There are also open problems concerning the (1, k)-coloring problem. The upper
bound for this problem can probably be improved when k is a constant. The lower
bound seems to be tight or almost tight for all cases, except for k = 2. We conjecture
that for £ = 2, the upper bound we showed of O((n%)) is the best possible.

Finally, it would be interesting to check what happens with different distance
measures (not necessarily the Hamming distance). Different distance measures induce
other graphs (other than the n-dimensional cube) for which one can try to solve the
coloring or covering problems. Expanders may be an interesting class of graphs to
check.

Acknowledgment. We would like to thank the anonymous referees for their
comments, which improved the presentation of this paper.

REFERENCES

[B] B. BoLLoBAs, Combinatorics: Set Systems, Hypergraphs, Families of Vectors, and Com-
binatorial Probability, Cambridge University Press, Cambridge, UK, 1986.

[CKMS] G.D. CoHEN, M.G. KArPOVSKY, H.F. MATTSON, AND J.R. ScHATZ, Covering radius—
survey and recent results, IEEE Trans. Inform. Theory, 31 (1985), pp. 328-343.

[DHP] D. DoLEV, Y. HARARI, AND M. PARNAS, Finding the neighborhood of a query in a dic-
tionary, in Proceedings of the 2nd Israel Symposium on Theory of Computing and
Systems, 1993, pp. 33—42.

[GS] J.M. GOETHALS AND S.L. SNOVER, Nearly perfect binary codes, Discrete Math., 3 (1972),
pp. 65-88.

[H] Y. HARARI, Algorithms and Lower Bounds for the Retrieval of Neighbors from a Dictio-
nary, M.Sc. thesis, Hebrew University, Jerusalem, Israel, 1992 (in Hebrew).

L] K. LINDSTROM, The nonezxistence of unknown nearly perfect codes, Ann. Univ. Turku.,
Ser. A 1, 169 (1975), pp. 3-28.

[LV1] G.M. LANDAU AND U. VISHKIN, Efficient string matching in the presence of errors, in
Proceedings of the 26th IEEE Symposium on Foundations of Computer Science, 1985,
pp. 126-136.

[LV2] G.M. LANDAU AND U. VISHKIN, Introducing efficient parallelism into approrimate string

matching and a new serial algorithm, in Proceedings of the 18th Annual ACM Sym-
posium on Theory of Computing, 1986, pp. 220-230.

[MS] F.J. MACcWILLIAMS AND N.J.A. SLOANE, The Theory of Error Correcting Codes, North-
Holland, Amsterdam, 1977.

[P] M. PARNAS, Robust Algorithms and Data Structures for Information Retrieval, Ph.D.
thesis, Hebrew University, Jerusalem, Israel, 1994.

[PW] W.W. PETERSON AND E.J. WELDON, Error Correcting Codes, MIT Press, Cambridge,
MA, 1972.

[R] R.L. RIVEST, On hash-coding algorithms for partial-match retrieval, in Proceedings of
the 15th Annual Symposium on Switching and Automata Theory, IEEE, 1974, pp.
95-103.

[SK] D. SANKOFF AND J.B. KRUSKAL, Time Warps, Strings Edits and Macromolecules: The
Theory and Practice of Sequence Comparison, Addison-Wesley, Reading, MA, 1983.

V] J.H. VAN LINT, A survey of perfect codes, Rocky Mountain J. Math., 3 (1975), pp. 199
224.

[VS] S.G. VLADUTS AND A.N. SKOROBOGATOV, Covering radius for long BCH codes, Problemy

Peredachi Informatsii, 25 (1989), pp. 38—45.

