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The ,pxobl‘etﬁs of minimum < g2 ana minimum vertex covers by paths are discussed. Tte
results relate to papers by Gallni-Milgram, Meyniel, Alspach-Pullman and others. One of tte
mair results is concerned with partially ordered sets.

Notations. The terminology is rather standard, generally following Berge [3]. In
any case where ambiguity may arise we give ~'finitic ns. Graphs and digraphs are
ﬁmte, except in Theorem 6, and have no loops or multiple edges. If multiple
_ edges are allowed we use the term multigraph. Let G=(V, E) be a graph. Aa
orientation of G is a digraph whose underlyir- -raphis G. If S is a set, |S| denotes
its cardinality. If a set is sai¢ to be maxin..m (minimum) it means that it is
cardinality maximum (minimum). The order of G, that is, | V(G)|, is denoted by n.
Also |E((3)|=e.

The vertex independence number of G is the maximum cardinality of an
independent set of vertices. We denote it by B,(G). Let G be a digraph. DL(G)
its dilinegraph is defined as follows: it is a digraph whose vertex set is E(G). There
is an edge from a vertex x to a vertex ' if the terminal vertex of x and the initial
vert.x of y coincide.

We use the word path to mean a directed simple path. The length of a path is
the number of edges it contains. A path of length two is called a couple. The two
edges [x, v}, [y, x] are also called the two-way edge joining x and d y. The digraph
obtained by deleting all two-way edges in DL(G), is denoted by DL(G). The edge
mdepende nce number of G is defined by B,(G) = B(DL(G)).

Given 2 set A of vertices in G, denote by I'"(A) (resp. I'*(A)) the set of those
vertices that are joined to (resp. from) some vertex in A. Also I'(A)=
T'(A)UTI(A). If A is a singieton A ={x}, we define d*(x)=|"{x})|, d"(x)=
IP{xY), d(x)=~-d*(x)+d (x). Let A, B be two disjoint sets of vertices in G. We
denote by E(A) the set of edges in G both of whose endvertices belong to
A. E(A, B) is the set of edges joining a vertex in A and a vertex in B. If
B = V\A we call E(4, B) the cut associated with A. By e(A), e(A, B) we denote
the cardir alities of E(A), E(A, B) respectively. If G is a digraph, A, B as above
we denote by E*(A, B) the set of edges joining a vertex in A to a vertex in B.
e*(A, B) is the cardinality of this set. In the sequel we sometimes add a subscript
to I, d, E, e to clariy in which graph they are taken.

Let G be a digraph, {H,} a set ot its subgraphs. { H;} is said to constitutc a vertex
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A theorem due;‘ Gallax—Mll‘ [s also [3 ".p.‘298]) étates:

Tbeotem GM. A dzgraph Gmay«-,_; v

: 'énd'*B(M) denote the

' Theorem 1 andiits pmof;are.s lar'to” eoremGMand 1ts’pmof, as pr‘esefnted

in [3 P 298] A R T e :

'l'beorem 1. Let Gbea dtgraph and M {p,i} a vertex cover of G by paths. If M
1 independent trausversm there exists a vertex cover N satisfying AN)s

IProof. The proof is by induction on n=|V]|. The theorem is obviously true for
n<2, Let A(M) {ai, . .., a} with ;€ y;. By assumption A(M) is not mdepen-
dent so we. ‘may assume [a,, a,]€ E. If u, ={ay}, attach a, to > and the taeorem
‘follows We assume therefore that a, has a successor in u,. Wthh we call b.. We
apply the induction hypothesns to G'= Cr\a, Tt s cuvered by M'={u\a,,
M2, .. ., i} which does not have an, mdependent transversal. Construct N’ coer-
ing G’ which satisfies A(N)s AM)={", a,,..., a}.

There are r:ow three cases to be considered. If b, € A(N') attach a, to the path
starting at b,. If b, ¢ A(N), but a,< A(N') attach a, to the path starting at a,. If
bs, a,¢ A(N') add the path {a,} to N’ tc obtain N. In all three cases N has been
obtained, fulfilling the assertiop of the theorem.

We wish to sharpen Theorem 1. Le: us make another two definitions. A
transversal {xi} of a cover. Mis ealled U—mdependent if [y,, x,]e E for some y; € u,,
i# j, implies that y; precedes x; in y; It is called L- mdependent if [x;, y,]eE for
some y; € i, i7 j, implies that x; precedes y; in ;.

By slightly altering the proof of Thesrem 1 we achieve the following two
results,
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reorem 1.1. If M does not have a U-independent transversal, G may be vertex
by N sausfymg AM s AM).

1 1.2, If M does not have an L-indepzndent transversal, G may be covered

b)"N ‘ Sﬂtwfvmg B(N)& B(M).

Theorem 1'may be used to obtain an interesting corollary. Let G,,.... G, be a

family of disjoint digraphs. A digraph G is said to be a join digraph of this family
if:

L V(G)= UL, V(G).

2. Let x, ye V(G;) then [x, yle E(G) iff [x, y]e E(G)).

3. Let xe V(G,), ye V(G;), i#j, then exactly one ci the edges [x, y]. [y, x]
belongs to E[G].

A digraph which contains a Hamiltonian path is calied an H-digraph in the
remainder of the paper.

Corollary 1.1. Let G, ..., G,, be pairwise disjoint H-digraphs. Each of their join
digraphs is an H-digraph.

Proof. A simple inductive argument reduces the proof to the case m=2. Let
Gy, G, be H-digraphs. Their H-paths vertex-cover each of their join digraphs.
However, there are no x, € V(G,), x,€ V(G,) that are nonadjacent. By Theorem
1 the join is an H-digraph too.

Theorem GM and Theorem 1 make no use of two way edges. We may take
advantage of these edges by means of Meyniel’s theorem [7].

Theorem M. Let G be a digraph in which d(x)+d(y)=2n—-1 for every two
nonadjacent vertices x, y. If G is strongly connected then G contains a Hamiltonian
cycle.

Theorem 2. Let G be a digraph in which d(x)+ d(y) =1 for every two nonadjacent
vertices x, y. If l<2n—-2, G may be vertex covered by n—[(l1+1)/2] paths.

Proof. We first show how the assumption of Theorem M may be reduced to give
sufficient conditions for the existence of an H-path in G.

Lemma 2.1. Let G be a digraph such that d(x)+d(y)=2n-3 for every two
nonadjacent vertices x, y. Then G is an H-digraph

Proof. Add to G a new vertex t and join it by a two-way edge to each other
vertex of G. Call the resulting digraph G'.
Evidently G’ is strongly connected and if x, ye V(G) are nonadjacent, then

do(x)+dg(y) =(dg (x)+2)+{ds(y)+2)=2n+1=2(n+1)- 1.



covered by [n’/4] paths. .
. When one studles the pro

for tournaments. So we have to prove A tournament on n vemces may be edge
covered by {n2/4] subgraphs each ’bemg either a couple or an cdge.

Let us examine why [n%/4] may not te reduced in the Tast statement. Choose
Ac Vv contaxmng [n/2] vertices. Onenlt each edge in E(A A) from A to A.

to be wvered z~(I‘Ie1'e A= V\A)ﬂ Lt,t us push tlns ldea a little. further L.et G be
any. graph let Ac V. Orient E(A, A) from A" to A. Onent all other edges
arbitrarily. There is no cover of this oriertation by less than e(A, A) paths: Let us
denote .

=p(G)=max{e(A, A): Ac V}.

Evidently the following state ment, if true, is best possible:

Each orientation of G may b: edge covered by p paths.
We now combine the two underlined v nproved statements and we stzte:

‘Theorem ... Let G be a directzd mulugraph It may be edge covered by p(G) paths
whose length do not exceed two

It is evident that the theorem is equivilent to the statement: G contains e-p
cdge disjoint couples. We remind the reader that a matching in a graph, or a
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digraph, is a set of edges, no two of which have a verte: in common. We translate
Theorem 3 to an eqmvalent tleorem on DL(G) namely:

2 remﬁS,'.;l., Let G be a directed multigraph, then DL(G) contains a matching of

nd Y A ereer
P\ T) eages.

o Itis Theorem 3.1 which we prove directly. The proof relies on the following
matchmg theorem of Berge. (5iven a graph G and a set of its vertices, S, let
ts = ts(G) denote the number cf odd compenents in G\S. (A component is odd or
even, according to the numbe: of vertices it contains.)

Theorem B [3, p.159]. A grcph G contains a matching which does not meet k
vertices or less iff
ts—|S|<k (3.1)
for every S V.
Mote that G need not be connected as in [3, p. 159].
We prove in fact that DL{(G) has an e—p ma’ ching. That is, a matching which

does not meet e—2(e—p)=2p—e vertices in DL(G) We have to show that
Berge’s condition holds w.th k=2p—e. That is

ts—|S|<2p—e (3.2)

for every YSQE(G). Here tg is the number of odd components in DL(G)\S =
DL{(G\S). If we set H=G\S, we have to show that

t+e(H)=2p(G) (3.3)

where t is the number of odd components in ﬁL.(H). To show that (3.3) holds for
any subgraph H of G it is sufficient to prove the following lemma.

Lemma 3.1. Let G be a directed multigraph. Let © be the number of odd components
in DL(G). Then

t=<2p(G)—e(G). (3.4)

A proof of Lemma 3.1 will provide us with a proof of Theorem 3.1. First we
prove Lemma 3.1 under the extra assumption that G is asymmetric. So we prove,
using the above notation:

Lemma 3.2. Let G be a directed asymmetric mudtigrapk. Then

t<2p(G)—e(G). (3.4a)

Proof. We first note that DL(G) and DL(G) coincide, since G is asymmetric. We
prove (3.4a) by induction on n. For n=1ii is triiially true. Let us assume that



‘incident with x'in G (viewed as
= 4 ‘subgraph of DL(G). Let (3.4a) hold for
* graphs of order smaller than n. Define G' = G* wandlete, p,t stand f0r e G’),
'p(G’}, t(G’) respectwely.m We shall dlstmgmsh twe cases:.

(3.5a)
(3 5b)

hen E(x, V\x)ct V(DL(G): is
in DL(G) does not decrease.
s evident. Assume'it is odd. If
‘ the deletion of E(x, V\x) does not dlscom=ct the component we have ¢ =1, If it
does, at least one o! ihe new. components is odd, and (3.5a) again holds.

To prove (3.5b) suppose that E(B,C) is a maximum cut in G' (here C=
(W\x)\B). Assume w.l.o.g. that e(x B)>e(x, O). Then

2p e>2e(l5, CUX)— e =2¢(B, C) +2¢(B, 1)~ (¢ + e(B, )+ ¢(G, x))
. =2p'—e¢ +e(B 2i-e(C, x)=2p'-2¢.
By the induction hypothesis we have ‘

2p'—-e'=t¢. ’ (3.6)
From (3.5a), (3.5b) and (3.6) we obtain (3.4a).

Case 1I: e(x, V\x) is odd. Then
v=t-1 (3.7a)
2p—e=2p'--¢'+1, (3.7b)

The proofi of (3.7a), (3.7b) follows along the same lines as above. Agam from
(3.7a), 13.7b) and (3.6) we obtain (3.4a).

We reconsidezr now the assumption made at the beginning of the proof. If
E(x, V\x) spans a disconnected subgraph of DL(G), then d*(x) - d~(x)=0. If all
vertices in G satisfy d*(x} d™(x)=0 then G is a bipartite multigraph in which all
the edges are oriented frosa one indepenc:2nt set of vertices tc the other one. In
such a direct.d multigraph e = p = ¢ holds 0 rhat (3.4) is valid. This completes the
proof of Lemma 3.2.

The proof «f Lemma 3.2 provides us with 2 proo: of Theorems 3 and 3.1 under
the extra assumption that G is asymmetri:. To prove Lemma 3.1 we first follow
the proof of Lemma 3.2. The only poin in the proof which depends on the
asyminetry of G is the assertion that if E(x, V\x) spans a disconnected subgraph
of DL(G) then d*(x)- d~(x)=0. To obtain a proof of Lemma 3.1 we investigate
under what conditions does E(x, V\x) span a disconnected subgraph of DIL(G).
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We say that x, y are M-neighbours (or M-adjacent) if E(G) contains the two
way edge joining x and y.

Lemma 3.3. Let G be a directed multigraph and x € V(G). Then E(x, V\x) spans
a disconnected subgraph of DL(G) iff x zaiisfies one of the following conditions:

A. I'(x)={y}; x, y are M-adjacent.

B. B; d*(x)=0, or
B, d (x)=0

C. |[(x)|=2; both neighbours of x are M-neighbours.

D. D, [I'(x)|=2, I''(x)={y}; x, y are M-neighbours, or
D, |[IF(x)|=2, I''(x)={y}; x, y are M-neighbours.

Proof. Sufficiency is evident. To prove necessity assume that E(x, V\x) spans a
disconnected subgraph of DL(G). Because of conditions A and B we may assume
that |I'(x)|=2. If none of the neighbours of x is an M-neighbour then condition B
must hold. If exactly one neighbour is an M-neighbour, then condition D must be
satisfied. If at least two neighbours are M-neighbours, then it is easily checked
that {'(x)| =2, so that condition C holds.

We shall now complete the proof of Lemma 3.1. This will be done by induction
on n, the order of G. The lemma clearly holds if » = 1. Suppose that the lemma
hoids for multigraphs of order <n.

Denote by A, (B,, B,, C etc.) the set of vertices of G for which condition A,
(B;, B,, C etc.) holds. Also let B=B,UB, and D= D,UD,. If G has a vertex x
not in A UBU CU D, then we can apply (at x) the proof of Lemma 3.2. Assume,
therefore, that V(G)=AUBUCUD.

If G' is a multigraph, we use e, p’, t' to denote e(G'), p(G'), t{(G') respectively.

Let xe A and let G'= G\x. It is easy to verify that

e=¢ +e(x, V\x),
p=p' t+e(x, V\x),
t<t'+e(x, V\x).
G’ satisfies (3.4), hence so does G. We mzy assume therefore that A =).
Let x, y be M-neighbours so that
E(x, VAx)U E(y, V\y) spans a subgraph of DL(G) with at most two components.
(3.8)
Let G'=G\{x,y}, and let M, N satisfy MUN=VW\{x,y}, MNN=§.
e(M, N)=p'. Clearly
p=p'+e(x, N)+e(y, M)+e(x, y)
p=p'+e(x, M)+e(y, N)+e(x, y).



3. Edge t:overing of u powt

I’he vertex covenng pm blqem ef a partially ordered set (-poset\ was remarkably
solved by Dilworth [4]. Before we state and solve the edge covering problem, let
us make two remarks on acychc dlg_aphs It has beea shown by Alsparh and
" Pullman {2}

Pmodﬂon AP. A mzmmal edge cover of an ﬂcychc dtgraph contains precisely
Yrevmax {d*(x)—-d(x), 0} paths

¥Gis acyclic, M a ‘minimum edge cover af G by paths, then the iritial vertex
of one path in-M cannot cnincide with: the termmal vertex of another path in M.
That is why Propositior AP holds.

The followmg theorem is 2 direct consequence of Theorem GM.

Tbeot\em 4. Let G be «n ncyclic digrap . Then it may be edge covered by B,(G)
paths.

Proof. Apply Theorem GM to DL(G), As Bo(DL(G)) = B,(G), DL(G) is vertex
covered by B,(G) paths. A path in DL(() corresponds t6 a path in G which is not
necessarily simple. However, if G is acyclic, every path in G is s:mple. This
conchides the proof. Let us remark that it is also easy to denve Theorem 4 from
Proposition AP.

A poset (S,>) will be represented by, a digraph G =(V, E) where V=8 and
[x. yl< E iff x> v. This representation enables us to use graph theoretic language
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for the poset. We shall i “erchangebly refer to S as both a poset and its
representing digraph. We investigate minimal edge coverings of a poset by paths.
"Our main result in this section, Theorem 6F, may be formulated so that it
“resembles Dilworth’s theorem (s ‘e Theorem 6.1).

o We.pi%epare some order theoretic terminology. A poset (S, >) is said to be
“locally finite if dg(x)<= for every xeS. Let S b= a locally finite posei. An
‘element xe S is called large provided d&(x)=dg(x), small it dé(x)<dg(x). We
use S*, S~ to denote the sets of large and small elements respectively. We aiso
denote M=S*NS". A subset A< S is an order ideal (filter) if x<a(x>a) for
some a € A implies x € A. In particular S” is a filter and S™ is an ideal. Let Nc S
be a filter, an edge [x, y] (x> y) is called N-mixed if xe N, y¢ N. A couple [x, y],
[y, z]€ E (that is x >y > z) is called N-mixed if x€ N, z¢ N. An edge or a couple
which is not N-mixed is said to be N-unmixed.

Lemma 5. Let S be a finite poset. Then
max {e*(A, A): A < S}=B,(S)=e(S*, ST\M) =e*(S*, ST\M). (5.1)
where A = S\ A.

Proof. The equality e(S*, S"\M)=e"(S*, S"\M) is evident. E*(A, A) does not
contain a couple from which max e*(A, A)=< B,(S) follows. To prove the reverse
inequality suppose F< E does not contain a couple. Let P= P(F), Q = Q(F) be
the sets of initial, resp. terminal vertices of the edges in F. By assumption P, Q are
disjoint so F< E*(P, Q)< E*(P, P) which proves max e*(A, A= B,(S).
All that remains to prove is that max e*(A, A)=e*(S*,S"\M). Let BcS
satisfy e*(B, B)=max ¢*(A, A). We show that B is a filter and B is an ideal. If
"there is some x € B, y & B for which y>x let B'=BU y\x. One can easily check
that

e*(B', B)>e*(B, B)

holds. So in searching for a set A to maximize e (A, A) we have to consider only
filters. Let B be a maximizing subset. Let x be a minimal element in B. From
e*(B\x, BUx)<e*(B, B) it follows easily that xe S*. Hence, ye S* for all ye B
so that S*2B. By the samc reasoning S"2B. In other words B2S™"\M.
B2S\M. If xeM then I'"(x)< 5\M, I'"(x)= S\M, and d*(x) = d (x). There-
fore we can move x from B to E and vice versa without affecting e (B, B). This
concludes the proof of the lemme.

Theoren 6F. A finite poset S may be edge covered by edge disjoint S™-mixed
couples and S*-mixed edges.

The “‘edges” of a poset are of course, the edges of the representing graph i.c.
the pairs [x, y] where x>y



‘We show that condmon (6.1) hoids *for H. Asaume"on the contxrary that for
some AcY

IMA|<IX\T; H(A)|
Or equlvalently
Y=IXi<|Al-|T(A). . | 6.2

We wish to apply two reductions to (6.2). Let P=P(A), Q = Q(A) be the sets
of initial, resp. terminal vertices in G of the edges .in A. K we replace A by
Eg(P,Q) in . 2) the mequahty still holds, as ACEG(P Q), but FH(A)—
N (Es(P, O ). P and Q are dxsjomt and we have -

IYI-IX|<esP, Q)-ITu(Ea®, Q). - (6.3a)
Note also that P and Q satisfy the following conditions:
Forallxe P, e*(x, (2)0, andforallyeQ, e*(P, y)#0. (6.3b)

So to refute (6.2) it suffices to show that if P< §* and Q< S™\M, then they
cannot satisfy (6.3a) and {6.:b) simultaneously

The problem may be further reduced to the case where P is a ﬁlter, Q is an
ideal, P and Q are disjoint and they satisfy {6.3a) and (6.3b). Suppose x¢ P, ye P
satisfy x>y. Replacing P by PUx\y the r.h.s of (6.3a) increases, while (6.3b)
remains valid. Since P< S*, Q< 8§\ M, be’ore the replacement and after it we
have PN Q={. We repeat tiie replacement procedure untif we finally replace P



Covering digraphs by paths 267

b : ﬁlter ‘When the same is performed on Q for x e Q, y¢ Q, it is replaced by an
Q remain disjoint and (6.3b) still holds.

10 =0, PUQ =S8 hold for some filter P and some ideal Q which saisfy
(63.311)‘ and (6.3b), then.

T u(Ec(P, @))=Es(P)U E;(Q)
So (6 3a) becomes

|Yl=|xl< e4(P, Q) - e6(P)—e6(Q). (6.4a)
But evidently
e(G)=|Y]+|X|=e5(P, Q)+ eg(P)+eg(Q). (6.4b)

Adding (6.4a) to (6.4b) we obtain
e*($*, ST\M) =|Y|<es(P, Q),
which contradicts Lemma 5. Therefore PU Q# S. Next we choose a filter P and
an ideal Q that are disjoint and satisfy (6.3a), (6.3b), such that |PU Q| is maximal
under these conditions. Every x¢ PU Q satisfies eg(x, P)=¢&(Q,x)=0as Pis a
filter and Q is an ideal.

Note that the quantity e*(x, Q) defined for x € S, is a nondecreasing function of
x. Similarly, e*(P, x) is nonincreasing in x. Therefore if for some xe S\(PU Q)
es(x, Q)=es(P, x) and ef(x, Q)>0, then there is a maximal element x* of
S\(PUQ) for which eg(x*, Q)=e5(P,x*) and e*(x* Q)>0. Replace P by
PU x*. This does not injure (6.3t) nor the disjointness of P and Q. The r.h.s. of
(6.3a) increases by e&(x*, Q)—e&(P, x*)=0. PU x* is a filter and this contradicts
the maximality of PUQ. If for some xe S\(PUQ), eg(x, Q)<es(P, x) and
e(P, x)>0 a similar construction is applied to obtain a contradiction.

We may assume then, that if x € S\(PU Q), then eg(P, x) =eg(x, Q)=0. That
means, no element of S\(PU Q) is comparable to any element of PUQ. If
x e S\(PUQ) then x is comparable to some element of S\(PU Q) since, by
assumption, dg(x)>0. Thereforz there exists a pair x, y of elements in S\(PU
Q), such that x>y, x is maximal in S and y is minimal in S. Replace P by the
filter PUx and Q by the ideal QUYy. These two sets are disjoint and satisfy
(6.3b). The r.h.s. of (6.3a) has increased by one. This contradicts the maximality
of |[PU Q| and concludes the proof of Theorem 6F.

We now give two reformulations of Theorem 6F. The first one exhibits the
similarity of Theorem 6F and Dilworth’s Theorem. We say that a set of edges is
independent if it does not contaia a couple. In Dilworth’s theorem the minimal
vertex cover is discussed. The maximal cardinality of an independent set of
vertices (which is a trivial lower bound) is shown to be equal to this minimum.
Quite the same is done in

Theorem 6.1. In a minimum edge cover of a poset the number of paths equals the
maximal cardinality of an independent set of edges. Moreover the cover may consist
of paths whose length does not exceed iwo.



M more

- We extend Theorem 6F nite pasets saﬁsfyarestnctwc finjtary
condition, Let (S,>) be an infinite pose, _' represent it by the (infinite)
digraph G = (8, E). I u,ve E form a couple- h j‘order, we denote this coaple
by (u, v). We ase C to denote the set of all coupk's in G

T gjss.Lezsbeatocaay
edge-dis;omt S*-mzxed coupies a

it may be edge~covereo! by

Proof. The proot’ depends on [’heorem 6F and on the foﬂawmg theorem of Rado
9 ; _

Tlleorem R. Let.Y, Z be sets, ¢ d;y the callecnon of all finite subsets of Y.
- Associate with every A € ¢ a function fa : A — Z. Assime that for every ye Y the
set {fA(y)l y€ A €} is finite. Then there exists a function f:Y— Z s¢ that

for every A € ¢ there exists a set B satisfying A : Be ¢ and

fla =fsla- (6.5)

To prove Theorem 6 proceed as follows Define Y=E(={[x,y]: xeS,
y€S, x>y}), and let Z = E U{0}, where 0 is an elemient not in E. For A € ¢y let
(A} be the set of all endpoints of edges in A. (A)is a finite subposet of S. Choose
a fixed cover C, of (A), which satlsﬁe,s the conditions of Thearem 6F (relative to
(A), of course). Now define f, as follows. If i€ A, then czther u itself belongs to
Ca, or u is covered by a couple (1, v) or (v, u) in C'A In the first case let fa(u)=0,
and in the second case let f,(u)=v.

The finiteness condition :n Theorem R is a direct consequence of the local

finiteness of S. Let f:E— EU{0} be a function which satisfies (6.5), (as in
Theorem R).

By the definition of f, wc have

VAe ¢ VYuve A W=r& f.(v)=u (6.6a)
Therefore
VYu,veE fuy=v& fv)=u. (6.6b)

For let A ={u, v} and assume that J(u)=v. Consider B as in (6.5). We have

g R "
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f(u)==v 50 by (6.6a) fg(v)=u. By (6.5) f(v)=u. This proves (6.6b). It is also
_,';i_’enttlhat f(u) =v implies that (u, v) or (v, u) is a couple in G.
- Define
| Fa={v)eCluved, fa(u)=v}
F={(w,v)eC|lu,veE  f(u)=v}.

By the above remarks, F is a collection of edge disjoint couples. Let S,, S, be
the sets of thos: vertices in S that are initial, resp. terminal, in some couple of F.
We show that S; NS, =@. Assume on the contrary that (u, v), (g, h)e F and that
the terminal vertex of v coincides with the initial vertex of g. Let A ={u, v, g, h},
then there exists a set B, AcBe¢g for which (u,v), (g h)e Fg. Thus, the
couples (u, v) and (g, h) belong to the edge cover Cz of (B) and Cg does not
satisfy the conditions of Theorem 6F, contrary to the choice of Cg.

‘We now denote M = S\(S; U S,). Let J be the set of edges that are not :overed
by F. By definition J = f~(0). We let M, (resp. M,) be the set of those ve rtices in
M that are initial (resp. terminal) vertices in some edge of J. We show that
M;NM,=@. If on the contrary there exist u, v J so that (u, v)e C, we choose
A ={u, v} and consider B as in (6.5). As f(u)=f(v)=0, also fg(u)=fz(v)=0.
This means that u and v belong to Cg, which again contradicts the conditions of
Theorem 6F.

We further show that if (&1, v) € F and t € F it is impossible that (v, t) e C. If such
u, v, t exist in E, let A ={u, v, t} and let B e as in (6.5). By assumption fg(t) =0,
(u, v)€ F3 which again contradicts the choice of Cg. Similarly we find that if
(u, v)c F, teJ it is impossible that (¢, u)e C.

By definition of J it is clear that FUJ cover all edges cf S. We show that
S*\M = S; UM, and the proof is thus complete. We have already shown th=t no
vertex in S is both the head of an element in FUJ and a tail of another element
in ) J. Therefore, x e ST\M iff x is the head of some element of F'JJ. In other
words ST \M=S,UM,.

4. Edge-covering by couples and edges

Let us remind the reacer that for a digraph G, we define B,(G) as Bl,(ﬁLt G)).
We also note that

B1(G)=max{e"(A, V\A)|Ac V}.

A proof of this fact is contained in the first paragraph of the proof of Lemma 5.
Evidently, a digraph G cannot be edge-covered by fewer than ,(G) couples anc
edges. The purpose of this section is to study digraphs G which have an
edge-cover of B,(G) couples and edges. Digraphs which represent partial orders
enjoy this property as is shown in Theorem 6.1. Not every acyclic digraph shares



ty. Tms s ‘shown by the digraph
;--(V,, El), where V’l—{l 2, 3 4, S}

s is demonstréted by the dlgraph
{[z,z-!-l]t[ &,z«S}U{D 71,17, 51 We

follows from o};e of the'consequenceq of Hall's 'I‘heorem (see »[3 p. 133]) that this
is the case when DL(G) is (an orientation of) 8 bxpartxte graph
Tlns observatmn leads to the foLowmg

Theorema 7. Let G=(V,E) be a dxgraph ar. i assume that
=E"(A, A)UE*(B, V\B),

for some A, B< V. Then it is possible to cover the edges of G by B4(G) (but not
fewer) couples and edges

To prove Theorem 7 cbserve that under these. assumptrons DL(G) is bipartite
with indcpendent sets: E*(A, V\A) and E\E*(A, V\A). The proof now follows
from the above mentioned corollary of Ha.l’s Theorem The followmg is an
interesting special case of the above.

Coroﬂmry 7.1. If G is an orientc ion of a bipartite graph, then it is possible to cover
+he edges of G by B,(G) couples and edges

If (A, B) is a partition of V(G) into two mdepundent sets, then the assumption
of Theorem 7 holds and the assertion follows.

As ,a gpm.equcnce.,of T’heorcnm 7 we obtain:

'E'hemrem 7.1 Let eG be a dtgraph whick: contains no cyclic triangle and no directed
ath of length 4. Then G can be edge-covered by B1(G) couples and edges.
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Pr!mi. If G contains a directed cycle, then it must have lengih 4. This follows
directly from the assumptions of the theorem. Moreover, it is easily seen that such
a cycle is a component of G. Therefore, we may assume that G is acyclic.

I)?iiﬁne ‘a height function i on V(G) as follows: For x € V= V(G), let h(x) be
tne maximum length of a directed path in G which terminates at x. By our
assumptions on G, 0<h(x)=<3 for every x € V. Since G is assumed to be acyclic,
it is easy to verify that [x, y]le E implies h(x)<h(y). For i=0,1,2, 3 let

Vi={xe V| h(x)=i}.
By the preceeding remark
E=U{E"(V, V)|0=si<j=3}.

Thus E is the union of E*(V,U V,, V,UV,) and E*(V,U V,, V,UV,). The
conditions of Theorem 7 hold and the proof is thus complete.

Since components of dilinegraphs play a major role in the above discussions, we
now consider the following problem: Let G be a digraph, what are the compo-
nents of DL(G)? We may assume w.l.o.g. that for every x€ V(G), d(x}>0 for an
iwsolated vertex in G has no influence on DL(G). Denote

M={xeV|d*(x)=0}, P={xe V|d (x)=0}.

We prove:

Theorem 8. Let G be a digraph, let C,, . . ., C, be the components of G\(PUM) and
let V| be the vertex set of C,. Then the components of DL(G) are spanned by the
following elements or sets:

1. “ach element of E*(P, M)
2. E*(P, VOUE(V)UE"(V,, M) (k=1,...,1]).

Proof. First we show that each of these sets spans a connected subgraph of
DL(G). Evidently each element of E*(P, M) is an isolated vertex in DL(G). Let
us show that £, = E*(P, V,)U E(V,)U E*(V,, M) spaas a connected subgraph of
PL(G). To show this we have to show that for every u, ve E, there erists a
sequence U = U, .. ., U, =0 in E = E(G) such that y;,_, and u; form a couple in
for i=1,..., m. Each of the edges u, v has an endvertex which does not beiong
to PUM. Lot x be an endvertex of u, y an endvertex of v, x, y¢ FUM.

Since, x, y belong to the same component C, of G\(PU M), we can find a path
(not necessarily directed) connecting them in G, say x=2z,, z,,...,2, =Y. For
1<j<m, let w;e€ E, be the directed edge which contains z;,_, and z; as endver-
tices, i.e. w;=[z;_y, z;] or w; =[z;, z;_,]. Let also wo=u, w,,,; =v. We only need
to show that for 1<jsim+1 either w;_, and w, form a couple in G or there is an
edge w* in E, which forms a couple with w;_, and also with w,. If w, , and w, do
not form a coupl=, then z,_, is the head or the tail of both w_, and w,. Assumc.
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