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The problems of miniiiwn Lg.: ana minimum vertex covers by paths 
results relate to papers by Galki-M&ram, Meyniel, Alspach-Pullman and 
mait resulti is contimed with partially ordered sets. 

are discussed. The 
others. One of tie 

NM+oak The terminology is rather standard, generally following Berge [3]. In 
any case where ar&iguity may arise we give +finiticns. Graphs alnd digraphs are 
f@ite, except in Theorem 6, and have no loops or multiple edges. If multiple 
edges are allowed we use the term multigragh. Let G - (V, E) be a graph. k ,I 
~&atr’o~r of G is a digralph whose underlyir -raph is G. If S is a set, ISI denotes 
its cardinality. If a set is sak to be maxir,,,m (minimum) it means that it is 
cardinality maximum (minimum). The order of G, that is, 1 V(G)I, is denoted by n. 
Also (E(G)1 := e. 

The ut!rtex ind~&r;lce number of G is the maximum cardinality of an 
independent set of vertioes. We ddnote it by &,(G). Let G be a digraph. DL(G) 
its dilkgraph is defined as follows: it is a digraph whose vertex set is E(G). There 
is an edge from a vertex x to a vertex :‘ if the terminal vertex of x and the initial 
vertdx of y coincide. 

We use the word path to mean a directed simple path. The length of a path is 
the number of edges it contains. r4 path of length two is called a couple. The two 

eel&a [a y], /[y, x] are also called the fwo-way edge joining x and y. The digraph 
obixti by deleting all two-way edges in DL( G), is denoted by DL( G). The edge 
inhpenderice number of G is defined by P,(G) = &(DL(G)). 

Given Z~L set A of vertices in G, denote by T(A) (resp. r(A)) the set of those 
irertices $1 hat are joined to (resp. fr3m) some vertex in A. Also T(A) = 
I”(A)U II-(A). If A is a singleton ,4 =1x}, we define d’(x) = II+({x})l, d-(x) = 
Ip’crx})i, a’(x) -- d+(x)+ d-(x). Let A, B be two disjoint sets of vertices in G. We 
denote blr E(A) the set of edges in G both of whose endvertices belong to 
A. E(A, B) is the set of edges joining a vertex in A and a vertex in B. If 
B = V\A we call E(/i, B) the cut associated with A. By e(A), e(A, B) we denote 
t.he cardiralities of E(A), E(A, B) respectively. If G is a digraph, -4, B as above 
we denok by E’(A, B) the set of edges joining a vertex in A to a vertex in R. 
e+(A, B) js the cardinality of lthis set. In the sequel we sometimes add a subsc=ript 
to r, d, E, e to clarify in which graph they arle taken. 

Let G be a digraph, {Hi> a set at its subgraphs. (Hi} is said to constitute a vertex 
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Jkwpz The proof is by induction on n = 1 F$ The theorem is obviously &rue for 
n 62. Let A.(M) = (a l,. . It, u.$ydth ai E hz By assqtion A(n/l”) is not indepen- 
dent so we nl)ay assume LaI, u&S?. If ,JQ F+Q), attach :ql to brand the t+@m 
follc+vs. We assume therefoe, that aI has a H,ICWS~Q~ in pr. w&h we call 15~. We 
apply t&s induction hypothesis to CT- - G\+ -I? is, coyered by M’ -{-pl\ul, 
P2, - * l 9 h} which does not have z&independent transversal. Construct IV’ coxr- 
ing G’ which satisfies A(N) s t.\(k) A{ 2+, a2, . . . , a& 

There are COW three cases to be considered. If bl E A(N) attach a, to the pa.th 
starting at bl. If bl # A(N), but a2 E A(W) attach a, to the path s%z-ting at h. If 
b:, %$ A(N) add the path {a,} to IV’ tc obtain N. Ln all three cases N has belen 
obtained, f&iNing the ass&ion of the &orem. 

We wbh to sharpen Theqrem~ 1. Lel: us make aqother two definitions. A. 
t_eMI {q) of a per M k dkd U-iqdependknt if [ yj, Xi] E E for some Yj E ~9, 
if j, implies that yi precedes xi in pj,. It is called L-zndependent if [q, y&z E f cm 
SCMII~ Yj E /+, i 36 j, implies that xj precede s yj in pj. 

tly altering the proof of ‘T’hel~rem 1 we achieve the following tsvo 
results, 



Covering digraphs Imy paths 259 

T!EWR~II.J 1.1. If M does vtot ha.ve a U-indqiendent transversal, G may be vertex 
&$&$ by N satisfying A(N)5 A(M). 
.’ * .-. ,_ 
&&_,.,4_ i*$* ~~ M d 

oes not have an L-inde~a~ndent transversal, G may be covered 
by &&t&&&g B(N) s B(M). 

Theorem 1 may be used to obtain an interesting corollary. Let G1, . . . ) G, be a 
family of disjoint digraphs. A digraph G is said to be a join digraph of this family 

if: 

1. V(G)= UK1 V(c,). 

2. I.& X, YE V(Gi) then [x, y]~ E(G) if3 [x, y]~ E(G,). 

3. Let x E V(Gi), y E V(Gj), i# j, then exactly one c f 
belongs to E[G]. 

the edges [x, y]. [y, X] 

A digraph which contains a Hamiltonian path is called an H-digruph in the 

remainder of the paper. 

Cm%ry 1.l. Let G1, . . . , G,,, be plairwise disjoint H-digraphs. Each of their join 
digraphs is an H-digraph. 

Pr&. A simple inductive argument reduces the proof to the case m = 2. Let 
G1, G2 be H-digraphs. Their H-paths vertex-cover each of their join digraphs. 
However, there are no x1 E V(G,), X~E V(G2) that are nonadjacent. By Theorem 
1 the join is an H-digraph too. 

Theorem GM and Theorem 1 make no use of two way edges. We may take 
advantage of these edges by means of Meyniel’s theorem [7]. 

Theorem M. Let G be a digrph In which d(x)+ d(y)3 2n - 1 for every two 
nonadjacent vertices x, y. If G is strongly connected th.en G contains a Hamiltonian 
cycle. 

llhmrem 2. Let G be a digraph in which d(x) + d(y) 3 1 for every two nonadjacent 
vertices x, y. If I s 2n -2+, G may be vertex covered by n -[(2 + 1)/2] paths. 

plroof. We first show how the assumption of Theorem M may be reduced to gibe 
sufficient conditions for the existence of an H-path in G. 

L43nma 2.:. Let G be a digrcqh such that d(x) + d(y)>2n - 3 for every two 
nonadjacent vertices x, y. Then G is an H-digrayh 

E%@of. Add to G a new vertex t and join it by a two-way edge to each other 
vertex of G. Call the resulting digraph G’. 

Evidently G’ is strongly connected and if x, y E V(G) are nonadjacent, then 



p = p(G) = max {@(A, A):: A ,c v). 

Evidently the following state nent, if true, is best possible: 

Euch orknkrtion of G nwy b.? edge covered by p paths. 
We now combine the two u&lined 1. nproveci skements and we state: 

, 
arm Let G be .a ditectlzd m ubtigraph. It may be edge covered by p(G) paths 

whose lerzgzh do not exceed twa 

3[t is evident :hat the tkcwcrn is equiv:(lent to the statemens: G contains e-p 
edge disjoint couples. We renlind the reader that a matching in a ryaph, cx a 
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digmph, is a Bet of edges, no two of which have a verte:* in common. We translate 
Theorem 3 to c?B equivalent tl leorem on CL(G), namely: .1 >” , . -,_ :- ‘c ’ _ 

_ -rem 34. Let G be a direc ted multigraph., then CL(G) contains a matching of 

$(C+p(G) edges. 

It. & Theorem 3.1 which we prove directly. T’he proof relies on the following 
mqtching theorem of Berge. C;iven a graph G and a set of its vertices, S, let 
ts = t,(G) denote the number c f odd components in G\S. (A component is odd or 
even, according to the numbe: of vertices it contains.) 

Theomm B [3, p. 1591. A grc :ph G contains J watching which does not meet k 

vertice; or less iff 

ts-jS)s k (3.1) 

for every S c V 

Kate that G need not be connected as in [3, p. 1591. 
We prove in fact that EL(G) has an e - p ma’ thing. That is, a matching which 

does not meet e -2(e -p) = 2p - e vertices in l%(G). We have to show that 
Berge’s condition holcls 1;~ _th k = 2p - e. That is 

(3.2) 

for every S c_ E(G). Here ts is the number of odd components in EL(G)\S = 
fk(G\S). If we set EZ= G\S, we have to show that 

,t+e(J+qJiG) (3.3) 

where t is the number of odd components in E’(H). To show that (3.3) holds for 

any subgraph t;i of G it is sufficient to prove the following lemma. 

Lemrns 3.1. Let G be a directed multigraph. Let f’ be the number of odd components 
in CUG). Then 

t=s2p(G)-e(G). (3.4) 

A proof of Lemma 3.1 will >roV;de us with a proof of Theorem 3.1. First we 
prove Lemma 3.1 under the extra assumption that G is asymmetric. So we prove, 
using the above notation: 

Lemma 3.2. Let G be a directed asymmtetric mi*lltigraph. Then 

t:s2p(G)-e(G). 

Proof. We first note that 13L(G) and CL(G) COI nckle, since G is asymmetric. WC 
prove (3.4a) by induction on PL For n = 1 i:, is tri.:ially true. Let ~1% ;~umc th:rt 



piGI); t(G’) respectivelp. We shah distinguisk two cases: 

w Z: P(X, v\xt is even. We shi,lw 

3’s f 

To protie (35a) remember ttit by asamptiqn ZS{x, vn) is cunt&ed in one 
mpneat & 33X,(G). W;e have to @ow tL Pati. when E(x, ~Q)E V(pL(G$ is 

et& tim .DL(G) th~pp$yr of q&l .mmwkgts & DL@) does not decreue. 
I# the comp&c&x&ai&.ng E(x, Vjx) is &en. this is evident. Assume& is odd. If 
the Metion of E(x, W,x) does not dkpmxct the corngnxleat we have t’= I. If it 
does, at least onre 0;: Ihe new ccqponents is odd, and (3Saj again holds. 

To prove (3.Slj suppose that E(I3, cc) is a ma&num cllt in G’ (here C = 
(%\xj\Bj. Assume wJ.0.g. that e(S,B)B e(x, C). &erk 

2p-ea2e(&, CUx)-e=2e(.B, C)+2f?(B;x)-(e’+e(B, x)+e(C, x)) 

=2p’-e’+e(B, ii-e(C, n)22p’-2e’. 

By tti induction hyp&esis we have 

2p’-e’% t’. 

Fmm (3Sa), (3Sbj and (3.6j we 

C~tse II; e(x, qx) is odd. Then 

t’at-1 

2p-e)-2p’-.e’fl. 

obtain (3.4a). 

(3.6) 

(3.7a) 

(3.7b) 

The prtpof;; of (3.7a], <3.7bj follows along the same lirles as above. Again from 
(X7@, i3.7b:I and (S.jij we obtain (3.4a). 

We r~n&ler now the assumption made at the beginning of the proof. If 
E(x, Vjx) spans a disconnected subgraph of DL(G), then d’(x) . d-(x) = 0. If all 
v&ices in G satisfy d”(x) d-(x) = 0 then @3 is a bipartite multigraph in which all 
the edges are oriented frosa one indepena.:nt set of vertices to tke other one. In 
such a direct{ d multigraph e = p = t holds SO :hat (3.4) is valid. This completes the 
proof of Leama 3.2. 

The proof cuf Lemma 3.2 provides us wiuh a proo! of Theorems 3 and 3.1 under 
the extra assumption that G is asymrnetir:. To prove Lemma 3.1 we first follow 
the proof of Lemma 3.2. The only point in the proof which depends on the 
asymmetry of G is the asseflion that if I?&& v\x) spans a disconnected subgraph 
af SL(GJ then d’(x) - d’(x)‘= 01 To &t& a proof of Lemma 3.1 we investigate 
under what conditions does E( x, Vixj spadl a diwo*nnected subgraph of D’i,( c). 



Covering digruphs by paths 

We say that x, y are M-neighbouts (or M-adjacent) 
way edge joining x and y. 
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if E(G) contains the two 

Lemma 3.3. Let .G be a directed multigrqh a?zd x E V(G). 7%en E(x, v\x) spans 
a disconnected subgraph of EL(G) iff x XL& Jies one of the following conditions: 

A. r(x) = {y}; x, y are M-adjacent. 

B. B1 d’(x) =O, or 
B2 d-(x) = 0 

C. IlQ)l=2; both 

D. Q lr(x)p2, 
4 P-WI 2 2, 

neighbours of x are M-neighbours. 

P(x) = {y],; x, y are 66neighbours, 
l-(x) ={y}; x, y are M-neighbours. 

Proof. Sufhciency is evident. To prove necessity assume that E(x, V/x) spans a 

or 

disconnected subgraph of m(G). Because of conditions A and B we may assume 
that Ir(x)la 2. If none of the neighbours of x is an M-neighbour then condition B 
must hold. If exactly one neighbour is an M-neighbour, then condition D must be 
satisfied. If at least two neighbours are M-neighbours, then it is easily checked 
that lr(x)l = 2, so that condition C holds. 

We shall now complete the proof of Lemma 3.1. This will be done by induction 
on n, the order of G. The lemma clearly holds if n = 1. Suppose that the lemma 
holds for multigraphs of order OZ. 

Denote by A, (B,, B2, C etc.) the set of vertices of G for which condition A, 
(B,, B2, C etc.) holds. Also let B = B1 U B2 and D = D, U D2. If G has a vertex x 
not in A U B U CUD, then we can apply (at x) the proof of Lemma 3.2. Assume, 
therefore, that V(G) = A U B U C U D. 

If G’ is a multigraph, we use e’, p’, t’ to denote e( G’), p(G’), t(G’) respectively. 
Let x E A and let G’ = G\x. It is easy to verify that 

e = &’ + e(x, v\X), 

p = p’+ e(x, lf\x), 

t S t’i- e(x, v\x). 

G’ satisfies (3.4), hence so does G. We may assume therefore that A = fl. 
Let x, y be A&neighbours so that 

E(x, wx) U E(y, v\y) spans a subgraph of 6L( G) with at most two components. 
(3.81 

tit G’= G\{x, y), and let M, N satisfy MU N = Vj(x, y), M n N = @. 
e(M, N) = p’. Clearly 

pp’+e(x, NJ+&, M)+4x, y) 

pp’+e(x, M’P-ety, N)+e(x, Y). 



lif G is acy&c, M a mi&wm edge cover’ of G by p$hs, th?n the i&al vertex 
of one pzkth in &f c%fllwlf w6ncide witk the terminal .ve&ex of another path in M’S 
That is why F%cqwsition Ap’ holds, 

Tk following Worm is .3 dkect wallsequence bf Thwrem GM. 

ILpltaoz Apply Thecwem GM to DL(G), Au &(DL(G))= &(G), DL(G) is vertex 
c~ve-r~~ by /3,(G) paths. A path in DL(C) corresponds t6 a path in G which is not 
necessarily simple. However, if G is ;qclic, every path in G is d Kyle. This 
~orrc=lud~ the proof. Let us remark that it is also easy to derive Theorem 4 from 
Propcksition AP. 

A poset (S, =>) will be represented b-? a digraph G = (V, E) where V== S and 
lx- ); ] E E ifi n” z=- v. This representation etlables us to use graph theoretic language 
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ibr,. tk pc3Wt. We Shidl i* ‘erchangebly refer to S as both a poset and its 
representing digraph We i.nvestigate minimal edge coverings of a poset by paths. 

%hr n&h &%ulr. in this se&ion, Theorem 6F, may be formulated so that it 
resernblcs Dilwurth’s theorem (r l e Theorem 6.1). 

We prepare some order theoretic terminology. A poset (S, > j is said to be 
LOU& finite if &(x j <IX, for every x ES. Let S be a locally finite poset. An 
element x E S is called large provided d&(x) 2 d,(x), small if Lit;(~) < d&). We 
use-S+, S- to denote the: sets of large and small elements respectively. We aiso 
denote M = S+ n S”. A subset A c S is an order ideal (filter*) if x < Q(X > a) for 
some u E A implies x E A. In particular S’ is a filter and S- i:; an ideal. Let N z S 
be a filter, an edge [x, y] (X > y) is called N-mixed if x E N, y 6 N. A couple [x, y], 
[y, Z]E E (that is x > y > z) is called N-mixed if x E N, z$ N. An edge or a couple 
which is not N-mixed is said to be N-unmixed. 

La2m 5. Let S be a finite poset. Then 

max {e’(A, A): A c S} = PI(S) = e(S+, S\M) = e+(S+, S\M). 

where A = S\A. 

W) 

Proof. The equality e(S’, S-\M) = e4(S4, S-\,M) is evident. E+(A, A) dots not 

contain a couple from which max e4(A, A) c PI(S) follows. To prove the reverse 
inequality suppose Fc E does not contain a couple. Let P = P(F), Q = Q( fl be 
the sets of initial, resp. terminal vertices of the edges in F. By assumption P, Q arc 
disjoint so F c E+(P, Q) c E’(P, F) which proves max e+(A, & 3 PI(S). 

All that remains to prove is that max e’( A, A) = e’( S+, S-\M). Let L3 c S 
satisfy e4(B, B) = max e’(A, A). We show that B is a filter and fi is an ideal. If 
there is some x E B, y FEZ n for which y > x let J3’ = B U y\x. One can easily check 
that 

e+(.B’, Sj > e*(B, B) 

holds. So in searching for a set A to maximize e+(A, A) we have to consider only 
filters. Let p3 be a ma:rimizing subset. Let x be a minimal element in B. From 
e’(B\x, B U x) =G e’(B, B) it follows easily that x E S’. Hence, y E S’ for all y E B 
SO that S’ 2 B. By the same: reasoning S- 2 B. In other words B 2 S’\M, 

B r> S-\A4 If x EM then r-(x) c_ !i+\M, I’+(x)E S\,M, and d’(x) = d -(xj. There- 

fore we can move x from J3 to B and vice versa without affecting e + (B, B ). This 
concludes the proof of the lemma. 

Theresa 6F. A finite poset 3 may be edge covered by edge disjoint S-mixed 

couples und S’-mixed edges. 

The ‘kdges” of a poset are of course, the edges of the representing graph i.(*. 

the pairs [x, y] where x > y. 



So to refute (6.2) it sufhczs to show that if PC, S and Q c S-\iM; then they 
cannot satisfy j6.3a) and (6.X$ simultaneously. 

The problem may be further reduced KJ the case where P is a filter, Q is an 
ideal, P and Q are disjoint szzd they satisfy {6.3a) and (6.3b). Suppose x6 P, y G P 
satisfy x > y. Peplacing P b5 PU x\y the r.h.s of (6.3a) increases, while (6.3b) 
remains valid. Since P c 9, IQ s S-\M, be&e the replacement and after it we 
aYe P 8 = @ We repeat the replacement procedure until we finally repiac? P 
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by a filter. When the same is performed on Q for x E: Q, y 6 Q, it is replaced by an 
ii#@&-.@ &@d, Q-remain disjoint and (6.3b) still holds. 

& .~@kQ=,$3, P W Q = 5 hold for some filter P and some ideal Q which s:tiisfy 
(6.3a) and (6.3b), then 

CY(&P, QN = &WJ u &(Q) 

So (6.3a) becomes 

IY~--IXj<e+,(P, Q)-e,(P)-eG(Q). 

But evidently 

(6.4a) 

e(G)=\Y)+IX(= di(P, Q)+e,(P)+e,(Q). (6.4b) 

-4dding (6.4a) to (6.4b) we obtain 

e+(S+, S\M) = 1 YJ < e&P, Q), 

which contradicts Lemma 5. Therefore P U Q# S. Next we choose a filter P and 
an ideal Q that are disjoint and satisfy (6.3a), (6.3b), such that ]PU Ql is maxim,al 
under these conditions. Every rc$ P U Q satisfies e&(x, P) = p&(2, X) = 0 as P is a 
filter and Q is an ideal. 

Note that the quantity e’(x, Q) defined for x E S, is a nondecreasing function of 

x. Similarly, e+(P, x) is nonincreasing in X. Therefore if for some x E S\(P U Q) 

ez(x, Q)a e&(P, x) and e&(x, Q)>O, then there is a maximal element x* of 
S\(PU Q) for which e&(x*, Q)a e&(P, AT*) and e+(x*, Q) >O. Replace B by 
PU x*. This does not injure (6.3b) nor the disjointness of P and Q. The r.h.s. of 
(6.3a) increases by e&(x*, Q) - e&(P, x*) 2 0. P U x* is a filter and this contradicts 
the maximality of PU Q. If for some x E S\(PU Q), e&(x, Q)s &(P, x) and 
e&(P, x) > 0 a similar construction is applied to obtain a contradiction. 

We may assume then, that if x E S\(PU Q), then e&(B, X) = e&(x, Q) = 0. That 
means, no element of S\(PU Q) is comparable to any element of P U Q. If 
x E S\(PU Q) then x is comparable to some element of S\(P U Q) since, by 
assumption, k(x) > 0. Therefore there exists a pair X, y of elements in S\( P U 

Q), such that x > y, x is maximal in S and y is minimal in S. Replace P by the 
filter PU x and Q by the ideal Q U y. These two sets are gisjoint and satisfy 
(6,3b). The r.h.s. of (6.3a) has increase:d by one. This contradicts the maximality 
of IPLJ QI and concludes the proof of Theorem 6F. 

We now give two reformulations of Theorem 6F. The first one exhibits the 
sirniIarity of Theorem 6F and Dilworth’s Theorem. We say that a set of edges is 
Mepndent if it does not contai_i a couple. In Dilwo:lth’s theorem the minimal 
vertex cover is discussed. The maximal cardinal&y of zn independent set of 
vertices (which is a trivial lower bound) is shown 
Quite the same is done in 

Theorem 6A Pn a minimum edge C~IXY of a poset 
maximal cardinality of an independent set of edges. 
of paths whose length does not exceed two. 

to be equal to this minimum. 



Thtlffiem 1& Let Y, Z be sef~, 6, = & the calktion of all finite subsets of Y 
Awckz@witheveryA~~afin&onf,:A -+ 2% A&&e that for eveqy y f 
set ifA 1 y E A E 4) is finite. Then there e&s a function f : Y + Z SC that 

Y the 

for ezwy A E 4 there exists a set B sutisfyiqg A c; B E 4 and 

f/A =fBIA* (6.5) 
To prove Theorem 6 proceed as follows: Define. Y= E(=([q y]: x E S, 

y G S, x ) y)), and let 2 = E U *{(I}, where 0 2s an elgqent not in ;E. For A E & let 
(,4) be the set of all endpoints of %?3es in A. {A) @S a finite @bposet of S. Choose 
a fked cover CA of (A}, ~bich satisfiers the cond$jq,ps of T’h~rem’ 6F (relative to 
(A}, of course). NOW defbe fz as follow!;. If zz E A, WII either u itself belo~~gs to 
G+ or ,U is revered by a couple (tl, a) or b, u) in CZ,+ In the iirst case let & ( z,!) = 0, 
and in the second case let f,(u) = x). 

Titt: tiiterness condittin :R Theorem R is a dkect consequence of the local 
finiteness of S. Let 1’: E 
Theorem R). 

--$ E U(O) be a function which satisfies (63, (as in 

By the dekition of fA wt: have 

VA&& VU, u 6: A jy&&=r~f~(u)=U. (6.6a) 

Therefore 

Vu, 2, E E f(u) = v HI f(v) = u. ~tih??) 

Fix let A ={dr, 21) aprY I J amme that J’(U) = II. Cmsider B as in (6.5). We have 



Cmering digraphs by paths 269 

* 
&(u) = u so by (6.6a) fB(u) = U. By (6.5) f(u) = u. This proves (6.6b). It is also 
e&dent that f(u) = v implies that (u, v j or (v, u) is a couple in G. 

Define 

& “{(U, v) E c 1 M, v E A, L&4=4 
F=((u,v)E.CI U,VEE, fW = 4. 

By the above remarks, F is a collection of edge disjoint couples. Let S1, S2 be 
the sets of th0~2 vertices in S that are initial, resp. terminal, in some couple of E 
We show that S1 l7 S2 = $4. Assume, on th[e contrary that (u, v), (g., h) E F and th?,t 
the terminal vertex of v coincides with the initial vertex of g. Let A = {u, U, g, h}, 
thtm there exists a set B, A c 11 E & for which (u, 2) j, (g, h) E Fee Thus, the 

couples (u, v) and (g, h) belong to the edge cover C, of (B) and CB does not 
satisfy the: conditions of Theorem 6F, contrary to the choice of CB. 

5 We now denote M= S\(S, U S,). Let J be the set of edges that are not l:overed 
by I;. By definition J = f -‘(Cl). We let MI (req. MJ be the set of those ve -tices in 
I’M that are igtial (resp. terminal) vertices in some edge of J. We show that 
nil, n A& = $4. If on the contrary there exist u, v E J so that (u, v) E C, we choose 
A =.{u, v) and consider B as in (6.5). As f(u) =f(v) = 0, also fs(u) = f,(v) == 0. 

This means that u and v belong to C,, which again contradicts the conditions of 
Theorem 6F. 

We further show that if (ti, v) E F and t E .I’ it is impossible that (u, t) E C. If such 

u, v, t exist in E, let A = {u, v, t) and let B be as in (6.3. By assumption fs( t) z= 0, 
(u, v) E FB which again contradicts the choice of CB. Similarly we find that if 
(u, v) E F,, t E J it is impossible that (t, U) E C. 

By definition of J it is clear that FUJ cover all edges cf S. We show that 
S’\M’= S1 U Ad, and the proof is thus complete. We have aheady shown thz:t no 
vertex in S is both the head of an element in F U .I and a tail of another element 
in F !. J .L Therefore, x E S’\M iff x is the head of some element of F!J J. In other 
words S”\M = S1 U Ml. 

4. Edge-co\*ering by couples md edges 

Let us remind the reader that for a digraph G, we define p I( G) as &,(I%LI G )). 

We also note that 

L%(G) = max {e’(A, V\A) 1 A c V’). 

A proof of this fact is contained in the first paragraph of the proof of Lemma 5. 
Evidently, :g digraph G cannot be edge-covered by fewer than (3, (6;) couple 5 ~c! 
edges. The purpose uf this section is to study digraphs Cn’ which haw ‘~II 
edge-cover of p,(G) couples and edges. Digraphs which represent partial order> 

enjoy this pr0pPrt-y as is shows1 in Theorem 6.1. Not every acyclic digraph shaw, 



7. L+et G = (V? E) be Q digraph, a)$ a~~tme that 

I E==E+(A, VjA)UE+(B, V’,B), 

for some A, B s V. l%m it & possible to cover the edges qf G by P,(G) (but not 
fewer) couple!3 and edges 

To pmve Themem 7 &serve that under these assumptiok DuL(G) is bipartite 
with iMqendent sets: E’(A, V\A) and m,E’(A, VA). The proof now follows 
from the above mentioned corollary of Hall% Theorem The following is, an 
intereshg special case of the above. 

my 7.1. If G is an orienm ‘ion of a bipartite graph, then it is possible ito cover 
j&e edges of G by &(G) couples arid edges 

U (A, I?) is a partition of V(G) into two independent sets, then the assumption 
of Theorem 7 holds and the a~xtion follows. 

As a qonxquena of Thqxenr 7 we obtain: 

XI. Let rG‘ k a digmph whictc contains MO cyclic tiangle and no dimtt:d 
~e~~~h 4. *TFm G cm be edge-covered by PI(G) couples artd edges. 
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I?~o&. If G contains a directed cycle, then it must have leng\‘h 4. This follows 
d&ectly from the assumptions of the theorem. Moreover, it is easily seen that such 
a q&e& a component of G. Therefore, we may assume that G is acyclic. 

D&ne a height fi*med- AeLllb.non iz on V(G) as follows: For x E V= V(G), let h(x) be 
tne m&mum length of a directed path in G which terminates at X. By our 
assumptions on G, 0~ h(x) s 3 for every x E V Since G is assumed to be acyclic, 

it is easy to verify that [x, y&E implies h(x)< h(y). For i =0, 1,2,3 let 

By the preceeding remark 

E= L{E’(Vi, Vj) 1 O~iCj~3). 

Ths E is the union of E+( V, W VI, V, U V,) and E’( V, U V,, VI U V,). ‘I%e 

conditions elf Theorem 7 hold and the proof is thus complete. 
Since components of dilinegraphs play a major role in the above discussions, we 

now consider the following problem: Let G be a digraph, what are the compo- 
nents of DL(G)? We may assume w.1.o.g. that for every AYE V(G), d(w) > 0 for an 
isolated vertex in G has no influence on DL(G). Denote 

M=(xE vId+(x)=o}, P=(xfz VI d-(x)=0}. 

We prove: 

Themem 8. Let G be a digraph, let Cl, . . . , C, be the components of G\(P U M) and 
let ‘V, be the vertex set of C,. Then the components qf DL(G) are spanned by the 
following elements or sets: 

1. Zach element of E’(P, M) 

2. E’(P, V,)U E(V,)U E+(V,, A4) (k = 1,. . . , 1). 

Proof. First we show that each of these sets spans a connected subgraph of 
DL(G). Evidently each element of E’(P, M) is an isolated vertex in DL( G). Let 
us show that I$ = E’(P, V,) U E( V,) U E+( Vk, Ad) spa 9s a connected subgraph of 

DL(G). TO show this we have to show that for every u, v E & there e::ists a 
sequence u = uo, . . . , u, = v in E = E(G) such that u~__~ and ui form a couple in 6 
for i=l,..., nt. Each of the edges u, v has an endvertex which does not belong 
to P U M. Ld x be an endvertex of u, y an endvertex of v, X, y $ F U M. 

Since, X, y belong to the same component C;: of G\(PU R/I), we can find a path 

(not necessarily directed) connecting them in irk, say x = z,), z,, . . . , t,,, = y. For 

1 s i s m, Izr wj E Ek be the directed edge which contains z,_~ and z, as endver- 

tices, i.e. Wj = [Zj_-l, Zj] or Wi = [Zj, Zj_l]. Let also W. = U, Wm+l = V. We only need 
to show that for 1 <i 5: m -t 1 either wj-1 and wi form a couple in G or there is :~rl 

edge w* in Ek which forms a couple with wi_, and also with w,. If MI, , and MY, do 

not fom 31 coupl:., then z,_., is the head or the tail of hot U’,. AS!,umc. 




