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In this paper we consider four previously known parameters of sign matrices from a
complexity-theoretic perspective. The main technical contributions are tight (or nearly
tight) inequalities that we establish among these parameters. Several new open problems
are raised as well.

1. Introduction

What is complexity, and how should it be studied mathematically? In the
interpretation that we adopt, there are several underlying common themes
to complexity theories. The basic ground rules are these: There is a family
F of some mathematical objects under consideration. The elements of some
subset S ⊆F are deemed simple. Also, there are certain composition rules
that allow one to put together objects in order to generate other objects in F .
The complexity of an object is determined by the length of the shortest chain
of steps to generate it from simple objects. In full generality one would want
to get good estimates for all or many objects in the family F . Specifically, a
major challenge is to be able to point out specific concrete objects that have
high complexity. That is, elements that cannot be generated from simple
objects using only a small number of composition steps.

Arguably the currently most developed mathematical theory of complex-
ity is to be found in the field of computational complexity. Typically (but
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not exclusively), F consists of all boolean functions f :{0,1}m→{0,1}. The
class S of simple objects contains the constant functions, and the functions
x→xi (the i-th coordinate). Functions can be composed using the basic log-
ical operations (or, and, not). Thus, one possible formulation of the P vs.
NP problem within this framework goes as follows: Suppose that m =

(n
2

)
and so each x ∈ {0,1}m can be viewed as a graph G on n vertices (each
coordinate of x indicates whether a given pair of vertices is connected by an
edge or not). We define f(x) to be 0 or 1 according to whether or not G has
a Hamiltonian path (a path that visits every vertex in G exactly once). It
is conjectured that in order to generate the function f , exponentially many
composition steps must be taken. The lamentable state of affairs is that we
are at present unable to prove even any super linear lower bound for this
number.

In view of the fundamental importance and the apparent great difficulty
of the problems of computational complexity we suggest to address issues
of complexity in other mathematical fields. Aside from the inherent interest
in understanding complexity in general, insights gained from such investiga-
tions are likely to help in speeding up progress in computational complexity.
This paper is a small step in this direction. We seek to develop a complex-
ity theory for sign matrices (matrices all of whose entries are ±1). There
are several good reasons why this should be a good place to start. First, a
number of hard and concrete problems in computational complexity proper
can be stated in this language. Two notable examples are (i) The log-rank
conjecture and (ii) The matrix rigidity problem, explained in the sequel.
Also, matrices come with a complexity measure that we all know, namely,
the rank. To see why, let us declare the class S of simple matrices to be those
matrices (not necessarily with ±1 entries) that have rank one. Suppose, fur-
thermore, that the composition rule is matrix sum. We recall a theorem
from linear algebra that the rank of a matrix A equals the least number
of rank-one matrices whose sum is A. This shows that rank indeed fits the
definition of a complexity measure for matrices.

One important lesson from the experience gathered in computational
complexity, is that it is beneficial to study a variety of complexity measures
in order to understand the behavior of the main quantities of interest. Thus,
aside from circuit complexity (the “real” thing), people are investigating
communication complexity, proof complexity, decision tree models etc. This
is the direction we take here, and our main work here is a comparative study
of several measures of complexity for sign matrices.

We turn to the two conjectures mentioned above. The log-rank conjec-
ture arose in the subfield of computational complexity known as commu-
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nication complexity. A few words about this area will be said below, and
the interested reader should consult the beautiful monograph [15]. In purely
matrix-theoretic terms, here is the conjecture:

Conjecture 1.1 ([20]). Let A be an n×n sign matrix. Denote by M the
largest area of a monochromatic rectangle of A, then

M ≥ n2/2(rank(A))O(1)
.

One recurring theme in computational complexity is that in many impor-
tant situations, random elements in F have the highest possible complexity
(or nearly that). Thus a random sign matrix tends to have full rank (we will
soon elaborate on this point). From this perspective, the log-rank conjec-
ture probes the situation away from that realm, and asks whether low rank
imposes strong structural restrictions on the matrix.

Indeed, ranks of sign matrices have attracted much attention over the
years. The most famous open problem about them is this: What is the
probability that a random n×n sign matrix is singular? In its strongest form,
the conjecture says that singularity comes mostly from one of the following
four events: Two rows (columns) that are equal (opposite). This would mean
that the probability for being singular is (1+ o(1))n(n−1)

2n−1 . This conjecture
still seems beyond reach, although considerable progress has been made. In
a breakthrough paper Kahn, Komlós and Szemerédi [13] have proved an
exponentially small upper bound on this probability. This bound has been
substantially improved recently by Tao and Vu [26] who showed that this
probability does not exceed (3

4 +o(1))n. In the present context these results
say that if F consists of all n×n sign matrices, and if our complexity measure
is the rank, then random objects in F have the highest possible complexity
and the exceptional set is exponentially small. Such phenomena are often
encountered in complexity.

The rigidity problem (first posed by Valiant [28]) highlights another
prevalent phenomenon in computational complexity. Namely, while most
objects in F have (almost) the largest possible complexity, finding explicit
members in F that have high complexity is a different matter altogether.
Some of the hardest problems in computational complexity are instances of
this general phenomenon. Of course, finding explicit matrices of full rank
is very easy. But as it was proved by Valiant for real matrices and in [23]
for ±1 matrices, high rank is not only very common, it is also very rigid.
Namely, when you draw a random sign matrix, even when you are allowed to
arbitrarily change a constant fraction of the entries in the matrix, the rank
will remain high. The problem is to construct explicit matrices with this
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property. It is conjectured that Sylvester–Hadamard matrices are rigid and,
in spite significant effort [14], this problem remains open. Other variants of
rigidity were also studied [16,24].

This paper revolves around four matrix parameters. All four have been
studied before, but not necessarily as complexity measures. Let us introduce
these parameters in view of the following definition for the rank. We observe
that the rank of a real m× n matrix A is the smallest d, such that it’s
possible to express A=XY , where X is a real m×d matrix and Y a d×n
real matrix. All four complexity measures that we consider are derived as
various parameters optimized over all possible ways to express A as A�XY
for some real matrices X,Y . We consider two interpretations for �. It will
either mean matrix equality, or it will mean that A is the sign matrix of XY ,
and that all entries in XY have absolute values ≥1 (the latter is a necessary
normalization condition).

The other ingredient in our definitions is that we’d like X and Y to have
“short” rows and columns respectively. Here short may be interpreted in
two ways: either meaning few coordinates or having small �2 norm. We are
thus led to four distinct definitions.

equality sign

num. of
rows

r=rank
d=
randomized comm. compl.

length
of rows

γ2 =
normed spaces theory

mc=
margin complexity

Table 1. complexity measures

Of the four parameters that appear in Table 1, the rank needs no
introduction, of course. The parameter γ2 originates from the theory of
normed spaces and will be discussed below. The other two parameters
were first introduced in computational contexts. Margin complexity mc
is a notion that comes from the field of machine learning. The fourth
and last of the parameters comes from the field of communication com-
plexity.

The main results of this paper concern these four parameters. We estab-
lish inequalities among them, and determine almost completely how tight
these inequalities are. Besides, we prove concentration-of-measure results for
them. It turns out that for comparison purposes, it’s better to speak of γ2

2

and mc2, rather than γ2 and mc. Specifically, letting m≥n, we show for
every m×n sign matrix A that:
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• rank(A)≥γ2
2(A).

The gap here can be arbitrarily large. For example, the “identity” matrix
2In−Jn has rank n and γ2 =O(1) (Jn is the n×n all 1’s matrix).

• γ2(A)≥mc(A).
Again the gap can be almost arbitrarily large. Specifically, we exhibit
n×n sign matrices A for which

mc(A) = log n and γ2(A) = Θ

( √
n

log n

)
.

• d(A),mc(A)≥Ω
(

nm
‖A‖∞→1

)
.

We prove that for random sign matrices the right hand side is almost
always Ω(

√
n).

• d(A)≤O(mc(A)2 log(n+m)).
• We show that the parameter γ2 for m×n random sign matrices is con-

centrated.
Pr(|γ2(A) − mγ | ≥ c) ≤ 2e−c2/16,

where mγ denotes the median of γ2.
A one-sided inequality of a similar nature is:

Pr(γ2(A) ≤ mM − c/
√

m) ≤ 2e−c2/16,

where M denotes the median of γ∗
2(A), and mM =nm/M .

2. Definitions of the Complexity Measures

We turn to discuss the complexity measures under consideration here. The
rank is, of course well known, and we introduce the three remaining mea-
sures.

2.1. γ2 and operator norms

Denote by Mm,n(C) the space of m×n matrices over the reals and set ‖·‖�n
1

and ‖·‖�n
2

the �n
1 and �n

2 norms on C
n, respectively.

Let us recall the notion of a dual norm. If ‖·‖ is a norm on R
n, the dual

norm ‖·‖∗ is defined for every x∈R
n by

‖x‖∗ = max
‖y‖=1

〈x, y〉,

where 〈,〉 denotes the (usual) inner product. An easy consequence of the
definition is that for every x,y∈R

n and every norm on R
n, ‖x‖‖y‖∗≥|〈x,y〉|.
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Given two norms E1 and E2, on C
n and C

m respectively, the correspond-
ing operator norm ‖·‖E1→E2 is defined on Mm,n(C) by

‖A‖E1→E2 = sup
‖x‖E1

=1
‖Ax‖E2 .

When the dimensions of the underlying normed spaces are evident from the
context, we use the notation ‖ ·‖p→q to denote the operator norm between
the spaces �n

p and �m
q . An easy but useful property of operator norms is that:

‖BC‖E1→E2 ≤ ‖C‖E1→E3‖B‖E3→E2

for every two matrices B ∈ Mm,k(C) and C ∈ Mk,n(C) and for every three
norms E1,E2,E3, on C

n, C
m and C

k respectively.
Factorization of operators plays a central role in our discussion. This

concept has been extensively studied in Banach spaces theory, see for ex-
ample [27]. Given three normed spaces W1,W2 and Z and an operator
T : W1 → W2, the factorization problem deals with representations of the
operator T as T =uv, where v :W1 →Z and u :Z →W2, such that v and u
have small norms. For fixed spaces W1 and W2 and T :W1→W2, define the
factorization constant γZ(T )= inf ‖v‖W1→Z‖u‖Z→W2, where the infimum is
over all representations T =uv.

Factorization constants reflect the geometry of the three spaces involved.
For example, if W1,W2 and Z are n-dimensional and if T is the identity
operator, the factorization constant γ = γZ(Id) of this operator through Z
corresponds to finding an image of the unit ball of Z (denoted by BZ) which
is contained in BW2 and contains 1/γ ·BW1. It is possible to show [27] that
if Z is a Hilbert space, then for any W1 and W2 the factorization constant
is a norm on the space of operators between W1 and W2.

In the case of greatest interest for us, W1 =�n
1 ,W2 =�m∞ and Z =�2. Then,

denoting here and in the sequel γ2 =γ�2 ,

γ2(A) = min
XY =A

‖X‖�2→�m∞‖Y ‖�n
1→�2

which is one of the four complexity measures we investigate in this paper.
It is not hard to check that if A is an m×n matrix then ‖A‖�n

1 →�m
2

is the
largest �m

2 norm of a column in A, and ‖A‖�n
2→�m∞ is equal to the largest �n

2

norm of a row in A. Thus

γ2(A) = min
XY =A

max
i,j

‖xi‖�2‖yj‖�2 ,

where {xi}m
i=1 are the rows of X, and {yj}n

j=1 are the columns of Y . Notice
that γ2(A)=γ2(At) and thus γ∗

2(A)=γ∗
2 (At), for every real matrix A.
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We need a fundamental result from Banach spaces theory, known as
Grothendieck’s inequality, see e.g. [22, pg. 64].

Theorem 2.1. There is an absolute constant 1.5<KG <1.8 such that the
following holds: Let aij be a real matrix, and suppose that |∑i,j aijsitj |≤1
for every choice of reals with |si|, |tj |≤1 for all i,j. Then∣∣∣∣∣

∑
i,j

aij〈xi, yj〉
∣∣∣∣∣ ≤ KG,

for every choice of unit vectors xi,yj in a real Hilbert space.

Using duality, it is possible to restate Grothendieck’s inequality as follows:
For every matrix A∈Mm,n(C)

γ∗
2(At) ≤ KG‖At‖�m∞→�n

1
,

where γ∗
2 is the dual norm to γ2.

On the other hand, it is easy to verify that if A∈Mm,n then ‖At‖�m∞→�n
1
≤

γ∗
2(At), implying that up to a small multiplicative constant γ∗

2 is equivalent
as a norm on Mn,m to the norm ‖·‖�m∞→�n

1
.

2.2. Margin complexity and machine learning

We turn now to define the margin of a concept class, an important quantity
in modern machine learning (see, e.g. [6,29]). A concept class is an m×n
sign matrix, where the rows of the matrix represent points in the (finite)
domain and columns correspond to concepts, i.e. {−1,1}-valued functions.
The value of the j-th function on the i-th point is aij. The idea behind margin
based bounds is to try and represent the function class as a class of linear
functionals on an inner product space, namely to find vectors y1, . . . ,yn∈�2

to represent the functions in the class and vectors x1, . . . ,xm corresponding
to the points in the domain. This choice is a realization of the concept class
if sign(〈xi,yj〉) = aij for every 1 ≤ i ≤m and 1≤ j ≤ n. In matrix terms, a
realization of A, is a pair of matrices X,Y such that the matrix XY has the
same sign pattern as A. The margin of this realization is defined as

min
i,j

|〈xi, yj〉|
‖xi‖‖yj‖ .

Hence, the closer the margin is to 1 the closer the representation (using
elements of norm 1) is to be a completely accurate rendition. The margin
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provides a measure to the difficulty of a learning problem – at least to some
extent, the larger the margin is, the simpler the concept class is, and more
amenable to description with linear functionals.

The margin of a sign matrix A is defined as the largest possible margin
of a realization of A, denoted m(A). Observe that

m(A) = supmin
i,j

|〈xi, yj〉|
‖xi‖‖yj‖ ,(1)

where the supremum is over all matrices X,Y with sign(〈xi,yj〉) = aij. It
will be convenient to denote mc(A)=m(A)−1, the margin complexity of A.

2.3. A few words on communication complexity

In table (1) we define d(A) of an m×n sign matrix A as follows: This is the
smallest dimension d such that it’s possible to find vectors x1, . . . ,xm and
y1, . . . ,yn in R

d for which sign(〈xi,yj〉)=aij for all i,j. We also say that the
matrix A can be realized in R

d.
We remark here, without elabotaring, that the first occurrence of this

parameter was in communication complexity, a subfield of computational
complexity mentioned above. We state the theorem, from [21], that relates
this parameter to communication complexity: Let A be a sign matrix, and
denote by u(A) the unbounded error randomized communication complexity
of A, then

2u(A)−2 ≤ d(A) ≤ 2u(A).

For the definition of communication complexity in different models, the
reader is refered to the standard reference on communication complexity,
the book by Kushilevitz and Nisan [15].

3. Margin complexity and γ2

3.1. An equivalent definition of margin complexity

Our first step is to find a relation between margin complexity and γ2. Define
the sign pattern of a matrix B ∈ Mm,n(C) (denoted by sp(B)) as the sign
matrix (sign(bij)). For a sign matrix A, let SP(A) be the family of matrices
B satisfying bijaij ≥ 1 for all i and j. In other words, SP(A) consists of
matrices B=(bij) for which sp(B)=A and |bij |≥1 for all i,j.

The following lemma gives a simple alternative characterization of the
margin complexity of sign matrices.
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Lemma 3.1. For every m×n sign matrix A,

mc(A) = min
XY ∈SP(A)

‖X‖�2→�m∞‖Y ‖�n
1→�2.

Proof. Equation (1), and the definition mc(A)=m(A)−1, imply that

mc(A) = min
X,Y : sp(XY )=A

max
i,j

‖xi‖‖yj‖
|〈xi, yj〉|

= min
X,Y : sp(XY )=A

max
i,j

1∣∣∣〈 xi
‖xi‖ ,

yj

‖yj‖
〉∣∣∣ ,

which is equivalent to

mc(A) = min max
i,j

1
|〈xi, yj〉| ,

where the minimum is over all pairs of matrices X,Y such that

1. A is the sign pattern of XY , i.e. sp(XY )=A.
2. The rows of X and the columns of Y are unit vectors.

Given such X and Y , let us define Ỹ to be 1
minij |〈xi,yj〉|Y (so that all

entries in XỸ have absolute value ≥ 1). We can now interpret the above
definition as saying that mc(A) is the smallest α for which there exist ma-
trices X and Ỹ such that

1. XỸ ∈SP(A),
2. all rows in X are unit vectors,
3. all columns in Ỹ have length α.

In other words,
mc(A) = min γ2(XY ),

where the minimum is over all pairs of matrices X,Y such that XY ∈SP(A)
and the rows of X and the columns of Y have equal length. It is easy to see
that when the dimension of the vectors is not bounded, the restriction on
the vectors’ lengths does not affect the optimum and thus

mc(A) = min
B∈SP(A)

γ2(B),

which is equivalent to the assertion of the lemma.

Since A∈SP(A), we can easily conclude:

Corollary 3.2. mc(A)≤γ2(A).
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3.2. An improved lower bound on margin complexity

The following corollary is a simple application of duality and the equivalent
definition of margin complexity given in the last section.

Corollary 3.3. Let A be an m×n sign matrix. Then,

mc(A) ≥ nm

γ∗
2(At)

,(2)

and in particular,

mc(A) ≥ nm

KG‖A‖�n∞→�m
1

.

Proof. Let B be a matrix in SP(A) such that mc(A)=γ2(B). Then,

mc(A)γ∗
2 (At) = γ2(B)γ∗

2(At) ≥ 〈A,B〉 ≥ nm.

Hence mc(A)≥nm/γ∗
2(At). By Grothendieck’s inequality,

γ∗
2(At) ≤ KG‖At‖�m∞→�n

1
= KG‖A‖�n∞→�m

1
.

To compare our bound on the margin complexity with known results, we
need to understand the relationship between γ2 and the trace norm ‖A‖tr.
This is the sum of A’s singular values, which are the roots of the eigenvalues
of AAt. We prove:

Lemma 3.4. For every m×n matrix A, 1√
mn

‖A‖tr ≤γ2(A).

Since the trace norm and the �2 operator norm are dual (see e.g. [27]),
this is equivalent to:

Lemma 3.5. For every m×n matrix A, γ∗
2(A)≤√

mn‖A‖2→2.

Proof. Let B be a real m×n matrix satisfying γ2(B)≤1. Let XY =B be
a factorization of B such that ‖Y ‖1→2 ≤ 1 and ‖X‖2→∞ ≤ 1. Denote by xi

the i-th column of X and by yt
i the i-th row of Y . For every matrix A

〈B,A〉 = 〈XY,A〉 =
〈∑

xiy
t
i , A

〉

=
∑

xt
iAyi =

∑
‖xi‖‖yi‖ xt

i

‖xi‖A
yi

‖yi‖
≤ ‖A‖2→2

∑
‖xi‖‖yi‖ ≤ ‖A‖2→2

√(∑
‖xi‖2

)(∑
‖yi‖2

)

≤ √
mn‖A‖2→2.
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It follows that

γ∗
2(A) = max

γ2(B)≤1
〈B,A〉 ≤ √

mn‖A‖2→2.

Corollary 3.3 improves a bound proved by Forster [7]. Forster proved that
for any m×n matrix,

mc(A) ≥
√

mn

‖A‖�n
2→�m

2

.

That this is indeed an improvement follows from Lemma 3.5. It may some-
time yield an asymptotically better bound, since we next exhibit n × n
sign matrices A for which ‖A‖�n∞→�n

1
� n‖A‖�n

2→�n
2
. For other extensions

of Forster’s bound see [9].
Consider the matrix A where in the upper left block of n3/4 ×n3/4 all

entries are one. All other entries of A are ±1 chosen uniformly and indepen-
dently. Let B be the matrix with an n3/4×n3/4 block of ones in the upper
left corner and zeros elsewhere. Then

‖A‖2→2 ≥ ‖B‖2→2 = n3/4.

Now let C =A−B. It is not hard to see that with high probability ‖C‖∞→1≤
O(n3/2). Indeed, this easily follows from Lemma 5.1 below. Also, ‖B‖∞→1 =
n3/2. By the triangle inequality

‖A‖∞→1 ≤ ‖C‖∞→1 + ‖B‖∞→1 ≤ O(n3/2).

Thus ‖A‖∞→1≤O(n3/2) whereas n‖A‖2→2≥Ω(n7/4).

3.3. Computing the Optimal Margin

In this section we observe that the margin complexity and γ2 can be com-
puted in polynomial time, using semi-definite programming. As we show
later, this has some nice theoretical consequences as well.

We start with the semi-definite programs for the margin complexity and
for γ2. To that end, it is often convenient to identify the vector space of all
n×n symmetric matrices with the Euclidean space R

m where m=n(n+1)/2.
Denote the cone of all n×n positive semi-definite matrices by PSDn. Let A
be an n×N {±1}-valued matrix, and let Eij be the (n+N)×(n+N) symmetric
matrix with ei,(n+j) = e(n+j),i = aij for i = 1, . . . ,n and j = 1, . . . ,N , and all
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other entries zero. Observe that the optimum of the following optimization
problem is mc(A):

minimize η

∀i η ≥ Xii

∀i, j 〈Eij ,X〉 ≥ 1(3)
X ∈ PSDn+N

Indeed, since X is positive semi-definite, it can be expressed as X =Y Y t for
some matrix Y . Express Y in block form as

(B
C

)
, where B has n rows and

C has N rows. The constraints of type (3) state that sp(BCt)=A and that
all the entries of BCt are at least 1 in absolute value. The diagonal entries
of X are the squared lengths of the rows in B and C, from which the claim
about the optimum follows.

Likewise, consider a slight modification of this program, by replacing
Condition (3) with 〈Eij ,X〉 = 1 for all i,j. The optimum of the modified
program is γ2(A).

Recall that an appropriate adaptation of the ellipsoid algorithm solves
positive semidefinite programs to any desirable accuracy in polynomial time.
Consequently, the margin complexity and γ2 of any matrix can be approxi-
mated to any degree in polynomial time.

Aside from the algorithmic implications, there is more to be gained by
expressing margin complexity as the optimum of a positive definite program,
by incorporating SDP duality. Specifically, duality yields the following equiv-
alent definition for margin complexity:

mc(A) = max
γ∗
2 (X)=1,sp(X)=A

〈X,A〉.(4)

4. Relations with Rank and the Minimal Dimension of a
Realization

It is obvious that for every m×n sign matrix d(A)≤rank(A). On the other
hand, the gap can be arbitrarily large as we now observe. For a sign matrix A,
denote by s(A), the maximum number of sign-changes in a row of A. (The
number of sign-changes in a sign vector (a1, . . . ,an), is the number of indices
i such that ai =−ai+1, 1≤ i≤n−1.)

Theorem 4.1 ([2]). For any sign matrix A, d(A)≤s(A)+1.

Thus, for example the matrix 2In − Jn has rank n and can be realized
in R

2. Also, it follows easily from the Johnson–Lindenstrauss lemma [12]
that d(A)≤O(mc(A)2 log(n+m)), see e.g. [3] for details.
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What may be more surprising is that γ2
2(A)≤rank(A). The proof of this

inequality is well known to Banach spaces theorists, and we include it for
the sake of completeness.

Lemma 4.2. For every matrix A∈Mm,n(C),

γ2
2(A) ≤ ‖A‖�n

1→�m∞ rank(A).

In particular, if A is a sign matrix then γ2
2(A)≤rank(A).

Proof. Consider factorizations of A of the form A=XY A, where XY = I,
the identity m×m matrix, then

γ2(A) ≤ ‖X‖�2→�m∞‖Y A‖�n
1→�2

≤ ‖X‖�2→�m∞‖Y ‖�m∞→�2‖A‖�n
1 →�m∞.

In particular, γ2(A)
‖A‖�n

1
→�n∞

≤ minXY =I ‖X‖�2→�m∞‖Y ‖�m∞→�2. A formulation of

the well-known John’s theorem ([11]), states that for any d-dimensional
norm E, it is possible to find two matrices X and Y with XY =I, and

‖X‖�2→E‖Y ‖E→�2 ≤
√

d.

If we consider E⊆�m∞ given by range(A) – that is, the vector space range(A)
endowed with the norm whose unit ball is [−1,1]m ∩ range(A) – then by
John’s theorem our assertion holds.

It is known that d(A) = Ω(n) for almost all n × n sign matrices [1].
This is in line with the principle that random instances tend to have high
complexity. We also encounter here the other side of the complexity coin in
that it is a challenging open problem to construct explicit n×n sign matrices
A with d(A)≥Ω(n). Forster [7] shows that d≥Ω(

√
n) for Sylvester matrices.

This follows from the following lemma.

Lemma 4.3 ([7]). For every n×m sign matrix A

d(A) ≥
√

nm

‖A‖2→2
.

We prove the following improvement of Forster’s bound. As we saw in
section 3.2, this improvement can be significant.

Lemma 4.4. For every m×n sign matrix A

d(A) ≥ nm

γ∗
2(A)

,

and in particular,

d(A) ≥ nm

KG‖A‖∞→1
.
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Proof. It was shown in [7] that for any m×n sign matrix A there exists a
matrix B such that sp(B)=A, and

∑
i,j |bij |≥ nmγ2(B)

d(A) . Thus

γ∗
2(A) = max

B:γ2(B)=1
〈A,B〉

≥ max
B:γ2(B)=1,sp(B)=A

〈A,B〉

= max
B:γ2(B)=1,sp(B)=A

∑
i,j

|bij |

≥ nm/d(A).

Applying Grothendieck’s inequality it follows that

d(A) ≥ nm

KG‖A‖∞→1
,

as claimed.

Other variants of the above bound can also be proved using the same line
of proof. For example, by starting with γ∗

2(Ã) where Ã is any matrix such
that sp(Ã)=A, it follows that

d(A) ≥ nm

γ∗
2(Ã)

min
ij

|Ãij |.

This improves a bound from [8].

5. Typical Values and Concentration of Measure

As we have already mentioned, almost every n× n sign matrix has rank
n [13], and cannot be realized in dimension o(n). In [4], it was shown that
the margin complexity of a sign matrix is almost always Ω(

√
n/ logn). Here

we improve this result and show that the margin complexity and γ2 of sign
matrices are almost always Θ(

√
n). We also prove that γ2 is concentrated

around its mean.
The following lemma is well known, and we include its proof for complete-
ness.

Lemma 5.1.

Pr(‖A‖�n∞→�m
1
≤ 2mn1/2) ≥ 1 − (e/2)−2m,

where m≥n, and the matrix A is drawn uniformly from among the m×n
sign matrices.
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Proof. Recall that ‖A‖�n∞→�m
1

= max‖x‖�n∞=1 ‖Ax‖�m
1

, and the maximum
is attained at the extreme points of the �n∞ unit ball, i.e., the vectors
in {−1,1}n. For x∈{−1,1}n and y∈{−1,1}n let

Zx,y =
m∑

i=1

n∑
j=1

Aijxjyj.

The distribution of Zx,y is clearly independent of x and y, therefore we can
take x=(1, . . . ,1) and y=(1, . . . ,1), and conclude

Pr(Zx,y ≥ t) = Pr
(∑

i,j

Ai,j ≥ t

)
≤ exp

(
− t2

2mn

)
.

Hence,

Pr(‖A‖�n∞→�m
1
≥ t) ≤ 2m+n exp

(
− t2

2mn

)
,

and taking t=2m
√

n completes the proof.

Combining this lemma and the connection between γ2(A) and ‖A‖�n∞→�m
1

(see Corollary 3.3) we obtain the following

Corollary 5.2.

Pr(γ2(A) ≥ c
√

n) ≥ 1 − (e/2)−2m

and
Pr(mc(A) ≥ c

√
n) ≥ 1 − (e/2)−2m.

Here c > 0 is an absolute constant, m≥n, and the matrix A is drawn uni-
formly from among the m×n sign matrices.

For the concentration of measure we use the following theorem by Tala-
grand [25] (see also [2, ch. 7]).

Theorem 5.3. Let Ω1,Ω2, . . . ,Ωn be probability spaces. Denote by Ω their
product space, and let A,B⊂Ω. Suppose that for each B∈B, there is a real
vector α∈R

n such that ∑
i:Ai �=Bi

αi ≥ c‖α‖2

for every A∈A. Then Pr(A)Pr(B)≤e−c2/4.

Lemma 5.4. Let m≥n and let A be a random m×n sign matrix. Denote
by mγ the median of γ2, then

Pr(|γ2(A) − mγ | ≥ c) ≤ 4e−c2/16.
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Proof. Consider the sets A={A:γ2(A)≤mγ −c} and B={B:γ2(B)≥mγ}
of m × n sign matrices. For each B ∈ B, there is a matrix β such that
γ∗
2(β) = 1 and 〈β,B〉= mγ , whereas 〈β,A〉 ≤ mγ − c for every A ∈A. Also,

1 = γ∗
2(β) ≥ ‖β‖�2 , where ‖ · ‖�2 is the �2 norm in R

nm also known as the
Hilbert–Schmidt norm. It follows that

c ≤ 〈β,B − A〉 ≤ 2
∑

i,j:Aij �=Bij

|βij |.

In order to apply Theorem 5.3, define the matrix α via αij = |βij |. Then
‖α‖�2 =‖β‖�2 ≤1, as needed. It follows that

Pr(A) ≤ 2e−c2/16.

That Pr({A : γ2(A) ≥ mγ + c}) ≤ 2e−c2/16 is proved equivalently by taking
A={A:γ2(A)≤mγ}, and B={B:γ2(B)≥mγ +c}.

We are also able to give a measure concentration estimate for the left tail
of γ2 as follows.

Lemma 5.5. Let m≥n and let A be a random m×n sign matrix. Denote
by M the median of γ∗

2(A), and let mM =nm/M , then

Pr(γ2(A) ≤ mM − c/
√

m) ≤ 2e−c2/16.

Proof. Let A = {A : γ2(A) ≤ mM − c} and B = {B : γ∗
2(B) ≤ M} be sets

of m×n sign matrices. Pick B ∈ B, and let β = B/γ∗
2(B), then 〈β,B〉 =

〈B,B〉/γ∗
2(B)≥nm/M = mM , whereas 〈β,A〉 ≤mM − c for every A∈A. It

follows that
c ≤ 〈β,B − A〉 ≤ 2

∑
i,j:Aij �=Bij

|βij |.

In addition, it is known that γ∗
2(B)≥m

√
n, which implies that

1/
√

m ≥ √
mn/γ∗

2(B) = ‖B‖�2/γ
∗
2(B) = ‖β‖�2 .

Define the matrix αij = |βij |, then ‖α‖�2 =‖β‖�2 ≤1/
√

m. It follows that

∑
i,j:Aij �=Bij

αij ≥ c/2 ≥ c
√

m‖α‖�2

2
.

Applying Theorem 5.3, we get

Pr(A) Pr(B) ≤ e−c2m/16.
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Since Pr(B)=1/2 the statement follows.

It is not clear how good the last estimate is. Note that both mγ and
mM are of order

√
n so obviously, for relatively large c, the last lemma gives

stronger lower tail estimates than Lemma 5.4. What is the exact relation
between mγ and mM is not clear to us. Also note that since the trace norm is√

n-Lipschitz it can be shown that Pr(| 1√
nm

‖A‖tr −mtr|≥ c/
√

n)≤4e−c2/16

using the same method as in the proof of Lemma 5.4, where mtr is the
median of 1√

nm
‖A‖tr. Thus, if mM ≤ mtr the estimate in Lemma 5.5 is

trivial.
In light of the above discussion it would be interesting to know where

the medians of γ2, γ∗
2 and the trace norm lie. Moreover our choice of B in

the proof of Lemma 5.5 may not be optimal, and it is interesting what the
best choice is. More related questions are raised in Section 8.

6. Specific Examples

As usual, much of our insight for such a new set of parameters stems from
an acquaintance with specific examples. Examples also suggest interesting
challenges to the development of new methods and bounds. An interesting
case in point is the determination in [9], of the exact margin complexity
of the identity matrix and the triangular matrix. Here we determine the
complexity of several more families of matrices.

6.1. Hadamard matrices, and highly imbalanced matrices

Consider m×n sign matrices, with m≥n. It is easy to see that in this case
1≤γ2(A)≤√

n and by duality that also m
√

n≤γ∗
2(A)≤nm. It follows from

Corollary 3.3 and Lemma 3.5 that a matrix whose columns are orthogonal
have the largest possible margin complexity,

√
n. In particular Hadamard

matrices have the largest possible margin complexity. At the other extreme, a
sign matrix A satisfies γ2(A)<

√
2 if and only if it has rank 1. This is because

a sign matrix has rank 1 if and only if it does not contain a 2×2 Hadamard
matrix. Next we prove a useful upper bound on γ2 for sign matrices.

For a real valued m×n matrix A it is easy to show that γ2(A)≤‖A‖1→2 as
well as γ2(A)≤‖A‖2→∞. These follow from the trivial factorizations A=IA
(resp. A=AI), with I the m×m (resp. n×n) identity matrix. This is not
particularly helpful for sign matrices where it yields the same trivial bound
γ2(A)≤min(

√
m,

√
n) for all sign matrices. This bound does provide useful

estimates for 0,1 matrices with only few 1’s in every column. These bounds



456 N. LINIAL, S. MENDELSON, G. SCHECHTMAN, A. SHRAIBMAN

can, in turn, be applied to sign matrices as well, as we now show. Let Jm,n

be the all-ones m×n matrix. It has rank 1, so γ2(Jm,n) = 1. For A a real
m×n matrix, let T (A)=(A+Jm,n)/2. Clearly, T maps sign matrices to 0,1
matrices. Also, the inverse of T is T−1(B)= 2B−Jm,n. Since γ2 is a norm
on Mm×n(R), the following holds for every sign matrix A,

γ2(A) = γ2(T−1(T (A))) = γ2(2T (A) − Jm,n)
≤ 2γ2(T (A)) + γ2(Jm,n) = 2γ2(T (A)) + 1.

Thus, if we denote by Nc(A)/Nr(A), the largest number of 1’s in any col-
umn/row of a sign matrix A, then

mc(A) ≤ γ2(A) ≤ 2min
{√

Nc(A),
√

Nr(A)
}

+ 1.(5)

Notice that all the complexity measures under consideration here are invari-
ant under sign reversals of rows or columns of a matrix. This can sometimes
be incorporated to the above argument.

We can now determine the margin complexity of the following matrix
up to a factor of 2. For n≥2d, let D be the n× (n

d

)
sign matrix whose

columns are all the sign vectors with exactly d 1’s. Inequality (5) implies
mc(D)≤ γ2(D)≤ 2

√
d+1. On the other hand, the margin complexity of a

matrix is at least as large as the margin complexity of any of its submatrices.
D contains as a submatrix the d×2d matrix in which every sign vector of
length d appear as a column. Since the rows in this matrix are orthogonal,
mc(D)≥√

d.

6.2. Adjacency matrices of highly expanding graphs

We show that γ2(A)=Θ(
√

d), when A is the adjacency matrix of d-regular
highly expanding (or “nearly Ramanujan”) graphs. Let G(V,E) be a graph
with vertex set V = {v1, . . . ,vn}. The adjacency matrix A = (aij) of G is
the symmetric 0,1 matrix with aij = aji = 1 if and only if (vi,vj) ∈ E.
A graph in which every vertex has exactly d neighbors is called d-regular. In
this case, there are exactly d 1’s in every row and column of the adjacency
matrix A. Let us denote the singular values of A (i.e. the absolute value
of its eigenvalues) by s1 ≥ . . . ≥ sn. It is easy to verify that s1 = d, and an
inequality of Alon and Boppana [19] says that s2 ≥ 2

√
d−1− o(1). It was

recently shown by Friedman [10] that for every ε > 0, almost all d-regular
graphs satisfy s2≤2

√
d−1+ε. Graphs with s2≤2

√
d−1 exist [17,18] when

d−1 is a prime number and are called Ramanujan graphs. By Inequality (5)
γ2(A)≤√

d for the adjacency matrix of every d-regular graph. We observe
that for nearly Ramanujan graphs, the reverse inequality holds.
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Claim 6.1. Let G be a d-regular graph on n vertices, and let A be its
adjacency matrix. If s2≤c

√
d, then

‖A‖tr ≥ c−1
(
n
√

d − d3/2
)

.

Proof. nd= tr(AAt)=
∑n

i=1 s2
i . Therefore,

∑n
i=2 s2

i =nd−d2. It follows that

n∑
i=1

|si| ≥ 1
s2

n∑
i=2

s2
i ≥ c−1

(
n
√

d − d3/2
)

.

The following is an immediate corollary of the above claims and of
Lemma 3.4.

Corollary 6.2. Let A be the adjacency matrix of a d-regular graph on n
vertices, with d≤n/2. If s2≤c

√
d then γ2(A)=Θ(

√
d).

7. A Gap Between the Margin and γ2

Let m=3k and n=2k, an example of an m×n matrix with a large gap be-
tween the margin complexity and the trace norm normalized by

√
nm was

given in [9]. The fact that γ2 may be significantly larger than the margin
complexity for square matrices was, at least for some of us, somewhat unex-
pected. In this section we present such examples. We begin with a specific
example, and then we present a technique to generate many matrices with
a large gap.

7.1. An Example

Let n be an odd integer and let K be the n×2n sign matrix with no repeated
columns. Denote A=sign(KtK). We consider the rows and columns of A as
indexed by vectors in {±1}n, and interpret the rows of A as functions from
{±1}n to {±1}. The row indexed by the vector (1,1, . . . ,1) corresponds to
the majority function, which we denote by f . The row indexed by s∈{±1}n

corresponds the function fs, given by fs(x) = f(x ◦ s) for all x ∈ {±1}n.
Here s ◦x, is the Hadamard (or Schur) product of s and x, i.e. the vector
(s1x1,s2x2, . . . ,snxn). We now show how to express the eigenvalues of A by
the Fourier coefficients of the majority function. This is subsequently used
to estimate the trace norm of A. As we will see the trace norm of A is large,
and thus γ2(A) is large as a consequence from Lemma 3.4.
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Claim 7.1. Denote by Hn the 2n×2n Sylvester–Hadamard1 matrix. Then
AHn = SHn where S is a diagonal matrix with diagonal entries 2nf̂(t),
t∈{±1}n.

Proof. Denote by χs a character of the group (Z2)n.∑
η

fs(η)χt(η) =
∑

η

f(s ◦ η)χt(η)

=
∑

η̄

f(η̄)χt(η̄ ◦ s) =
∑

η̄

f(η̄)χt(η̄)χt(s)

= χt(s)
∑

η

f(η)χt(η) = χt(s)2nf̂(t).

Thus χt is an eigenvector of A that corresponds to the eigenvalue 2nf̂(t).

Claim 7.2. Let n=2k+1 and let the vector t∈{±1}n have m −1 entries.

If m is even then f̂(t)=0, and if m=2r+1 then

2nf̂(t) = 2
2r∑
i=0

(−1)i
(

2r
i

)(
2k − 2r
k − i

)
.

Proof. Denote by Sq the sum Sq =
∑q

i=0

(
n−m

i

)
, and its complement by

Sq =2n−m−Sq. Denote by Φi the subset of vectors in {±1}n with exactly i
−1’s that agree with the −1’s in t.

2nf̂(t) =
∑

η

f(η)χt(η) =
m∑

i=0

∑
η∈Φi

f(η)(−1)i

=
m∑

i=0

(
m
i

)
(−1)i

∑
η∈Φi

f(η) =
m∑

i=0

(
m
i

)
(−1)i(Sk−i − Sk−i)

=
m∑

i=0

(
m
i

)
(−1)i(Sk−i + Sk−i − 2m−n)

=
m∑

i=0

(
m
i

)
(−1)i2Sk−i

The last equality follows from
∑m

i=0(−1)i
(m

i

)
= 0. Using the identity∑t

i=0

(
m
i

)
(−1)t−i =

(
m−1

t

)
, we can write the last formula as follows

2
m−1∑
i=0

(−1)i
(

m − 1
i

) (
n − m
k − i

)
.

1 Also known as the Walsh matrix.
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Notice that (k−(m−1)+i)+(k−i)=2k+1−m=n−m, so if m is even the
sum is 0. If m=2r+1 is odd we can write the expression as

2
2r∑

i=0

(−1)i
(

2r
i

)(
2k − 2r
k − i

)
,

which concludes the proof.

Claim 7.3. Let r and k be integers then,

2r∑
i=0

(−1)i
(

2r
i

)(
2k − 2r
k − i

)
= (−1)r(k − r)!(2r)!/r!k!

(
2k − 2r
k − r

)
.

Proof. Dividing both sides by the right side we get
2r∑

i=0

(−1)r−i

(
k
i

)(
k

2r − i

)
=

(
k
r

)
.

We prove this by induction on k. If k=0 it is trivial. For the induction step
we write

2r∑
i=0

(−1)r−i

(
k
i

)(
k

2r − i

)
=

2r∑
i=0

(−1)r−i

(
k − 1

i

)(
k − 1
2r − i

)

+
2r∑
i=0

(−1)r−i

(
k − 1

i

)(
k − 1

2r − i − 1

)

+
2r∑
i=0

(−1)r−i

(
k − 1
i − 1

)(
k − 1
2r − i

)

+
2r∑
i=0

(−1)r−i

(
k − 1
i − 1

)(
k − 1

2r − i − 1

)
.

The second term is equal to
∑2r−1

i=0 (−1)r−i
(
k−1

i

)(
k−1

2r−i−1

)
. By substituting

j= i−1 the third term is −∑2r−1
j=0 (−1)r−j

(
k−1

j

)(
k−1

2r−1−j

)
. So the second and

the third terms cancel each other. By the induction hypothesis the first
term is

(
k−1

r

)
, and the fourth term is

(
k−1
r−1

)
(again by substituting j = i−1).

Summing the four terms we get
(
k
r

)
.

The trace norm of A is thus given by

2
k∑

r=0

(
n

2r + 1

)
(k − r)!(2r)!/r!k!

(
2k − 2r
k − r

)
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which is equal to

2
k∑

r=0

(2k + 1)!
(2r + 1)k!r!(k − r)!

.

For a lower bound on this sum, we estimate the k
2 th term

(2k + 1)!
(k + 1)k!k2 !k2 !

=
(2k + 1)!k!

(k + 1)!k!k2 !k2 !

=
(

2k + 1
k

)(
k

k/2

)

= Ω(8k/k).

We conclude that for every n there is an n× n sign matrix A for which
mc(A)=logn and γ2(A)=Θ(

√
n

logn).

Remark 7.4. Here is an alternative construction of matrices with a gap
between γ2 and the margin complexity, based on tensor products. Suppose
that A is a k×k matrix with mc(A)< 1

k‖A‖tr, and let Ā=⊗nA be its n-fold
tensor power. We observe that mc(Ā) is significantly smaller than 1

kn ‖Ā‖tr,
which is smaller than γ2(Ā). This follows from the following two relations
that hold for every two matrices A and B,

mc(A ⊗ B) ≤ mc(A) · mc(B),(6)
‖A ⊗ B‖tr = ‖A‖tr‖B‖tr .(7)

To see this, recall (e.g. [5]) that (A⊗B)(C⊗D)=AC⊗BD. To prove the
inequality (6), consider optimal factorizations X1Y1 and X2Y2, for A and
B respectively. Then (X1 ⊗X2)(Y1 ⊗Y2) = X1Y1 ⊗X2Y2 is a factorization
for A⊗B, which proves the inequality.

To prove the identity (7), observe that (A⊗B)(A⊗B)t =(A⊗B)(At⊗Bt)=
AAt ⊗BBt. Now let a be an eigenvector of AAt with eigenvalue μ1 and b
an eigenvector of BBt with eigenvalue μ2, then a⊗ b is an eigenvector of
AAt⊗BBt with eigenvalue μ1μ2.

8. Other problems

It should be clear that this is only the beginning of a new research direction,
and the unresolved questions are numerous. Here are some problems which
are directly related to the content of this paper.

• Is the log factor in d(A)≤(mc(A))2 logn necessary?
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• What can be said about the distribution of γ2 and γ∗
2?

In particular, estimates for their medians are crucial for our discussion
in Section 5.

• Is there an efficient algorithm to factorize a given sign matrix A = XY
with ‖X‖2→∞‖Y ‖1→2≤

√
rank(A)?

• Compare ‖·‖tr as well as mn
γ∗
2

with the complexity measures in the paper.
• Is there a polynomial-time algorithm to determine d(A) of a sign matrix?
• Suppose that an n×n sign matrix A has rank r where r→∞ but r=o(n).

Is it true that A has either a set of o(r) rows or a set of o(r) columns
that are linearly dependent?
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[13] J. Kahn, J. Komlós and E. Szemerédi: On the probability that a random ±1-
matrix is singular, Journal of the American Mathematical Society 8(1) (1995), 223–
240.

[14] B. Kashin and A. Razborov: Improved lower bounds on the rigidity of Hadamard
matrices, Mathematical Notes 63(4) (1998), 471–475.

[15] E. Kushilevitz and N. Nisan: Communication Complexity, Cambride University
Press, 1997.

[16] S. V. Lokam: Spectral methods for matrix rigidity with applications to size-depth
tradeoffs and communication complexity, in IEEE Symposium on Foundations of
Computer Science, pages 6–15, 1995.

[17] A. Lubotzky, R. Phillips and P. Sarnak: Ramanujan graphs, Combinatorica
8(3) (1988), 261–277.

[18] G. A. Margulis: Explicit constructions of expanders, Problemy Peredaci Informacii
9(4) (1973), 71–80.

[19] A. Nilli: On the second eigenvalue of a graph, Discrete Math. 91(2) (1991), 207–210.

[20] N. Nisan and A. Wigderson: On rank vs. communication complexity, in IEEE
Symposium on Foundations of Computer Science, pages 831–836, 1994.

[21] R. Paturi and J. Simon: Probabilistic communication complexity, Journal of Com-
puter and System Sciences 33 (1986), 106–123.

[22] G. Pisier: Factorization of linear operators and geometry of Banach spaces, vol-
ume 60 of CBMS Regional Conference Series in Mathematics. Published for the
Conference Board of the Mathematical Sciences, Washington, DC, 1986.

[23] P. Pudlák and V. Rödl: Some combinatorial-algebraic problems from complexity
theory, Discrete Mathematics 136 (1994), 253–279.

[24] M. A. Shokrollahi, D. A. Spielman and V. Stemann: A remark on matrix
rigidity, Information Processing Letters 64(6) (1997), 283–285.

[25] M. Talagrand: Concentration of measures and isoperimetric inequalities in product
spaces, Publications Mathematiques de l’I.H.E.S. 81 (1996), 73–205.

[26] T. Tao and V. Vu: On the singularity probability of random Bernoulli matrices,
Journal of the American Mathematical Society 20(3) (2007), 603–628.

[27] N. Tomczak-Jaegermann: Banach–Mazur distances and finite-dimensional op-
erator ideals, volume 38 of Pitman Monographs and Surveys in Pure and Applied
Mathematics, Longman Scientific & Technical, Harlow, 1989.

[28] L. G. Valiant: Graph-theoretic arguments in low level complexity, in Proc. 6th
MFCS, volume 53, pages 162–176. Springer-Verlag LNCS, 1977.

[29] V. N. Vapnik: The Nature of Statistical Learning Theory, Springer-Verlag, New
York, 1999.



COMPLEXITY MEASURES OF SIGN MATRICES 463

Nati Linial

School of Computer Science

and Engineering

Hebrew University

Jerusalem

Israel

nati@cs.huji.ac.il

Shahar Mendelson

Centre for Mathematics and its Applications

The Australian National University

Canberra, ACT 0200

Australia

and

Department of Mathematics

Technion I.I.T

Haifa 32000

Israel

shahar.mendelson@anu.edu.au

Gideon Schechtman

Department of Mathematics

Weizmann Institute

Rehovot

Israel

gideon.schechtman@weizmann.ac.il

Adi Shraibman

Department of Mathematics

Weizmann Institute

Rehovot

Israel

adi.shraibman@weizmann.ac.il



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


