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Randomized algorithms play an important role in parallel and distributed processing. The use of such
algorithms assumes that each processor is able to generate random bits during the computation. In some
applications the algorithm requires that the same random bit be generated by a set of processors. This task
is easy if we assume that no faults may occur. We hav e one of the processors flip a coin and announce the
outcome. If, however, the processor assigned to flip the coin happens to be faulty this may ruin the proba-
bilistic requirement for our randomized algorithm. Suppose, then, that each processor is equipped with a
fair coin, how can they generate a global coin flip which is only slightly biased despite failure of some of
the processors?

This problem was considered before, mostly in the framework of the Byzantine Generals Problem
([ACGM,BE,BD,Br,BR,Ra,Ya]). These past solutions are all based on the assumption that information
may be communicated so that only some of the parties can read it. This is achieved either by choosing an
appropriate model of communication, or by resorting to cryptography. We want to avoid such assumptions.
Technically this means that we deal only with games of complete information.

The most obvious approach to solve this question is via what we call a one-round coin flipping
scheme: Say that there are n processors involved. Fix a Boolean function f : {0, 1}n→{0, 1} . Whenever a
random bit is needed, instruct each processor Pi to flip his coin and announce the outcome xi . The global
coin flip is taken as f (x1, . . . , xn) . How sensitive is this approach to the possible existence of faults? If
the processors act simultaneously, the situation is very favorable. If f is the parity function, then clearly,
ev en if only one processor is in order, this yields a perfect coin flip. In a distributed environment, where
one cannot assume perfect simultaneity, the parity function is not very useful. A single faulty processor
which announces his bit already knowing the bits announced by all the rest, has complete control over the
global bit.

We are thus looking for Boolean functions on which every variable has only a small influence. The
discussion above hints at the features we should expect from measures of influence. Indeed there are a num-
ber of inequivalent such quantities. We present the simplest and probably the most natural one among
them: Let S ⊆ {1, . . . , n} be a subset of the variables of the Boolean function f . Randomly set the vari-
ables outside S by independent perfect coin flips. This partial setting may already determine the value of f
regardless of the values the variables in S. A measure for the influence of S on f is the probability that
this does not happen and the variables in S "have the last word" in determining f . Our goal is to find func-
tions f for which this measure of influence is as small as possible for all subsets S ⊆ {1, . . . , n}.

The assumption that the variables in S are set after those in {1, . . . , n}\S is obviated by the follow-
ing observation (Lemma 2.1): For every Boolean function f there is a monotone function g such that

Pr( f = 0) = Pr(g = 0)

and every S ⊆ {1, . . . , n} influences f at least as much as it influences g. So for our purposes g is at
least as good as f . This lemma thus says that it suffices to consider monotone f ’s. This observation
removes the need for S to be set only after the other variables. All the information we need in this case is
embodied in the probability of f = 0 when all variables in S are set zero (resp. one).

Some very basic questions regarding Boolean functions thus arise. They also turn out to be rather
natural questions in game theory. A Boolean function is for the game theorist a simple game. Variables
are players and sets of variables are coalitions . The measure of influence of a player (the case |S| = 1 )
is a quantity already considered in game theory, under the name of Banzhaf − Coleman power index.
Much attention has been given in game theory to measures of influence of players and sets of players in
games [Ow]. The most important among these is the Shapley value. For us the Shapley value does not seem
to be the most appropriate.

Consider the Boolean function f (x1, . . . , xn) = xk , which in game theory is the dictatorship of
player k. Here, the influence (Banzhaf index) of the dictator k is 1 and is 0 for all the other players. The
influence of each variable on the majority function is Θ(1/√ n) . It may be thought that this is best but this
is not the case. We present a Boolean function for which the influence of each variable is only O(log n/ n) .
On the other hand it follows from known facts in either game theory [Ha] or combinatorics [H] that for
any function the average influence of a variable is at least Ω(1/n). This gap between the upper and lower



bound is very intriguing and our conjecture is that the upper bound is closer to the truth. Put informally,
there is always some player who affects the outcome of the game in a disproportionate manner.

Until this point we restricted our discussion to single-round schemes. The reader can certainly think
of more elaborate schemes for collective coin flipping based on more complicated protocols than just an
application of a Boolean function . We make the observation (Proposition 5.2) that the most general coin
flipping scheme can be described as follows: There is a rooted binary tree T whose leaves are labeled by
zeros and ones. Each internal node of T is labeled by the name of one of the players. We start at the root.
Whenever an internal node is reached, the player at this node flips a coin and announces the outcome.
According to this outcome the game proceeds to either the right or the left son of that node in the tree.
When a leaf is reached the game terminates and the outcome of the game is the 0/1 label of the leaf.

Such a labeled tree is called a multi − round coin flipping scheme. This is a more complicated
setup and we need to consider at least two quantities which measure influence. Let S ⊆ {1, . . . , n} be a
set of players. Assume that the players not in S do follow the rules and flip perfect coins. Then there is a
best strategy for S to maximize the probability of a zero outcome. The difference between this probability
and the probability of zero if members of S, also, play randomly measures the influence of S towards zero.
A similar quantity is defined for an outcome of one.

Our main relevant result (Theorem 5) says that in every multiround game there is a player with an
Ω(1/n) influence towards one. Of course the same holds towards zero. Unfortunately, we hav e no similar
result to guarantee the existence of a player with a substantial influence both towards zero and one. Unlike
the one-round situation this Ω(1/n) bound is known to be best possible. We exhibit games showing the
tightness of this bound.

More general questions regard the influence of sets of players in both single and many round games.
Particularly interesting is the following notion of ε − control. For ε > 0 a coalition S has ε -control over
a game G if S’s influence on the outcome of G is ≥ ε . (As mentioned before we deal with a number of
measures for influence and the definition of ε -control clearly depends on the measure at hand.) The goal is
of course to find games which are not ε -controlled by small sets.

To illustrate this notion we remark that majority is ε -controlled by O(ε √ n) players. We construct
single-round games in which Ω(ε n0.63...) players are needed to achieve ε -control. Recently Saks [S] ana-
lyzed a multistage game where Ω(n/ log n) players are required to achieve ε -control. We conjecture that
Saks’ construction is essentially the best possible. This means that there is always a negligible minority of
the players which almost determines the outcome assuming all the others play randomly. Even the one-
round version of this question is open and very intriguing: Given a Boolean f : {0, 1}n → {0, 1} with
Pr( f = 0) = 1/2, is there a set of o(n) variables such that even if the assignment of values to all other
variables is known there is a constant probability that this does not yet determine f ?

In the results described here we always assume that the set of faulty processors is fixed during the
game. A completely different question arises if the faulty processors are determined by an adversary during
the course of the game. In the single-round context it can be shown that the most robust scheme against
such an adversary is the majority voting scheme. This is an easy consequence of the isoperimetric inequal-
ity in the cube [H]. In the multistage case this problem is left open. A special case of this question was
recently settled in a paper of Lichtenstein, Linial and Saks [LLS].

As explained in the introduction a one-round coin flipping scheme is nothing but a Boolean function
f : {0, 1}n →{0, 1}. Unless otherwise stated f is usually assumed to satisfy: | f −1(0)| = | f −1(1)| = 2n−1

(or equivalently Pr( f = 0) = 1/2). With a slight change of notation f may be thought of as a function
from the power set of {1, . . . , n} into {0, 1}. Consequently we speak of f (A) for A ⊆ {1, . . . , n}. We
now set to formally define our notions of influence for a set of variables of f .

Let
Q0 = Q0( f , S) = { A | A ∩ S = ∅ and for every B ⊆ S , f (A∪B) = 0}

Q1 = Q1( f , S) = { A | A ∩ S = ∅ and for every B ⊆ S , f (A∪B) = 1 } .
Also



q0 = q0( f , S) = | Q0( f , S) | ⋅ 2|S|−n

q1 = q1( f , S) = | Q1( f , S) | ⋅ 2|S|−n

q2 = q2( f , S) = 1 − q0 − q1.

It is seen that q0 (q1) is the probability that the values assigned to variables outside S already set f to zero
(one). The probability that this partial assingment does not determine f is q2. Accordingly, the influence of
S on f is defined as

I f (S): = q2( f , S).

The influence of S on f towards zero (one) are defined to be

I0
f (S): = q0( f , S) + q2( f , S) − Pr( f = 0),

I1
f (S): = q1( f , S) + q2( f , S) − Pr( f = 1),

respectively. Note that q0( f , S) + q2( f , S) is the probability that f = 0 assuming the players in S try to
set f to zero. The influence towards zero is defined as the excess of this probability over Pr( f = 0). For
1 ≤ r ≤ n we let

I f (r): = max {I f (S) |  |S| = r}

and similarly for I f
0(r) , I f

1(r). Also I f : = I f (1).

If S = {x} is a singleton I f ({x}) is a quantity which was studied in game theory. A monotone
Boolean function v: {0, 1}n → {0, 1} is called a monotone simple game(N , v) with N = {1, . . . , n}
. Variables are called players and sets of players are coalitions . In this context I f ({x}) is called the
Banzhaf − Coleman power index of the player x, see [Ow]. We freely interchange between these two
equivalent terminologies, according to the context. In game theoretic terms one of our main problems is
thus to find simple games where all Banzhaf indices are small. Our first observation about this problem is
that monotone Boolean functions are as good as any other:

Lemma 2.1: Let f : {0, 1}n → {0, 1} be a Boolean function. Then there exist a monotone function
g: {0, 1}n → {0, 1} such that

Pr( f = 0) = Pr(g = 0)

and for every S ⊆ {1, . . . , n}

I0
f (S) ≥ I0

g(S),

I1
f (S) ≥ I1

g(S),

I f (S) ≥ Ig(S).

Proof: The proof is based on a standard technique in the extremal theory of finite sets viz. compression.
The function f is made more and more monotone until eventually g is reached. Let us pick an
1 ≤ x ≤ n and consider f̃ : {0, 1}n → {0, 1} which is obtained from f as follows: Suppose that for some
A ⊆ {1, . . . , n},

f (A) = 1 and f (A ∪ {x}) = 0.

Then we set

f̃ (A) = 0 and f̃ (A ∪ {x}) = 1.

Otherwise f̃ equals f . We keep doing the same thing with f̃ , but with respect to a different 1 ≤ y ≤ n .
It is easily seen that as long as f is not monotone there is an x for which f̃ ≠ f . Also after a finite
number of such transformations the function becomes monotone. It is also clear that



Pr( f = 0) = Pr( f̃ = 0).

We want to show that q0( f , S) ≤ q0( f̃ , S) for all S . Let us start with the case x ∈ S . In this
case we show that

Q0( f , S) ⊆ Q0( f̃ , S).

Suppose to the contrary that there is a set A ∈ Q0( f , S) \ Q0( f̃ , S) . Since A ∈| Q0(S, f̃ ) there is a
set B ⊆ S with f̃ (A ∪ B) = 1. But A ∈ Q0( f , S) and so f (A ∪ B) = 0. The definition of f̃
implies that f (A ∪ B \ {x}) = 1 and again the fact that A ∈ Q0( f , S) implies that x ∈ A. But this con-
tradicts x ∈ S.

Now we hav e to prove our claim for x ∈| S . Here we show that if A ∈ Q0( f , S) \ Q0( f̃ , S) then
A \ {x} ∈ Q0( f̃ , S) \ Q0( f , S). Consequently the desired inequality holds. We repeat the previous argu-
ments and conclude that x ∈ A and f (A \ {x} ∪ B) = 1 whence A \ {x} ∈| Q0( f , S) . Now suppose
that f̃ (A \ {x} ∪ C) = 1 . But the definition of f̃ implies that also f (A \ {x} ∪ C) = f (A ∪ C) = 1
. This, however, contradicts A ∈ Q0( f , S) and completes our argument.

The proof for q1 is identical. The conclusion for I0, I1 and I is then immediate.

We prove the following easy lemma:

Lemma 2.2 (a) Let f : {0, 1}n → {0, 1} be a Boolean function and let x ∈ {1, . . . , n}. Then

I f ({x}) = 21−n

x ∈| S
Σ | f (S ∪{x}) − f (S) | .

(b) If f is monotone, let d(x) = |{ S ⊆ {1, . . . , n} | x ∈ S and f (S) = 0} | then

I f ({x}) = 2Pr ( f = 0) − 2−n d(x).

Proof:
(a) This is just a restatment of the definition.
(b) Let us denote

C0 = { S | x ∈| S , f (S) = 0 } , C1 = { S | x ∈ S , f (S) = 0 }.

From (a) and the monotonicity of f it follows that

I f ({x}) = ( | C0 | − | C1 | ) 2−n+1.

But | C0 | + | C1 | = 2n Pr( f = 0). Divide by 2n−1 and subtract to deduce (b).

                                                  

3. One Round Games - a Construction.

This section presents a one round coin flipping scheme among n players in which the influence of any par-

ticular player is only O(
log n

n
).

Theorem 3: There are one round coin flipping schemes G = Gn where

IG = O(
log n

n
)

Proof: To describe the idea of this construction let us ignore for a while issues of integrality and divisibility.
For giv en n let b be the (unique) solution of the equation

(2b − 1)1/b = 21−1/n.



We will later show that this b satisfies

b = log n − log log n + O(1).

Now decompose [n] with n/b blocks of size b and consider the ideal J of those subsets of [n] which con-
tain no block.

|J | = (2b − 1)n/b = 2n−1.

So we consider the coin flipping scheme where v(A) = 0 if A ∈ J and v(A) = 1 if A ∈| J . Simply
stated, the overall decision is 1 if and only if a whole block unanimously votes one and is 0 otherwise.
Now let us compute the influence of an individual player. Using Lemma 2.1 we have to find d(x) which
is the same for every x ∈ [n]. According to the definition of J we have

d(x) = (2b−1 − 1)(2b − 1)
n

b
−1 =

2b−1 − 1

2b − 1
(2b − 1)n/b =

2b−1 − 1

2b − 1
|J |.

Hence

IG = IG({x}) = (|J | − 2d(x)) ⋅ 2−n+1 = 1 −
2b − 2

2b − 1
=

1

2b − 1
= O(

log n

n
).

To show the last equality go back to the relation between b, n:

(2b − 1)1/b = 21−1/n

or n = − b/ log (1 − (
1

2
)b). We use

− ln 2 ⋅ (
1

2
)b ≥ log (1 − (

1

2
)b) ≥ − (

1

2
)b−1

whence b ⋅ 2b ⋅ log e ≥ n ≥ b ⋅ 2b−1. These functions of b are increasing and therefore by evaluating
them at the appropriate values of b the following bound on b results

| b − (log n − log log n) | < 2.

It follows that

IG = (2b − 1)−1 = O(
log n

n
).

To overcome the difficulties involved with b not being an integer we do as follows: We select any integer
b and define α to be the real number for which

(2b − 1)α = 2α b−1.

Next we define a to be the integer nearest to α , say a = α + ε , |ε | ≤
1

2
, and set n = ab. The ideal J is

defined as before and has size

|J | = (2b − 1)a = (2b − 1)α +ε = 2α b−1 (2b − 1)ε .

While 2n−1 = 2(α +ε )b−1. So

|J |

2n−1
= (

2b − 1

2b
)ε = 1 −

ε
2b

+ O(
ε 2

4b
).

Therefore, by adding 2n−b−1 ⋅ ε sets to J , still maintaining J being an ideal, the influence of every player

can rise to at most (1 + ε )/2b = O(
log n

n
).



For completeness sake we add the following proposition:
Proposition 3: Let f be a Boolean function on n variables, with Pr( f = 0) = 1/2. Then

n

i=1
Σ I f (xi) ≥ 1.

This bound is tight as shown by f (x1, . . . , xn) = x1. This result is known in game theory [H]. The
reader may verify it by noticing that given any set of 2n−1 vertices in the n-dimensional cube there are at
least 2n−1 edges in the associated cut. Theorem 5 below giv es a more general result. Meanwhile we state:

Conjecture 3: For every Boolean function f on n variables with Pr( f = 0) = 1/2 there is a variable
x such that

I f (x) = Ω(
log n

n
).

Proposition 3 implies the existence of a variable with influence at least 1/n. Noga Alon showed,
using eigenvalue methods the existence of a variable with an influence of at least (2 − o(1))/n.

4. Symmetric Games

The following symmetry condition is commonly imposed in the context of human voting games: If every
player reverses his vote the collective decision has to change as well. If our coin flipping scheme is
described by a simple game the condition is that for every coalition S ⊆ N

v(S) + v(N \ S) = 1.

It also turns out that symmetric games with small influences are useful building blocks for robust coin flip-
ping schemes that are not necessarily symmetric (see Section 6).

We would like to consider our general problem in the context of symmetric coin flipping games:

(1) Find symmetric games which minimize IG(r). Notice that the symmetry condition implies that for
all S ⊆ N , I1

G(S) = I0
G(S).

(2) Find symmetric games for which the least number of players which ε -control the game is as large as
possible.

We hav e the following result for the symmetric case:

Theorem 4: (a) There exist symmetric games Gn = G for which the influence function satisfies

IG(r) ≤
r

nα for 0 ≤ r ≤ nα

where α = log3 2 = 0. 6309. . . .

(b) There exist symmetric games Gn = G for which the individual influence function satisfies

IG ≤
1

nβ

where β = log7(32/9) = 0. 6518. . . .

Proof: We first introduce the notion of the composition of games: Let G = ([n], v) and Gi = (Pi , wi) be
simple games, (i = 1, . . . , n), where the sets of players Pi are mutually disjoint. The G-composition of
{Gi} is the game

G = (
n

1
∪Pi , w)

where



w(S) = 1 iff v({i | wi(S ∩ Pi) = 1}) = 1.

Intuitively this means that the set of players is composed of n committees where the internal voting in the i-
th committee is by the wi rule, and the committees votes are combined by v.

Next, we introduce some more definitions. A hypergraph H is intersecting if every two edges have a
nonempty intersection. H is two-colorable if there is a partition of the vertices V = V1∪̇V2 such that no
edge is contained in either V1 or V2. Finally, we say that a game G = (N , v) is transitive if there is a tran-
sitive group acting on N under which v is invariant.

Proposition:

(a) Let H = (V , E) be an intersecting, non 2-colorable hypergraph, then the coin flipping scheme
G = (V , v) given by

v(S) = 1 iff there is an A ∈ E such that A ⊆ S,

is symmetric.

(b) If G = ([n], v) is a symmetric coin flipping scheme and so are G1, . . . , Gn then the G composition
of {Gi} is also symmetric.

(c) Let G = ([n], v) and H = H1 = H2 = ⋅ ⋅ ⋅  = Hn be symmetric transitive games and let K be the G
composition of {Hi}, then K also transitive and

IK = IG ⋅ IH .

Proof: (a),(c) and the transitivity of K in (c) are simple. Since K is transitive IK = IK ({x}) for any player
x in K . We may therefore assume that x is some player in H1 = H . Now IK ({x}) is the probability that
the game is not determined by the votes of all other players. This probability is exactly the probability that
H1 is not determined by the the votes of other players in H1, that is IH , times the probability that K is not
determined by the outcome of the games H2, . . . , Hn. Since the players in H2, . . . , Hn flip coins to set
their votes and Pr(H = 0) = Pr(H = 1) = 1/2 the probability that K is not determined by the "votes" of
H2, . . . , Hn is IG , and thus

IK = IH ⋅ IG.

Consider the following two examples:

(1) Let n = 2t − 1 and consider the hypergraph of all t-sets of [n] - It is clearly intersecting, non 2-col-
orable and the game it determines (i.e. majority voting) is transitive.

(2) The hypergraph of lines in the Fano plane. It has 7 vertices and the edges are {(1,2,4), (2,3,5), (3,4,6),
(4,5,7), (1,5,6), (2,6,7), (1,3,7)}. It is easy to check directly that it is intersecting, non 2-colorable
and transitive. For readers familiar with projective geometry only non 2-colorability needs elabora-
tion. This is true because any set of 4 points that does not contain a line is the complement of a line
in this plane.

Using these examples we can now prove our theorem.

Part (a): Let H1 be the majority game of 3 players. Define Hk recursively as the H1 composition of three
copies of Hk−1. Denote by n = 3k the number of players in Hk and let J(n, r) = I1

Hk
(r) be the largest

influence towards 1 that r players can have in Hk , that is, the probability of outcome 1 if all the r players
vote 1 minus Pr(Hk = 1) = 1/2. Clearly there is a set of 2k = nα players that completely control Hk so
only r ≤ nα is of interest. We prove by induction on k that for such r



J(n, r) ≤
r

2nα .

This is true for k = 1 as can easily be verified.

To proceed we consider how these r players are split among the three Hk−1 component of Hk .
Say there are ri of them in the i-th component i = 1, 2, 3. We are allowed to assume that for all i

0 ≤ ri ≤ (
n

3
)α =

1

2
nα ,

since (
n

3
)α players can have complete control over Hk−1. The condition Σri = r must clearly hold, too.

The best strategy for the r players in order to achieve an outcome of 1 in the game is for the ri
players in the i-th component to play towards 1 in their component. The probability for the game to end
with a 1 under such strategy is the probability that at least two of the components end with 1. The
probability is, therefore,

[
1

2
+ J(n/3, r1)][

1

2
+ J(n/3, r2)][

1

2
+ J(n/3, r3)] +

[
1

2
+ J(n/3, r1)][

1

2
+ J(n/3, r2)][

1

2
− J(n/3, r3)] +

[
1

2
+ J(n/3, r1)][

1

2
− J(n/3, r2)][

1

2
+ J(n/3, r3)] +

[
1

2
− J(n/3, r1)][

1

2
+ J(n/3, r2)][

1

2
+ J(n/3, r3)] =

=
1

2
+

1

2
Σ J(n/3, ri) − 2 Π J(n/3, ri) ≤

≤
1

2
+

1

2
Σ J(n/3, ri).

Therefore

J(n, r) ≤
1

2
max Σ J(n/3, ri)

where the maximum is over all choices of r1, r2, r3 with 0 ≤ ri ≤ (
n

3
)α =

1

2
nα , Σri = r .

By induction

J(n/3, ri) ≤
ri

2(n/3)α =
ri

nα

and so

J(n, r) ≤
1

2
Σ

ri

nα =
r

2nα

as claimed. The conclusion about ε -control follows by solving J(n, r) ≥ ε for r .



Part (b): The construction here is similar to the construction above with the building block being the Fano
game rather than the majority of three game. Let F = F1 be the Fano game on seven players, and induc-
tively define Fk to be the F composition of seven copies of Fk−1. Let n = 7k be the number of players in
Fk . It is easy to see that IF = 9/32, and thus

IFk
=

9k

32k
=

1

nβ .

5. Multistage Games - Lower Bounds

We hav e already mentioned in Proposition 3 a limitation of single round coin flipping schemes: There is
always a player with an Ω(1/n) influence on the outcome. One can certainly devise more elaborate
schemes for n players to flip a coin and hope to reduce the influence of any of the participants on the out-
come. As it turns out, the same limitation still prevails for much more general schemes of complete infor-
mation. The most general coin flipping scheme we consider here can be described as follows:

Definition: (a) Let X1, . . . , Xn be finite probability spaces, and let V be a non empty set. A V -valued ran-
dom variable f : Π Xi −−−> V is called a choice function for the players {1, . . . , n} on V . We say that the
choice function f is controlled by player i if f depends only on its i-th coordinate. We say that f is a coin
flip by player i if f is controlled by player i, V = {v1, v2} is of size two, and
Pr( f = v1) = Pr( f = v2) = 1/2.

(b) A general coin flipping scheme (T , N ) is a rooted tree T of finite depth with leaves labeled 0 or 1 and
internal nodes labeled by choice functions (for the players N ) on the set of their children. To determine the
coin flip by this scheme we start at the root. Whenever an internal node is reached use the choice function
at the node to select one of its children and move down the tree to that node. Continue in this manner till a
leaf is reached. The label at this leaf determines the outcome of the coin flip.

(c) A restricted coin flipping scheme is a general coin flipping scheme (T , N ) where the choice function
attached to each internal node is controlled by one of the players, and a Boolean coin flipping scheme is a
restricted coin flipping scheme where all the choice functions are just coin flips by one of the players.

We now define the notion of influence in this general context. Let (T , N ) be a general coin flipping
scheme and let S ⊆ N . Denote by Pr(T = 0) the probability that the outcome of T is zero, assuming that
at each internal node v the choice function fv is used to select the next node, and that all the players pick
their assignments to fv according to the prescribed probability distributions. Now assume that at each node
the players outside of S first select their assignments using the given probability distributions and then,
given these assignments, the players in S can select their assignments to the choice function at the node
according to their best strategy to maximize the probability of outcome 1. The probability of S failing and
T ending with 0 despite the effort by S is denoted by

q0 = q0(T , S).

The definition of q1 is symmetric. The reader can verify that if T has a single internal node labeled by a
single round scheme then the qδ defined here are the same as those defined in section 2 for the single round
case. In the same way we define the influence of S in T towards zero (one) to be

I0
T (S) = 1 − q1(T , S) − Pr(T = 0),

I1
T (S) = 1 − q0(T , S) − Pr(T = 1).

Also for 1 ≤ r ≤ n, and δ ∈{0, 1},

Iδ
T (S) =

|S|=r
max Iδ

T (S).



and for r = 1

Iδ
T = Iδ

T (1).

Note that 1 − q1(T , S) is the probability that the outcome is 0 when the players in S play their best strategy
to reach 0. The difference between this and the probability that the outcome is 0 when all players play
according to the scheme T is defined to be the influence of S towards 0.

Unlike the one round schemes that were studied in Game Theory and in the early days of Computer
Science (e.g. in the context of Threshold Functions [Wi]), the influence of players in general coin flipping
schemes, to the best of our knowledge, has not been studied before. For example, the following basic ques-
tion has not been answered before: Can we approximate an unbiased coin as well as we wish despite the
intervention of one of the players, by a long enough game. Or using our notation, given n and ε > 0, is
there a general coin flipping scheme T for n players with Pr(T = 1) = Pr(T = 0) = 1/2 such that
I0

T , I1
T < ε .

In the following theorem we answer this question negatively, by showing that in any general coin
flipping scheme for n players, for any r , 1 ≤ r ≤ n, there is always a set S of r players that can bias the
coin by Ω(r/n). We wonder whether this natural result is a consequence of some more general principle.
In contrast, consider the example at the beginning of Section 6. It shows an election scheme which cannot
be biased by any single player.

Theorem 5: Let (N , T ) be an n player general coin flipping scheme. Let δ ∈ {0, 1} and let
p = Pr(T = δ ). For any r , 1 ≤ r ≤ n

Iδ
T (r) ≥

r

n
⋅ p ⋅ ln

1

p
.

In particular if Pr(T = 0) = Pr(T = 1) = 1/2, there are subsets S0 and S1 of N of cardinality r with

I0
T (S0) ≥ c

r

n
I1

T (S1) ≥ c
r

n
where c = (ln 2)/2 = 0. 34657. . . .

Proof: Our first observation is that for the purpose of lower bounds it is enough to consider only restricted
schemes. This follows immediately from

Proposition 5.1: For any general coin flipping scheme (T , N ) there is a restricted scheme ( T̃ , N )
such that Pr(T = 0) = Pr( T̃ = 0) and for every S ⊆ N and δ = 0, 1

Iδ
T (S) ≥ Iδ

T̃ (S).

Proof: The idea is very simple: Instead of assigning values to the variables of the choice function at each
node simultaneously we do this sequentially. This can only reduce the influence of any set of players. Let u
be an internal node of T and let fu : Π Xi −−−> V be its choice function. We replace this node by a tree Tu
of n + 1 level as follows: All the nodes of Tu will have the given probability spaces Xi as their attached
probability spaces. The root of Tu will be the node u and the set of its children will be the set X1, The
choice function attached to this root will be the function f 1

u (x1, . . . , xn) = x1. In the same manner, the set
of children of all nodes at the i-th level of Tu will be the set Xi , with the choice function
f i
u(x1, . . . , xn) = xi . In other words, all the nodes of depth i are controlled by player i, and his action at

this level is to select his assignment to fu. With each leaf of Tu we can associate the n-tuple (x1, . . . , xn)
according to the path that leads from the root u to the leaf. At this leaf we attach a copy of the node
v = fu(x1, . . . , xn) ∈V .



To construct T̃ we begin at the root u of T and replace it by the tree Tu. At each leaf of Tu that is
labeled by v ∈ V we put a copy of the the subtree rooted at the child v of u. We now proceed with each
subtree in the same manner. This way T̃ is constructed.

Let S ⊆ N be any subset of the players. In evaluating Iδ
T (S), at each node of T we set the the vari-

ables in S after the other variables have been set at random. In T̃ this may not be possible just because
members of S may precede other players outside of S. Thus in scheme T̃ the players in S may have less
strategies to chose from than in the scheme T . (In fact for S = {n − |S| + 1, . . . , n} they hav e exactly the
same set of strategies to play.) Since any strategy for the players in T̃ can be used as a strategy for T it is
clear that Iδ

T (S) ≥ Iδ
T̃ (S)

Our next observation is that it is enough to prove the theorem for Boolean schemes:

Proposition 5.2: Let T be a general n player coin flipping scheme and let ε > 0. Then there exists a
Boolean scheme T̃ such that | Pr(T = 0) − Pr( T̃ = 0) | < ε and for every coalition S and δ ∈{0, 1}, we
have

Iδ
T̃ (S) ≤ Iδ

T + ε .

Sketch of Proof: W.l.o.g. assume T is a restricted scheme. To construct T̃ simply approximate the random
variable at each node of T by a dyadic approximation and in a similar manner to the proof of Proposition
5.1, replace the action of the player at this node by a sequence of coin flips.

We now return to the proof of Theorem 5. Proposition 5.2 allows us to assume that T is a Boolean
scheme. Consider first the influence of one player, (i.e. r = 1). For a node in the game tree T we consider
the game H of the subtree below it. Let ai = 1 − q0(H , {i }) denote the largest probability that this game
ends with a 1 under i’s best strategy and let a = Pr(H = 1) be this probability under random play by all
the players. We prove

Lemma 5.3: For every node in a game tree

a1
. . . an ≥ an−1.

Proof: We prove this by induction on the height in the tree. In a leaf all ai and a are either zero or one. Let
u be the father of v and w and say w.l.o.g. that u is controlled by player 1. We use bi , ci to denote the
appropriate quantities at v, w. We hav e

b1
. . . bn ≥ bn−1,

c1
. . . cn ≥ cn−1.

a1 = max(b1, c1), say a1 = b1.

ai =
1

2
(bi + ci) n ≥ i ≥ 2

a =
1

2
(b + c).

We wish to show

a1
. . . an ≥ an−1.

That is

b1(
b2 + c2

2
) . . . (

bn + cn

2
) ≥ (

b + c

2
)n−1



or

b1(b2 + c2) . . . (bn + cn) ≥ (b + c)n−1.

Expand the product
n

i= 2
Π(bi + ci) and consider the (

n − 1

t
) terms with t b-factors and (n − t − 1) c-fac-

tors. This gives

A ⊆ {2..n}

|A| = t

Σ
i ∈ A
Π bi ⋅

j ∈| A
Π c j

By the arithmetic - geometric inequality this is greater or equal to

(
n − 1

t
)[

A ⊆ {2..n}

|A| = t

Π
i ∈ A
Π bi ⋅

j ∈| A
Π c j]

1/(
n−1

t
) =

= (
n − 1

t
)[(

n

i= 2
Π bi)

(
n−2

t−1
)
(

n

i= 2
Π ci)

(
n−2

t
)
]
1/(

n−1

t
) =

= (
n − 1

t
)(

n

2
Π bi)

t/(n−1) (
n

2
Π ci)

(n−t−1)/(n−1)

So we have

b1(b2 + c2) . . . (bn + cn) ≥

≥ b1

n−1

t= 0
Σ (

n − 1

t
)(

n

2
Π bi)

t/(n−1) (
n

2
Π ci)

(n−t−1)/(n−1)

≥
n−1

t= 0
Σ (

n − 1

t
)(

n

1
Π bi)

t/(n−1)(
n

1
Π ci)

(n−t−1)/(n−1) ≥

≥
n−1

t= 0
Σ (

n − 1

t
)bt cn−t−1 = (b + c)n−1.

Where Π bi ≥ bn−1 and Π ci ≥ cn−1 were used.

The derivation of the theorem is easy now: We conclude from the lemma that at the root of T

max ai ≥ a1−1/n = a (1 +
ln (1/a)

n
+ O(n−2)),

or

I1
T ≥

p

n
ln

1

p
.

This completes the proof for r = 1. The general case is treated in a similar way: Let aS = 1 − q0(T , S) for
all S ⊆ N of size r , and let a = Pr(T = 0), then by an argument similar to the one presented above we
have



S
Π aS ≥ a

(
n−1

r
)

and thus

S
max aS ≥ a1 − r/n > a (1 +

r

n
ln (1/a) ).

Remark: Our lower bound shows that there is always a player that can bias the coin by O(1/n) toward the
value 1. A similar result holds of course if we are interested in bias towards 0. We note that this lower
bound is optimal as for any pi and p between 0 and 1 satisfying Π pi = pn−1 and pi ≥ p for all i, we can
construct a scheme T such that p = Pr(T = 0) and pi = p + I1

T ({i }) as follows: Let α i = p/pi . Each
player i in N flips a biased coin with probability α i of outcome 1. If all players get 1 the outcome of T is 1
and otherwise 0. Note that in this construction any player can bias the outcome towards 0, but the bias
towards 1 is bounded. In the following section we give a construction where in influence of any player
(towards 0 or 1) is only O(1/n).

6. Multistage games - Upper Bounds

An election scheme (T , N ) is defined like a coin flipping scheme, but unlike coin flipping schemes where
the leaves of T are labeled by 0 or 1, in an election scheme they are marked by names of players from N .
The game proceeds exactly like a coin flipping scheme and when a leaf is reached, the player whose name
marks it is elected. We restrict our attention to election games where if everyone plays randomly each
player is elected with equal probability. To measure the influence of a coalition S we assume that players
outside S play randomly, while those in S play the best strategy to maximize the probability that a member
of S is elected. The excess of this probability over |S|/N is defined as the influence of S on the election
scheme.

Here is an example of an election scheme E = (T , N ) where every player has zero influence. The
root is controlled by player 1. Its n − 1 sons are controlled by 2, . . . , n respectively and 1 has to select
between them with equal probability. The children of i’s node are n − 1 leaves and all marks appear there
but for i. Player 1 is to be chosen with probability 1/n and all the rest with probability (n − 1)/n(n − 2)
each. The reader can easily check that under random play every player is elected with probability 1/n and a
single player cannot increase his chance of being elected no matter what strategy he plays. The next theo-
rem follows easily now.

Theorem 6.1: There are multistage games T = Tn such that p(T = 0) = 1/2 and the influence of any
player x satisfies

I1
T ({x}), I0

T ({x}) = O(
1

n
).

Proof: The scheme may be described as follows: Run the election scheme E and have the elected player
flip a fair coin. By the property of this election scheme a player may bias the coin only if he is elected.
Since everyone is elected with probability 1/n the influence towards either zero or one are both O(1/n) .

As for the influence of larger sets of players we have the following

Theorem 6.2: There are n players multistage schemes T = Tn such that p(T = 0) = 1/2 and for all k,
k < nα −o(1) , where α = log3 2 = 0. 63. . ., we hav e

I0
T (k), I1

T (k) = O(
k

n
).



Proof: We assume n = 2r and let k ≤ nα /2r . Let G0 be the n-player game of Theorem 4(a). Define the
scheme T = Tn to be the following: We play the game G0 for r = log n times and let bi be the i-th out-
come. The sequence b = b1, . . . , br identifies one of the n players. This selected player now flips his coin
again to set the outcome of T . Note that the only way a set of players can bias the coin is by trying to have
one of them selected to flip the final coin. As the influence of the k players on the G0 game is bounded by
k/2nα , the probability that one of these k players will be reached is bounded by

k (
1

2
+

k

2nα )r ≤
k

n
(1 +

1

2r
)r <

2k

n
Thus the probability of outcome 1 (or 0) is at most

2k

n
+

1

2
(1 −

2k

n
) =

1

2
+

k

n
and so the influence of any k players is bounded by O(k/n ).

7. Final Remarks and Open Questions

Below we list some open problems raised in this paper along with our conjectured answers. We
always refer to f as an n variable Boolean function with Pr( f = 0) = 1/2 and T is always an n player
multiround scheme with Pr(T = 0) = 1/2. Most of these questions deal with the minimization of the
influence function, They are classified according to the following criteria:

− Single round / multi round scheme.
− The influence of a single player / the gain of ε control.
− The influence function considered. We deal with the following three quantities: I , min (I0, I1) and
max (I0, I1).

1) As mentioned in Section 3 we conjecture that I f is always Ω(
log n

n
). In other words, every Boolean

function has an influential variable.

2) Given n and ε > 0, what is the least r such that for every f there holds

max (I0
f (r), I1

f (r)) > ε ?

We gav e examples showing r = Ω(n0.63..), but we are not sure of the best bound.

3) We conjecture that for every f there is a set S of O(
n

log n
) variables for which both

I0
f (S), I1

f (S) = Ω(1).

In other words, every Boolean function has a negligible set of variables with a significant influence.
In Section 3 this is shown to be best possible.

4) We showed in Theorem 5 that for every T both I0
T and I1

T are at least Ω(1/n) and this is tight. What
is the largest ψ = ψ (n) such that in every T there is a player x for which both

I0
T (x), I1

T (x) ≥ ψ (n)

hold?

5) The claim of (3) is conjectured to hold also for multiround schemes. By results of Saks [S] this, if
true, is best possible.

6) We want to describe another notion of adaptive influence over a scheme. Let T be a given scheme,
let k be an integer and start with S an empty set. As we play the scheme T an adversary adds at most
k players to S. The players currently in S play their best strategy towards δ and the rest play ran-
domly. Let



Aδ
k (T ) : = Pr(T ends with δ ) − Pr(T = δ ).

For which T is this quantity minimized? Among the one round games this quantity is minimized for
the majority function. This follows from an isoperimetric inequality in the cube [H]. A recent article
of Lichtenstein, Linial and Saks [LLS] shows that the majority function remains optimal even after
unfolding the one round game to a tree scheme of n levels. It may be that majority is the answer also
without extra assumptions.

7) The connection between election games and coin flipping games seems very interesting. Consider
coin flipping schemes where we first run an election game and have the elected player flip a coin. Is it
true that the best coin flipping schemes have this form? Given a robust coin flipping scheme how can
it be used to create a robust election scheme? The Vaziranis’ recent results on sampling with slightly
random sources [VV] are relevant but do not seem to answer this question.

Acknowledgement: We acknowledge useful discussions with A. Broder, N. Megiddo, A. Neyman,
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