A LOWER BOUND FOR THE CIRCUMFERENCE OF A GRAPH

Nathan LINIAL

Department of Mathematics, Technion, Israel Institute of Technology, Haifa, Israel

Received 18 March 1975 Revised 29 September 1975

Let G = (V, E) be a block of order *n*, different from K_n . Let $m = \min \{d(x) + d(y): [x, y] \notin E\}$. We show that if $m \le n$ then G contains a cycle of length at least *m*.

1. Introduction and notations

We discuss only finite undirected graphs without loops and multiple edges. We prove the main theorem and show how Ore's theorem [3] on Hamiltonian graphs is easily deducible.

Let G = (V, E) be a graph where V, E are the vertex and edge sets respectively. The cardinality of a set S is denoted by |S|. n stands throughout for |V|, the order of G. $\mathbb{C}(x)$ is the set of vertices adjacent to x. d(x) = $|\Gamma(x)|$, the degree of x. A block, or equivalently a 2-connected graph is a connected graph which remains connected after the deletion of any of its vertices. The *circumference* of G, c(G) is the length of the lengest cycle contained in G. [The length of a path or a cycle is the number of edges it contains].

We also define m(G) by $m(G) = \min\{d(x) + d(y): [x, y] \notin E\}$. m(G) is undefined for complete graphs.

Let $P = (x_1, ..., x_l)$ be a path in G. $P(x_i, x_j)$ $(j \ge i)$ is the subpath of P connecting x_i to x_j . We use P* for the reverse path $P^* = (x_1, ..., x_1)$.

2. The theorem

Theorem. Let G be a block, then $c(G) \ge \min\{n, m(G)\}$.

Proof. We prove the theorem when $m = m(G) \le n$. From this the case m > n easily follows. Let G be a counter-example, and let $P = (x_1, ..., x_l)$ be the longest path in G. Evidently $\Gamma(x_1) \cup \Gamma(x_l) \subseteq \{x_1, ..., x_l\}$. G does not contain a cycle of length l, unless l = n in which case there is nothing to prove. Let c be such a cycle. As c does not contain all vertices of G and as G is connected, we can find $x \in c$, $y \notin c$ that are adjacent. The path starting with [y, x], then following along c has length l. This contradicts the maximality of l. So $[x_1, x_l] \notin E$ and $d(x_1) + d(x_l) \ge m$. We may now deduce that $l \ge m+1$, for if $l \le m$, there is an index i such that $[x_1, x_{i+1}], [x_i, x_l] \in E$.

The following cycle has length *l*:

$$P(x_1, x_i) [x_i, x_i] P^*(x_i, x_{i+1}) [x_{i+1}, x_i].$$

Further we show that if $[x_1, x_j]$, $[x_i, x_l] \in E$, (j > i), then j-i > l-m+1. Else, the following cycle,

$$P(x_{i}, x_{j}) [x_{i}, x_{j}] P^{*}(x_{i}, x_{j+1}) [x_{j+1}, x_{1}]$$

has length $l - (j - i - 1) \ge m$.

We now show that if $[x_1, x_j] \in E$, then for i < j, $[x_i, x_l] \notin E$. Let $[x_1, x_j]$, $[x_i, x_l] \in E$ with i < j, and let j-i be minimal. We already know that $j-i \ge l-m+2$. Also $[x_1, x_l] \in E$ implies $[x_{l-1}, x_l] \notin E$. By the last two arguments at least $d(x_1) + l - m$ vortices are not adjacent to x_l . As $\Gamma(x_l) \subseteq \{x_1, \dots, x_{l-1}\}$

$$d(x_1) \le l - 1 - (d(x_1) + l - m) = m - 1 - d(x_1),$$

 $d(x_1) + d(x_i) < m - 1$, a contradiction.

We now denote

$$u = \max\{t: [x_1, x_1] \in E\}, \quad v = \min\{t: [x_1, x_1] \in E\}.$$

Since G is a block, there exist integers s_1 , t_1 such that $s_1 < u < t_1$, for which there is a path $P_1(x_{s_1}, x_{t_1})$ having no other vertices in common with P. We assume that t_1 is maximal with respect to this property. Suppose s_i , t_i , P_i are already defined. By the same reasoning there is a maximal integer t_{i+1} for which there is an integer s_{i+1} such that $s_{i+1} < t_i < t_{i+1}$ and there is a path $P_{i+1}(x_{s_{i+1}}, x_{t_{i+1}})$ having with P only end vertices in common. Moreover, the P_i thus defined are mutually disjoint, except possibly for end vertices. If $(P_i \cap P_j) \setminus P \neq \emptyset$ (j > i), there would be a path connecting x_{t_j} to x_{s_i} . This path has no vertices in common with P except for x_{t_j}, x_{s_i} . But

Fig. 1. (a) r ever. (b) r odd.

this contradicts the maximality of t_i . Furthermore $s_{i+2} \ge t_i$ by the maximality of t_{i+1} . The situation is described in Fig. 1.

The sequence t_i is increasing, so for some f, $t_f > v$. Choose $r = \min\{f: t_f > v\}$. We need the following two definitions:

$$t_0 = \min\{t: \{x_1, x_t\} \in E, t > s_1\},\$$

$$s_{r+1} = \max\{s: \{x_r, x_t\} \in E, s < t_r\}.$$

We now have the following cycle whose length we show to be $\geq m$.

$$([x_1, t_0] P(t_0, s_2) P_2(s_2, t_2) P(t_2, s_4) P_4(s_4, t_4) ...)^*$$

 $P(x_1, s_1) P_1(s_1, t_1) P(t_1, s_3) P_3(s_3, t_3) ...$

There is a slight difference between the two cases: r is even and r is odd as is described above.

Let this cycle be denoted by C. By definition of t_0 , s_{r+1} we have $V(C) \supseteq \{x_1, x_l\} \cup \Gamma(x_1) \cup \Gamma(x_l)$. Hence $|V(C)| \ge 2 + d(x_1) + d(x_l) - (\Gamma(x_1) \cap \Gamma(x_l))|$. But $|\Gamma(x_1) \cap \Gamma(x_l)| \le 1$, so the length of C exceeds $d(x_1) + d(x_l) \ge m$. Note that we proved: $d(x) + d(y) \ge m$ for nonadjacent x, y implies $c(G) \ge m$ if G is a block. This formulation settles the case $m \ge n$.

3. Ore's theorem and concluding remarks

Ore's theorem is one of the earlier results in Hamiltonian graph theory. In our notation it states: For any G satisfying $m(G) \ge n$, c(G) = n (G is Hamiltonian). In order to get Ore's theorem we only have to show that $m(G) \ge n$ implies that G is a block. Suppose on the contrary that $V(G) = \{x\} \cup A \cup B$ with $A \cap B = \emptyset$, and no edge joining a vertex in A to vertex in B. If $u \in A$, $v \in B$, we have $d(u) \le |A|$, $d(v) \le |B|$ so $d(u) + d(v) \le |A| + |B| = n - 1$.

The case $m(G) \ge n$ has been discussed by Kronk [2](see also Berge [1, p.204]).

J.A. Bondy (private communication) noted that by properly altering the proof of Theorem 1 in his paper "Large cycles in graphs" (Discrete Math. 1 (1971) 121-132) it is possible to obtain a proof of the main theorem in this paper.

References

- [1] C. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam, 1973).
- [2] H.V. Kronk, Variations on a theorem of Póss, in: The many Facets of Graph Theory, Lecture Notes in Math. 110 (Springer, Berlin, 1969).

÷

[3] O. Ore, Arc covering of graphs, Ann. Math. Fura Appl. 55 (1961) 315-321.