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Let G = (V, E) be a block of order n, different from K,,. Let m = min {dx) +d(y):
[yl EE }. We show that if m<n then G contains a cycle of length at least m.

1. Introduction and notations

We discuss only finite undirected graphs withoui loops and muitiple
edges. We prove the main theorem and sliow how Ore’s th~orem [3] on
Hamiltonian graphs is easily deducible.

Let G =(V, E) be a graph where V, E are the vertex and edge sets
respectively. The cardinality of a set .5 is denoted by |S|. n stands through-
out for | V], the order of G. T(x) is the set of vertices adjacent to x. d(x) =
IF(x)i, the degree of x. A block, or equivalently a 2-connected graph is a
connected graph which remains connected after the deletion »f ary of its
vertices. The circumference of G, c(G) is the length of the .ngest cycle
contained in G. [The length of a path or a cycle is the nu~ er of edges
it contains].

We also define m(G) by mi(G) = min{d(x} +d(¥): [x.; €& E}. m(G)
is undefined for complete graphs. .

Let 2= (x,, ... x;) be a path in G. F(x;, x;) (j > i) is the subpath of P
connecting x; to x;. We use P* for the reverse path P* = (x;, ..., xy).

2. The theoremw
Theorem. Let G be a block, then c(G) = min{n, m(G)}.
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Proof. We prove the theorem when m = m(G) < n. From this the case
n: > n easily follows. Let G be a counter-example, and let P = (x,, ..., X))
be the longest path in G. Evidently N(x )uT'(x) & {x,, ..., x;}. G does
1ot contain a cycle of length /, unless / = n in which case there is nothing
to prove. Let ¢ be such a cycle. As ¢ does not cor:tain all vertices of &
and as G is connected, we can find x € ¢, y € ¢ that are adjacent. The
path starting with [y, x], then following along ¢ haus length /. This contra-
dicts the maximality of /. So [x,, x;] &€ E and d(x ) +d(x;) = m. We may
now deduce that! 2 m+1, for if I € m, there is an index i such that
fx, . xieg V. Ix;0 %1 € E.

The follcwing cycle has length [

Peep.x)) D x V PROG x O 1,06l

Further we show that if Ixi. %), [xp x b € E, (j>0), thenj—i> 1-m+1.

Else, the following cycle,

Px  x;) Do P PY g, x x s x4

has length/ - (j—i—-1)2 m.
We row show that if [x,, x;] € E, then fori <j, Ix;,x;] € E. Let [x, X1,

f 1= K with ; a4 a 2
%, X1 € £ wiih i<j,and !%e]*-a He minimal. We already know that

j—iz21-m+2. Also [x,,x,] € E mplies {x,_,, x;] ¢ E. By the last two
arguments at least d(x ) + /—m vurtices are not adjacent to x;. As I'(x)) &
(Xpe o Xp g}

dxp<i-1-(dx,)+]1-m)=m-1 —dx,),
d(x,)+d(x)<m--{, acontradiction.

We now de;jiote
u=max{r: [x,. x,]€L;, v=min{sn [x,.x,1 € E}.

Since G is a block, there exist integers s, 7, such thats, < u < t;, for
which there is a path P, (xq,, x,, ) having no other vertices in common with
P. We assume that ¢, is maximal with respect to this property. Suppose
S. 1;, P; are already defined. By the same reasoning there is a maximal in-
teger £;, for which there is an integer s;,, such thats;,, <¢; <1;,, and
:here is a path Py (xg,, , Xy +¢ ) having with P only end vertices in common.
Moreover, the P; thus defined are mutually disjoint, except possibly for end
vertices. If (P, 0 P)\P+# @ (j > i), there would be a path connecting X
to xg,. This paih has no vertices in common with P except for Xyju Xs- But
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Fig. 1. (a) r ever. (b) r odd.

this contradicts the maximality of ¢;. Furthermore s;,, 2 ¢; by the maxi-
mality of #;,, . The situation is descrited in Fig. 1.

The sequence 1, is increasing, so for some f, £, > v. Choose r = min{f:
t;>v}. We need the following tw o definitions:

t, = min{¢: [xl,xt] ek, t> 5y },

S

e = Max{s: {xs,x,] €E s<t}.

We now have the following cycle whose length we show to be =m.
(Ixy, 1] Pleg, 550 Pylsy. 13) Plt,, 540 Pylsy, 1) )Y
Plxy, s )P (sy. 1)) Py, s3) Py(sy, 1) ..

There is a slight difference between the two cases: r is even and r is odd
as is described above.

Let this cycle be denoted by C. By definition of £y, 5,,, we have
Y(C) 2 {x,. x;} U T(x;) U I(x)). Hence |IV(C)l > 2 +d(x ) +dlx;) -
i(xy) 0 T But [T(x ) 0 T(xl < 1, so the length of € exceeds
d(x;) + d(x)) >m. Note that we proved: d(x) + d(y) = m for nonadjacent
x. v implies ¢(G) = m if G is a block. This formulation setties the case
m>n.

3. Ore’s theorem and concluding remarks
Ore’s theorem is one of the earlier results in Hamiltonian graph theory.

In our notation it states: For any G satisfying m(G)= n, c(Gy=n (G is
Hamiltonian).
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In order to get Ore's theorem we o1y have to show that m(G) > n
implies that G is a block. Suppose or the contrary that V(G) = {x} v
AU B with A n B =0, and no edege joining a vertex in 4 to vertex in B.
ifue A, ve B, we have d(u) € 1AL, d(v) < |Bl sodu) +d(v) < |A| +|B) =
n- 1.

‘The case i) 2 n has been discissed
{1, p.2041).

J.A. Bondy (private communication) noted that by properly altering
the proof of Theorem 1 in his paper ““Large cycles in graphs™ (Discrete
Math. | (1971) 121--132) it ix possitle to obtain 2 proof of the main
theorem in this paper.
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